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Abstract: In highway autonomous driving, data-driven trajectory prediction models suffer from Long-
tailed Distributions, where straight-driving samples (>90%) dominate the expected gradient (termed 
Gradient Dominance), suppressing the learning of rare but critical intentions like lane changes. This 
leads to Intention Collapse, where models default to conservative straight trajectories. We propose an 
Intention-Aware Class-Balanced Framework to resolve this. Our approach introduces an Intention-
Guided Distribution Rebalancing strategy using inverse-frequency weighting to break the gradient 
dominance, and an Intention-Conditioned Recurrent Decoder that maps discrete intentions to a 
continuous latent space for controllable generation. Experiments on the HighD dataset show our method 
reduces the Average Displacement Error (ADE) in safety-critical lane-changing scenarios by 21% 
(1.15m → 0.91m) compared to the Standard Encoder-Decoder, demonstrating superior robustness in 
tail events, and validating the efficacy of class-balancing in regression tasks. 

Keywords: Trajectory Prediction, Long-tailed Distribution, Gradient Dominance, Intention Awareness, 
Class Balancing 

1. Introduction  

Accurate trajectory prediction is vital for autonomous driving safety, serving as the cornerstone for 
downstream planning and decision-making [1, 2]. However, state-of-the-art models often fail in real-world 
highway scenarios due to Intention Collapse: they accurately predict majority behaviors (straight driving) 
but fail to anticipate rare maneuvers (lane changes, braking). 

The root cause is Gradient Dominance in Long-tailed Distributions, a critical challenge in predictive 
modeling [3]. Since straight samples dominate (>90%), the expected gradient 𝔼𝔼[∇𝜃𝜃ℒ] is overwhelmed 
by the majority class. Consequently, the model actively suppresses responses to rare intentions to 
minimize global loss, collapsing complex interaction patterns into a single conservative mode. 

To address this, we contend that merely scaling up model capacity (e.g., using large Transformers) 
does not resolve the underlying data imbalance; instead, the gradient dominance must be fundamentally 
addressed at the optimization level. We propose an Intention-Aware Class-Balanced Framework (Figure 
1) with three contributions:  

(1) Intention-Guided Rebalancing: We apply inverse-frequency weighting to sample and loss 
functions, restoring gradient contribution for rare classes.  

(2) Intention-Conditioned Decoder: We design a decoder that uses intention as an explicit condition, 
maintaining independent feature subspaces for different maneuvers.  

(3) Optimization-Centric Insight: We demonstrate that mitigating gradient dominance via rebalancing 
is more effective than structural complexity for restoring tail performance, offering a model-agnostic 
solution for long-tailed regression. 
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Figure 1: Overview of the Framework. 

The system comprises an Ego-centric Encoder, an Intention-Guided Rebalancing Module 
(highlighted), and an Intention-Conditioned Recurrent Decoder. 

2. Related Work 

Deep Learning Approaches: While early methods relied on kinematic rules like IDM [4], they struggle 
in complex interactions. Current state-of-the-art data-driven models, ranging from LSTM-based encoders 
[5] to Transformers (HiVT [6], Wayformer [7], Trajectron++ [8]) and graph-based representations 
(LaneGCN [9], LAformer [10]), excel in spatial-temporal feature extraction. However, they typically 
optimize a global Euclidean loss (e.g., L2). In long-tailed datasets, this objective inherently drives the 
model to fit the majority class to minimize total error, leading to feature representation collapse.  

Modeling Uncertainty vs. Imbalance: To mitigate deterministic mode collapse, Generative models, 
such as GANs (Social-GAN [11]) and recent diffusion approaches [12], introduce latent noise, while 
Anchor-based methods (TNT [13], MultiPath++ [14]) utilize pre-defined trajectory templates. While 
improving output diversity, they do not address the underlying training data imbalance. Generative priors 
learned from skewed data still collapse to the majority mode, and anchor classifiers remain susceptible 
to gradient dominance. Unlike these methods which separate diversity from imbalance, we adapt Class-
Balanced strategies [15, 16] to directly tackle the root cause—sample scarcity—within the regression 
framework. 

3. Problem Formulation 

We predict the future trajectory 𝑌𝑌𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑡𝑡+1, … , 𝑠𝑠𝑖𝑖𝑡𝑡+𝑇𝑇 of a target vehicle 𝑖𝑖 given its history 𝑋𝑋𝑖𝑖 and 
neighbors. Driving intention 𝑚𝑚 is defined as 𝑚𝑚 ∈ Keep Lane, Left/Right LC, Accel, Decel. 

Label Generation (Onset-Detection Protocol): To maintain train-test consistency, we define intention 
labels using an onset-detection approach rather than relying on the full prediction horizon. Given an 
observed trajectory ending at tobs, we compute the maximum lateral deviation within a short onset 
window: 

Δ𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = max
𝑡𝑡∈[𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜,𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜+0.5𝑠𝑠]

�𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜� (1) 

We use a 0.5s onset window (10% of the total 5s horizon) rather than the full prediction window. 
This captures the initiation phase of maneuvers, ensuring labels reflect early behavioral signals 
observable from recent trajectory dynamics, rather than completed outcomes that would create train-test 
mismatch. 

Labeling Rules (Prioritized): We assign intention labels as follows: (1) Lane Change if the onset 
lateral deviation Δyonset > 0.5 m within the 0.5 s window [t,  t + 0.5s]; (2) Speed Change if the absolute 
longitudinal acceleration |ax|> 0.3 m/s² averaged over [t − 0.5s, t]; (3) Keep Lane otherwise. The 0.5 m 
threshold captures early lane-change drift, and the hierarchy (LC > Speed Change > Keep) resolves 
conflicts; temporal smoothing (τ=3) filters noise. 
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From Global to Conditional Regression: Traditional models minimize global loss ℒ = ||𝑌𝑌 − 𝑌𝑌�||2, 
which leads to mode collapse on imbalanced data. We instead learn a conditional distribution 𝑃𝑃(𝑌𝑌|𝑋𝑋,𝑚𝑚), 
decomposing the global problem into 𝐾𝐾 local sub-problems: 𝑌𝑌�∗ = argmax𝑌𝑌∈𝒯𝒯𝑚𝑚𝑃𝑃(𝑌𝑌|𝑋𝑋,𝑚𝑚), where 𝒯𝒯𝑚𝑚 
is the behavior subspace for intention 𝑚𝑚. 

4. Methodology 

4.1. Ego-centric Coordinate System 

We construct a dynamic ego-centric system where the ego vehicle’s current position 𝑝𝑝𝑡𝑡 is the origin. 
Historical positions are converted to relative displacements 𝑝̂𝑝𝑡𝑡−𝑘𝑘 = 𝑝𝑝𝑡𝑡−𝑘𝑘 − 𝑝𝑝𝑡𝑡 . This Input 
Canonicalization ensures spatial translation invariance. 

4.2. Intention-Conditioned Recurrent Decoder 

To prevent intention forgetting, we inject the intention signal into every decoding step. 

 
Figure 2: Intention-Conditioned Recurrent Decoder. 

A Fusion Layer projects physical states, social context, and intention embeddings into a unified latent 
space for the LSTM generator. To prevent intention forgetting, we inject the intention signal into every 
decoding step (Figure 2). 

Latent Fusion: At each step 𝜏𝜏, we fuse the physical embedding 𝑒𝑒𝜏𝜏
𝑝𝑝𝑝𝑝𝑝𝑝, social context 𝑐𝑐𝑠𝑠𝑜𝑜𝑜𝑜 (via Multi-

Head Attention), and intention embedding 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 into a latent feature ℎ𝜏𝜏
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. This is fed into the LSTM: 

ℎ𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = LSTM�ℎ𝜏𝜏
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,ℎ𝜏𝜏−1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�. This ensures the “Lane Change” command persists throughout the horizon. 

During inference, we employ Confidence-Weighted Decoding: 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ 𝑃𝑃(𝑚𝑚|𝑋𝑋)𝑚𝑚∈𝑀𝑀 ⋅ 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, softly 
interpolating intentions to smooth predictions in ambiguous scenarios. 

4.3. Hierarchical Sampling 

For each input we generate K = 6 trajectories. The three most probable intentions (sorted by the 
intention classifier) receive a fixed allocation of 3, 2, 1 samples respectively. If fewer than three 
intentions have non‑zero probability, the remaining slots are assigned to the highest‑probability intention. 
Different trajectories for the same intention are obtained by sampling independent latent noise vectors, 
guaranteeing multimodality while keeping the majority of hypotheses focused on the most likely 
maneuver. 

4.4. Intention-Guided Distribution Rebalancing 

To mitigate long-tailed intention imbalance, we propose a dual-strategy rebalancing mechanism 
combining dynamic resampling and loss reweighting, targeting regression mode collapse. 
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4.4.1. Intention-Driven Dynamic Resampling  

Building upon the inverse frequency principle [15], we calculate the sampling weight 𝑊𝑊𝑐𝑐 for each 
intention class 𝑐𝑐: 

𝑊𝑊𝑐𝑐 =
1

�𝑁𝑁𝑐𝑐 + 𝜖𝜖
(2) 

where 𝑁𝑁𝑐𝑐 is the total sample count for class 𝑐𝑐. We construct a Weighted Random Sampler 𝑆𝑆. In 
each training batch, samples are drawn according to probability 𝑃𝑃(𝑖𝑖) ∝ 𝑊𝑊𝑚𝑚𝑖𝑖. This compels the model to 
see a balanced ratio of straight and lane-change maneuvers, preventing the gradient updates from being 
dominated by the majority class. 

 
Figure 3: Impact of Class-Balanced Sampling Strategy. 

Standard random sampling (Grey) results in straight-driving samples dominating the batch (>59%). 
Our Intention-Guided strategy (Blue) significantly boosts the presence of Lane Change (LC) classes 
(from ~3% to ~9%), effectively mitigating gradient dominance. 

As shown in Figure 3, our sampler increases the exposure of lane-change samples by roughly 3× 
while still retaining a substantial portion of Keep Lane samples, preventing over-correction and 
preserving distribution realism. 

4.4.2. Loss Reweighting  

Complementarily, we apply weights to the classification loss: 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = −�𝛼𝛼𝑐𝑐

𝐾𝐾−1

𝑐𝑐=0

𝑦𝑦𝑐𝑐log(𝑦𝑦�𝑐𝑐) (3) 

where 𝛼𝛼𝑐𝑐 functions similarly to Focal Loss [17], penalizing misclassifications of rare intentions more 
heavily. 

4.5. Intention-Conditioned Recurrent Decoding 

Latent Fusion: During inference, we employ Confidence-Weighted Decoding or Hierarchical 
Sampling:  

To cover multimodal uncertainties, we generate 𝐾𝐾 = 6 hypotheses using a Hierarchical Sampling 
Strategy. We allocate samples based on intention probabilities (e.g., 3 samples for top-1, 2 for top-2), 
ensuring coverage of both the most likely maneuver and potential alternatives. 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚  is used for 
trajectory smoothing. 

4.6. Training Objective 

The multi-task loss is defined as: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟ℒ𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑝𝑝ℎ𝑦𝑦ℒ𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (4) 
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where ℒ𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = ||𝑣𝑣 − 𝑣𝑣�||2 + ||𝑎𝑎 − 𝑎𝑎�||2 enforces physical consistency.  

Hyperparameters and Experimental Setup:  

To ensure reproducibility, we detail the network configuration:  

Encoder: 2-layer LSTM with Hidden Size=128. Input embedding dimension is 32.  

Social Attention: Multi-Head Attention (Heads=4), Key/Value dimension 64.  

Decoder: Single-layer LSTM, Hidden Size=128.  

Training Strategy: Batch Size=64, using AdamW optimizer (𝑙𝑙𝑙𝑙 = 1𝑒𝑒−3) with ReduceLROnPlateau 
scheduler (Patience=5, Factor=0.5). To prevent gradient explosion, Norm Clip=1.0 is applied.  

Loss Weights: Through grid search, 𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟 = 1.0, 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐 = 0.5, 𝜆𝜆𝑝𝑝ℎ𝑦𝑦 = 0.1 yields the best balance. 

5. Experiments 

We evaluated on the HighD Dataset [18](downsampled to 5Hz, 3s history, 5s prediction). The reported 
metrics are ADE, FDE and LC‑ADE, where LC‑ADE is the average displacement error over the full 
5‑second horizon for all samples whose ground‑truth includes a lane‑change (left or right); when a model 
produces multiple hypotheses we take the minimum ADE among the K samples, and if a lane‑change is 
mis‑predicted as Keep‑Lane the error of that (incorrect) trajectory is still counted. For multimodal 
methods we use K = 6 hypotheses and allocate them hierarchically (3/2/1)—three samples for the most 
likely intention, two for the second‑most likely, and one for the third—to balance diversity and latency, 
while deterministic baselines are evaluated with K = 1 (so min‑ADE/min‑FDE reduce to the single 
prediction). All results are presented as mean ± standard deviation. 

5.1. Quantitative Analysis 

Table 1 mainly compares our method against representative paradigms: Physics-driven (CS-LSTM), 
Generative (Social-GAN), and Memory-based (MANTRA). Our Hybrid Strategy outperforms baselines, 
achieving 0.85m ADE and 1.88m FDE. Crucially, the improvement stems from resolving the long-tail 
bias rather than backbone complexity. 

Table 1: Performance Comparison (Horizon=5s). 

Paradigm K ADE (m) FDE (m) 
CS-LSTM [19] 6 1.12 2.85 
Social-GAN [4] 6 1.05 2.62 
MANTRA [20] 6 0.92 2.15 
Ours (Hybrid) 6 0.85 1.88 

 
Figure 4: Trajectory Error Analysis. 

As shown in Figure 4, the error histograms demonstrate that our model achieves tight convergence, 
with the vast majority of predictions concentrated in the low-error region (ADE < 2m, FDE < 5m). The 
mean ADE of 0.852m and mean FDE of 1.881m confirm the model's overall precision. Furthermore, the 
scatter plot (right) reveals a strong linear correlation (R2 > 0.9) between ADE and FDE, indicating 
consistent prediction stability over the 5s horizon without significant divergence in long-term forecasting. 

We intentionally chose these foundational baselines to isolate the impact of our Class-Balanced 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 9, Issue 1: 33-40, DOI: 10.25236/AJCIS.2026.090104 

Published by Francis Academic Press, UK 
-38- 

Strategy. While recent Transformer-based models [6, 21] achieve high performance via structural 
complexity, our goal is to demonstrate that distribution rebalancing alone can yield significant gains (e.g., 
21% reduction in LC-ADE) even on lightweight backbones. 

5.2. Ablation Study 

We validate the contribution of each module in Table 2.  

Baseline: Standard Encoder-Decoder. suffers in LC scenarios (1.15m LC-ADE).  

Ours (Hybrid): Adding both Balancing and Intention Fusion reduces LC-ADE to 0.82m, confirming 
that rebalancing gradients is essential for learning tail dynamics. The significant jump (Variant 4 vs. 2/3) 
suggests a synergistic effect, where rebalancing unlocks the potential of intention conditioning by 
providing properly distributed training signals. 

Table 2: Module Contribution. 

Model Variant k Resampling Intention 
Fusion 

ADE (m) LC-ADE 
(m) 

Balanced 
Acc 

Baseline 6 - - 1.05 1.15 62.1% 
Only 

Balancing 
6 ✓ - 0.94 1.05 78.6% 

Only Intention 6 - ✓ 0.92 0.95 65.4% 
Ours (Hybrid) 6 ✓ ✓ 0.85 0.91 81.5% 

5.3. Intention Classification Performance 

To further validate that our model effectively mitigates “Intention Collapse,” we present the detailed 
classification metrics in Table 3.  

A direct consequence of gradient dominance in previous works is the extremely low recall for tail 
classes (e.g., Lane Change). In contrast, our method achieves 91.7% Recall for Left Lane Change and 
84.0% for Right Lane Change, proving that the rebalancing strategy successfully forces the model to 
learn these rare but critical distinctive features. 

Table 3: Intention Classification Performance 

Intention Class Precision Recall F1-Score Support 
Keep Lane 0.957 0.744 0.837 2951 

Left Lane Change 0.816  0.917 0.864 145 
Right Lane Change 0.817 0.840  0.828 106 

Accelerate 0.640  0.912 0.752 1008 
Decelerate 0.63 0.870 0.734 562 

Weighted Avg 0.845 0.802 0.808 4772 

 
Figure 5: Maneuver Classification Analysis. 

Left: confusion matrix over five maneuver classes (Keep Lane, Left Lane Change, Right Lane Change, 
Accel, Decel). 

Middle: per-class accuracy with overall accuracy shown as a dashed line (80.2%). 

Right: confidence distribution for correct vs. incorrect predictions. Correct predictions concentrate 
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near high confidence (≈0.95–1.0), whereas misclassified samples exhibit significantly lower and more 
dispersed confidence, indicating that the classifier’s probability estimates can be used as a reliability 
signal for downstream trajectory fusion. 

As visualized in the Confusion Matrix (Figure 5), we observe that Keep Lane recall is lower than 
lane-change classes, mainly due to confusion with subtle accel/decel patterns. Therefore, we do not rely 
on hard intention decisions; instead, we leverage the confidence-weighted decoding to down-weight low-
confidence predictions, improving robustness under ambiguous longitudinal behaviors. 

5.4. Qualitative Results 

 
Figure 6: Intention Awareness vs. Baseline. 

Baseline (Red) predicts straight due to intention collapse. Ours (Blue) correctly identifies the early 
cut-in maneuver. 

As illustrated in Figure 6, we analyze a scenario demonstrating the "Intention Collapse" phenomenon. 

Scenario Description: The target vehicle initiates a Left Lane Change (indicated by the Green Ground 
Truth line) with a distinct lateral displacement. The Baseline model (Red), dominated by the majority 
straight-driving distribution, fails to diverge from the lane center, exhibiting a typical "regression to the 
mean" behavior. 

Intention-Aware Prediction: Conversely, our Intention-Aware model (Blue) successfully detects the 
onset of the Left Lane Change maneuver. Despite the strong prior for going straight, the intention-
conditioned decoder leverages the detected signal to effectively steer the predicted trajectory towards the 
target lane (Left), achieving a significantly lower Final Displacement Error (FDE = 1.37m) compared to 
the Baseline. 

Consistency Analysis: The result highlights the framework's ability to maintain consistency between 
the predicted intention and the executed trajectory. Unlike the Baseline which remains "entangled" in the 
straight mode, our model's generation is explicitly conditioned on the detected Left intention, ensuring 
robustness even in long-tail cut-in scenarios. 

6. Conclusion 

In this work, we demonstrated that optimization-level rebalancing is a potent alternative to increasing 
model complexity for long-tailed trajectory prediction. By effectively countering gradient dominance, 
our framework achieves a 91.7% recall in lane-change detection, proving that 'tail' safety is recoverable 
even with lightweight backbones. 
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