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Abstract: The air environment plays a vital role in human life and is closely related to the soundness of 
the ecosystem and the safety of human life, and good air quality is one of the prerequisites for the 
sustainable development of cities and society. In this paper, the Beijing-Tianjin-Hebei region is selected 
as the research object to explore the regional air quality characteristics, predict air quality changes, and 
seek scientific and effective methods and suggestions to improve air quality. In this paper, an air quality 
prediction model based on the long- and Long Short-Term Memory Networks (LSTM) is established by 
using the daily average AQI data of six cities in the Beijing-Tianjin-Hebei region for a total of 1,953 
days from January 1, 2018, to April 30, 2023, respectively. Finally, the established model was evaluated 
using several evaluation metrics such as root mean square error (RMSE). The results show that the 
LSTM-based neural network can predict the AQI more accurately, which provides a scientific and 
reasonable theoretical basis and prediction method for the environmental protection and related 
decision-making of governmental departments. 
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1. Introduction 

In recent years, the air quality problem has attracted more and more attention, and the pollution of 
the environment has led to great changes in people's lives, affecting the development of society and the 
general public to a certain extent, so it is urgent to study the topic of environmental quality. Since the air 
quality index varies significantly among Chinese cities, and different regions present different 
characteristics for different reasons, the Beijing-Tianjin-Hebei region is considered as a representative 
region to be studied and analyzed [1].Beijing-Tianjin-Hebei region as one of the key development areas, 
the air quality index of this region to carry out relevant research on the environmental management of 
other cities has a certain reference significance, which is conducive to the realization of the Chinese-style 
modernization, and promote the harmonious coexistence of man and nature. 

There are many methods for air quality prediction, among which the relatively common one is 
prediction by time series modeling. Peng Sijun [2] and others used the autoregressive moving average 
model (ARIMA) to predict the short-term daily average concentration of PM2.5 by using the data 
provided by the environmental monitoring station for the known characteristics of the time series 
distribution of PM2.5 concentration changes. Youyou et al [3] used a BP neural network optimized by 
Bayesian regularization (BR) algorithm to predict the air quality condition in Wuhu city, which improved 
the generalization ability of the network. He ZY et al [4] used the average concentrations of six pollutants 
to analyze the influence of each pollutant on AQI by constructing a linear quantile regression model. In 
the process of comprehensively promoting the modernization, the air environment pollution problem 
cannot be ignored, this paper for the Beijing-Tianjin-Hebei region in Beijing, Tianjin, Langfang, Baoding, 
Tangshan, Shijiazhuang six representative cities based on the air quality data related to the analysis and 
prediction. This paper chooses to use the method of artificial neural network to establish the long and 
short-term memory neural network to predict the air quality index in the Beijing-Tianjin-Hebei region. 
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2. The basic fundamentals of Long Short-Term Memory Networks (LSTM) 

2.1 Data Acquisition and Preprocessing  

In this paper, six cities, namely Beijing, Tianjin, Baoding, Langfang, Shijiazhuang and Tangshan, are 
selected as representative cities to study and analyze air quality related to the Beijing-Tianjin-Hebei 
region. The air quality data used in this paper are from the China Environmental Monitoring website 
(https://air.cnemc.cn:18007/), and the daily AQI data of 1953 days from January 1, 2018 to April 30, 
2023 are selected as the research object, and the trend of the daily average AQI values of the six cities 
can be obtained as follows Figure 1. 

 
Figure 1: Line graph of daily average AQI values by city 

By observation and comparison, the average daily AQI values of Baoding and Shijiazhuang are 
relatively more volatile, with most of the average daily AQI values of Beijing, Tianjin, Langfang, and 
Tangshan in the range of less than 150, i.e., less than mildly polluted, while Baoding and Shijiazhuang 
are relatively more polluted, with more days with average AQI values exceeding 150. The changes in air 
quality in each city can be visualized in Figure 1, which can lay the foundation for further analysis. 

Due to the characteristics of various types of data with different quantities and properties, in order to 
avoid the situation of slower model training and larger training error due to the large difference in the 
quantities of the input and output data, this paper adopts the Min-MAX method to standardize the input 
and output data, and reduces the characteristics of the data to between [0, 1], and the normalized data are 
the fastest in the search for optimal solutions. 

2.2 Principles of LSTM neural network model 

LSTM is a special kind of recurrent neural network (RNN), which uses a unique gating mechanism 
to effectively solve the problem of gradient vanishing during the training of long sequences and the 
problem of gradient explosion of RNN when the number of iterations increases. It is highly dependent 
on long data sequences and has strong nonlinear fitting ability. Compared with ordinary RNN, LSTM 
has better performance in long sequences, and its unit structure is shown in Figure 2. 

 
Figure 2: Main structure of LSTM model  
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In Figure 2, tx represents the data information at that moment, σ  is the sigmoid activation function, 
and the activation function σ  and tanh expressions generally take the following values: 
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t-1C  and tC  are the information states of the cellular unit in the previous period and the current 
moment, and the cellular state is the key to the LSTM neural network. In LSTM, the gate structure has 
the ability to decide whether the information passes through or not, and the LSTM model realizes the 
selective deletion or retention of information through three gating mechanisms, i.e., forgetting gate, 
remembering gate and output gate. Its main formula is as follows [5]. 

(1)In order to avoid too much memory interfering with the neural network's processing of the current 
input, we should selectively ignore certain components of the previous unit state in order to determine 
what information can be passed on, this function corresponds to the forgetting gate.  

1 1( )f f
t t h t ff w x w h bσ −= ⋅ + ⋅ +

                          (3) 

(2) A memory gate is a control unit that controls whether or not data at a point in time (the current) 
is merged into a cell state. First, the tanh function is used to extract useful information from the current 
vector, and then the sigmoid function (to the left of the tanh function layer on the graph) is used to control 
"how much" of this memory is put into the cell state. The new cell state tC  is saved by first multiplying 

the cell state t-1C  from the previous stage by tf  to forget about the information that we don't need, 
and then adding the new candidates to the cell state. 

1( 1 )i i
t h ii w xt w ht bσ= ⋅ + ⋅ − +                             (4) 
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(3) The output of the model relies on an output gate, which is a neural layer of the output values 
computed by the LSTM units at the current time. tC  How many outputs are there to the LSTM at the 

present time. th   

0 0
1 1 0( )t t h to w x w h bσ −= ⋅ + ⋅ +                              (7) 

tanh( )t th Cσ= ⋅                                    (8) 

Where in t t tf  、i  、o  represents the state values of the forgetting gate, the memory gate, and 

the output gate, in that order; 1 1 1 1
f i o cw w w w 、  、  、  is a weight matrix of the forgetting gate, the 

input gate, the output gate, and the tuple inputs connecting the inputs tx  to the components, in that order; 
f i o c
A A A Aw w w w 、  、  、  is a weight matrix of the forgetting gate, the input gate, and the output gate, 

and the tuple inputs bridging the previous layer of outputs 1th −  to the tuple; and 

f i o cb b b b 、  、  、  is a bias vector of the forgetting gate, the input gate, the output gate, and the 
tuple inputs. 
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3. Results 

3.1 Parameterization of the LSTM model 

The first 70% of 1953 sets of data were divided into training set and the last 30% into test set to 
establish the LSTM air quality prediction model based on Kears framework. The AQI data are normalized 
and fed into the LSTM neural network for processing, and the LSTM-based AQI prediction model is 
obtained after several iterations. 

When training the LSTM model [6], since the Adam algorithm can dynamically adjust the learning 
rate of each input parameter, the optimizer adopts the Adam optimization algorithm, and the absolute mean 
square error mae minimization is used as the optimization objective of the loss function. Since the output 
range of the Sigmoid function is between [0,1], and when the gradient values of the parameters are of the 
same sign, zigzag phenomenon is easy to occur when updating and it is difficult to find the optimal value. 
However, the tanh function takes values in the range of [-1,1], which avoids the shortcomings of the 
Sigmoid function, so we choose the activation function of the LSTM layer as the tanh function. In order 
to speed up the operation, a GPU was installed in the TensorFlow environment. 

3.2 Analysis of model fitting results 

Advance prediction of air quality can provide early warning information for relevant environmental 
protection departments, so that they can take appropriate measures to improve air quality, so this paper 
will take Beijing as an example to establish an air quality prediction model based on the long and short-
term memory neural network (LSTM) using the daily average AQI data of Beijing for a total of 1,953 
days from Jan. 1, 2018-April 30, 2023, for the purpose of establishing an air quality prediction model. 

 
Figure 3: Model loss diagram 

The model loss plot is shown in Figure 3, from the change of loss, we can see that the loss in the 
training set is rapidly decreasing and converging, which means that the model fits better on the training 
set. Similarly, in the test set, the loss of the model is also decreasing and finally stabilized, so it can be 
initially judged that the model fits better. 

From the image, it can be seen that the trend of the fitted values and the true values fitted by the LSTM 
model are roughly the same, and the fitted values and the true values are basically on a line more often. 
Due to the fluctuation of the range of the values of the AQI in the same AQI class, such as 51-100 
belonging to the same AQI class, the evaluation indexes have a large fluctuation. the same air quality class, 
so the large value of AQI can be understood as a normal situation , as shown in Figure 4. 
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Figure 4: Plot of predicted versus true values of LSTM in the prediction set 

In evaluating the prediction effect of the LSTM model, we simultaneously use the ARIMA model as 
the baseline model for comparison, and the evaluation indexes used are RMSE and MAE, and the specific 
experimental results are shown in the following Table 1. 

Table 1: Comparison table of the prediction effect of the two models 

Model  
Indicators RESE MAE 

LSTM 44.847223 26.123211 
ARIMA 26.483561 18.806126 

Therefore, after comparing with the prediction accuracy of ARIMA model, it can be seen that 
although there is a gap between LSTM model and ARIMA model, the gap is not big, and it can be 
considered that the LSTM model performs well in the prediction of AQI, and it can be used to predict 
the air quality of the six cities. 

3.3 Comparison of AQI Forecasts for Six Cities 

 
Figure 5: Beijing LSTM prediction map         Figure 6: Tianjin LSTM prediction map 

 
Figure 7: Langfang LSTM prediction map      Figure 8: Baoding LSTM prediction map 
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Figure 9: Tangshan LSTM prediction map    Figure 10: Shijiazhuang LSTM prediction map 

Based on the long and short-term memory neural network model (LSTM), the AQI data of six cities, 
Beijing, Tianjin, Langfang, Baoding, Tangshan and Shijiazhuang, are predicted on the test set, and the 
prediction results are shown in Figures 5-10. 

As can be seen from the figure, the volatility of the curves of the predicted and real values of AQI in 
each city is roughly the same, with a high degree of fit, reflecting that its error is within a certain range. 
The comparison of the regression evaluation indexes of the LSTM model is shown in the table 2 below, 
which is fluctuating within a certain reasonable range, so it can be assumed that the LSTM prediction 
model established in this paper has a good prediction effect in the dataset selected in this paper. 

Table 2: Table of evaluation metrics for LSTM prediction models for six cities 

 MSE RMSE MAE R_square 
Beijing 2011.273438 44.847223 26.123211 0.256921 
Tianjin 2096.846924 45.791341 27.301731 0.241233 

Langfang 2351.685547 48.494181 28.735516 0.233609 
Baoding 1936.911011 44.010351 26.979553 0.329552 

Tangshan 1955.81506 44.224598 26.902994 0.244060 
Shijiazhuang 1644.649292 40.554276 25.264069 0.370502 

4. Conclusions 

The AQI is affected by six singularity factors, and the general linear regression model prediction is not 
accurate enough to analyze and predict the AQI, so this paper adopts the LSTM neural network prediction 
model for the AQI prediction. This model has a good self-assessment mechanism, and the LSTM model 
performs well in long-time prediction, which is more suitable for the dataset selected in this paper. From 
the evaluation indexes of this paper, we can see that the prediction effect of LSTM model is good, and it 
can improve the prediction accuracy of air quality, which is very helpful for air pollution monitoring, early 
warning and prevention. The Beijing-Tianjin-Hebei region, as one of the key development areas in China, 
is representative of the studies related to the air quality index in this region, which is of reference 
significance for the environmental management of other cities and is conducive to the realization of the 
goal of harmonious coexistence between human beings and nature. In the subsequent research, we will 
also consider more influencing factors comprehensively to improve the stability and accuracy of the model. 
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