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Abstract: Due to the advancement of technology, data is becoming richer in features and instances, but 
not all features and instances help to improve classification performance in data mining. Data reduction 
helps to alleviate the difficulty of learning techniques when the data is large, and rough sets have been 
widely used for data reduction. Semi-monolayer covering rough set is an efficient and high-quality rough 
set model in set-valued information systems. In this paper, a new data reduction scheme is proposed from 
the perspective of incremental updating of semi-monolayer covering rough set (abbr. FSMCDE). Firstly, 
in the set-valued decision system, based on the fact that the lower approximation set gradually increases 
with the features until it remains stable, the limit for the lower approximation set of semi-monolayer 
covering rough set to remain stable is proved, and the incremental updating theory of the lower 
approximation set is designed. Secondly, the features are continuously added to the set-valued system, 
and the incremental algorithm is used to update the lower approximation set until it reaches the limit, 
completing the collaborative reduction of features and instances. Furthermore, to reduce the blindness 
of adding features during incremental updating, Fisher score is introduced to form the final collaborative 
reduction algorithm of features and instances. The experimental results show that FSMCDE can 
efficiently accomplish the collaborative reduction of features and instances, and effectively improve the 
classification performance. 

Keywords: Set-valued information system; Semi-monolayer covering; Incremental updating; 
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1. Introduction 

With the rapid development of technology and the dramatic increase in data collection capabilities, 
data are becoming richer in dimensionality and size (number of instances). Too high dimensionality and 
noise in data strengthen the classification model deviation and increase the computational complexity in 
data mining [1]. Therefore, the demand for data reduction is increasing. 

Data reduction is a data preprocessing task. The data reduction process in data mining mainly includes 
feature selection and instance selection[2, 3]. Feature selection can identify redundant features, and 
instance selection can eliminate misleading training instances. To develop a more effective model, the 
collaborative reduction of design features and instances can be considered. 

Rough set theory[4] is a mathematical tool for data analysis and knowledge discovery. Feature 
selection and instance selection are two important application fields of rough set theory. Feature selection 
based on rough set has been carried out a lot of work, and has been successfully applied in bioinformatics 
and other fields[5]. Compared to the large amount of research on feature selection, there is less work on 
instance selection[6, 7]. These instance selection algorithms tend to use the lower approximation set to 
select instances that are compatible with the decision results. In studying simultaneous feature and 
instance selection, most algorithms based on rough set mainly focus on intelligent optimization 
algorithms. Anaraki et al.[8] proposed a select features and instances simultaneously method based on 
shuffled frog leaping algorithm. Derrac et al. [9]proposed a hybrid evolutionary algorithm for data 
reduction, carried out by a steady-state genetic algorithm. Although the collaborative reduction algorithm 
based on rough set features and instances can reduce the time cost and effectively improve the 
classification performance, there is not much research in this area. 

In the decision system, the lower approximation set gradually expands with the increase of features. 
When enough features are added, the lower approximation set remains stable. This provides a new idea 
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for the collaborative reduction of features and instances. To achieve the stable state of the approximate 
set more quickly, incremental updating is an effective means. Incremental methods in set-valued 
information systems have been studied extensively[10]. Recently, Wu et al.[11, 12] proposed a semi-
monolayer covering rough set for set-valued information systems. The model is superior to other rough 
set models based on tolerance relation in approximation quality and computational efficiency. However, 
in semi-monolayer covering rough set, the incremental updating theory of approximation set under 
feature change needs to be further studied.  

In summary, based on the incremental updating theory of semi-monolayer covering rough set, this 
paper designs a collaborative reduction algorithm of features and instances (abbr. FSMCDE). Specifically, 
for semi-monolayer covering approximation operator DE0, this paper describes the increasing trend of 
the DE0 lower approximation set with the increase of features, proves the limit of the DE0 lower 
approximation set, and designs the incremental updating theory of the DE0 lower approximation set. 
Based on the incremental update theory and incremental limit, the features are continuously added to the 
set-valued system, and the incremental algorithm is used to quickly update the DE0 lower approximation 
set until the limit is reached, thereby completing the collaborative reduction of features and instances. 
Experiments show that FSMCDE can efficiently achieve the collaborative reduction of features and 
instances, improve data quality, and effectively improve classification performance. 

2. Preliminaries 

Let  be a set-valued information system (abbr. SVIS), where  is the universe, 
 is a finite set of attributes,  is the attribute value domain, and  

represents a set-valued mapping from  to .  is a set-valued decision 
system (abbr. SVDS), where  represents the decision attribute values and . The decision 
set is a partition of , .  

Definition 1. [11, 12] Let  be an universe, and  be a representative covering on . If every 
 is indispensable, i.e.  is a semi-monolayer 

covering on (abbr. SMC). 

  is a reliable element of , if . The set of all reliable elements in 
 is . 

  is the reliable set of , which contains all of the reliable elements in . 

  is controversial element, if ,  and . 

Definition 2.[13] Let  be SVIS, where . The information of an 
object  in S is a vector, . 

Definition 3.[12] Let  be SVIS.  is a set of elements with 
same information explanation on  as . The set of all cells on S is denoted by .  is a 
partition of universe. The information explanation  of  is , where . 

 If every value in  is a single-valued, the cell is called reliable cell. The reliable cell is denoted 
by , and the set of the reliable cells is denoted by . 

 The related reliable cell set of controversial cell  is denoted by , where 
. 

 If there exists any value in  is a set-valued, the cell is called controversial cell. The 
controversial cell is denoted by , and the set of controversial cells is denoted by . 

In semi-monolayer covering approximation space, we will introduce DE0 approximation operator in 
Theorem 1. DE0 not only improve the approximation quality but also accelerate the calculation of 
approximation set.  

Theorem 1.[12] Let  be SVIS. For any , the lower DA0 approximation set of  
on SVIS is as follows, where . 
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3. The Collaborative Reduction of Features and Instances Based on Incremental Method 

Definition 4. Let  be a set-valued information system (SVIS).  and 
.  and  are two subsystems of . 

 The truncation of information explanation of  on  is denoted as . The information 
explanation  in  is the abbreviation of . 

  is the segmentation of  iff . 

Lemma 2. Let  and  be the set-valued information 
systems.  is the segmentation of  iff . Furthermore, 

 is the only one for  in . 

Proof. According to the Definition 3, 
 and . “ ” Obviously,  is the subset 

of . “ ” Any subset of  has the same segmentation of information explanation. If the 
 is a subset of ,  is the segmentation of  according to Definition 3. On 

the other hand, the truncation of information explanation of  is specific. Therefore, the  
is the only one in  without any question.  

Theorem 3. Let  be a set-valued information system (SVIS). , and 
. 

a) For any ,  and . 

b) If  and , there exists  satisfying that 
. 

Proof. According to Definition 3, 
.  is . Thus a) is clear. On the other hand, we 

have noticed that  is reliable. For any ,  is a single-valued set. Therefore, 
. If there does not exist , . It is a 

contradiction with . Thus, there exists  satisfying that 
, b) is also clear.  

Theorem 4. Let  be SVIS and  be the segmentation of 
. For  and ,  and 

. Suppose that  is the segmentation of . 

a) For any , there exists  satisfying that 
. 

b) For any , there exists  satisfying that 
. 

Proof. According to Lemma 2,“  is the segmentation of ”equals to 
“ ”. 

a) For any , let . Suppose that . 
Then there exists  satisfying that  (Theorem 3-b). 

 (Theorem 3-a). It is a contradiction with “ ”. Therefore, 
 and . 

b) Select any  from . Suppose that for any , 
. According to Lemma 2, if , . Thus 

. It is a contradiction with . Therefore, there exists 
 satisfying that . 

In , the cells are denoted as  and the lower DE0 approximate set of X is denoted 
as . We will discuss the relationship between  in  and . 
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Theorem 5. Let  be SVIS and it also be the segmentation of . Suppose and 
. For any , if , then . 

Proof. Denote that the set of segmentation of  in  is 
, and . If , there exists 

 satisfying that .  and . According to 
Theorem 4-b, for any , there must exist  satisfying that 

 . Thus for the , there has  satisfying that . 
There has always at least one  and . Therefore, 

. Based on the arbitrariness of , . 

Corollary 6. Let  be SVIS and it also be the segmentation of . For any ,
. 

Proof.  are the direct conclusions of Theorem 5.  and the 
additional cells in  can be found following the conclusions in Theorem 5. 

The incremental theory of  can be found in Theorem 7. 

Theorem 7. Let  be a set-valued information system and it also be the segmentation of . 
For any , 。

where . 

Proof. Firstly, we need prove that 
. Let  be any one in and  be the 

unique cell in  satisfying that .  means that there has 
 satisfying that . By Theorem 4-b, there exists  

 and  . On the other hand,  means that 
. Therefore, every  is not the subset of . Therefore, 

either. It means that ，  where     
. . 

Therefore, , 
and  . 

Secondly, let . Because  
 , . And . It is clear that . 

Therefore, , 
(Corollary 6). 

Therefore, .  

The incremental limit of  can be found in Theorem 8. 

Theorem 8. Let  be SVIS. For any , if ，then no matter how many 
segmentations,  no longer change, where  and 

. 

Proof. If , then as long as  that satisfies  , there is 
 , which means keep adding attributes and there will be no new 

 . that is ， . According to the 
theorem 7, , no matter how many segmentations are 
performed,  no longer change and . 

In the set-valued decision system,  increases with the increase of features. When enough 
features are added,  remains stable and reaches the incremental limit of . The main 
step is to continuously add features to the decision system, and use the incremental algorithm (Theorem 
7) to quickly update  until the limit of  is reached (Theorem 8). When the limit of 

 is reached, the added features and instances are the results of the collaborative reduction of 
features and instances. In addition, we introduce the Fisher score model, which greatly reduces the 
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blindness of adding features during incremental updates. The details are shown in Algorithm 1. 

Algorithm 1: The collaborative reduction of features and instances based on the incremental updating 
of  in semi-monolayer covering rough set (abbr. FSMCDE) 

Input:  is a set-valued decision system, where  and the 
division of decision  to is .  

Output: Feature subset  after feature selection and instance set  after instance selection. 

1) Calculate the Fisher score of each feature in ; 

2) The features were sorted in descending order according to the Fisher score to obtain 
; 

3) ; 

4) for  do 

5) ; 

6) Calculate  according to Definition 3; 

7) for  do 

8) Calculate  according to Theorem 7; 

9) if , satisfy the condition of  according to Theorem 8; 

10)  

11) break; 

12) Return:  

4. Experiment and analysis 

In this section, we select ten datasets to test the effectiveness of the proposed FSMCDE algorithm, as 
shown in Table 1. All the experiments were performed on a computer with an Intel(R) Core (TM) i3-
10100 CPU @ 3.60GHz and 32.0GB of RAM. The model in this paper was written by Scala 2.12 
language and ran on IntelliJ IDEA. The data sets and source code in our paper have been uploaded to 
https://pan.baidu.com/s/1WNqopgeHfZyCxgFDJf3c1Q?pwd=o8um. 

Table 1: The description of datasets 

ID Dataset  Abbreviation Instances Features Classes 
1 METABRIC ME 2133 20000 6 
2 Prostate  PR 102 10509 2 
3 Breast2 BR 77 4869 2 
4 dbworld_bodies DB 64 4702 2 
5 dbworld_bodies_stemmed DBS 64 3721 2 
6 Breast_Cancer 1 BC 168 2905 2 
7 Musk1 MU 476 166 2 
8 sonar SO 208 60 2 
9 Ionosphere IO 351 34 2 

10 wine WI 178 13 3 
In this paper, three sets of experiments are designed to verify the effectiveness of FSMCDE as follows. 

In the data tables, ODP represents no processing of the data set, the bolded and underlined data are the 
best-performing values, the symbol ' \ ' means that the corresponding result cannot be obtained.  

4.1. Comparison with Feature Selection Algorithms 

To verify the effectiveness of FSMCDE in feature selection, this section compares it with classical 
feature selection algorithms[14]. These algorithms are MI, Fisher Score, ReliefF, Chi-Square Score and 
F_score, where the number of features is set to 50. The feature selection results of the FSMCDE 
algorithm can be found in Table 6.  
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Table 2 and Table 3 show the classification results of feature selection algorithms on C4.5 and KNN, 
respectively. Combining Table 2 and Table 6, on the C4.5 classifier, FSMCDE can always achieve the 
highest accuracy (Acc) and F1 score with the fewest features. Combining Table 3 and Table 6, except for 
ME and PR, FSMCDE has the highest accuracy and F1 score on KNN. In summary, compared with 
classical feature selection algorithms, FSMCDE can effectively identify important features and achieve 
higher classification results with fewer features. 

Table 2: Comparison of accuracy and F1 score of seven feature selection algorithms on C4.5 Classifier 

Dataset EI ODP ReliefF CHI F_score MI Fisher FSMCDE 

ME Acc 70.48 61.744 61.818 71.269 69.77 70.534 92.241 
F1 70.52 61.715 61.815 71.277 69.818 70.504 92.247 

PR Acc 82.273 87.227 85.664 83.964 81.4 84.118 89.8 
F1 82.353 87.138 85.652 83.917 81.483 84.164 89.811 

BR Acc 57.5 68.054 67.643 71.5 71.375 69.839 92.232 
F1 56.85 67.549 66.943 71.074 71.444 69.759 92.385 

DB Acc 74.452 74.714 81.643 80.262 80.857 82.548 86.333 
F1 74.306 74.467 81.086 80.038 80.72 82.303 86.265 

DBS Acc 72.357 78.024 79.333 79.071 81 80.262 85.233 
F1 71.74 77.627 79.227 78.612 80.594 79.911 85.267 

BC Acc 75.408 70.783 72.044 77.195 70.724 76.68 78.908 
F1 75.143 70.928 71.729 77.112 70.671 76.528 78.847 

MU Acc 80.547 80.274 78.138 79.047 82.031 79.188 95.23 
F1 80.518 80.272 78.188 79.08 82.071 79.146 95.209 

SO Acc 72.048 77.781 76.017 75.705 74.912 75.479 94.414 
F1 72.012 77.881 75.964 75.606 74.833 75.396 94.224 

IO Acc 88.801 88.523 88.683 89.094 88.149 88.628 96.51 
F1 88.765 88.483 88.613 89.066 88.103 88.593 96.504 

WI Acc 93.778 93.105 93.108 92.915 93.578 93.598 97.353 
F1 93.765 93.069 93.05 92.932 93.523 93.575 97.363 

Table 3: Comparison of accuracy and F1 score of seven feature selection algorithms on KNN Classifier 

Dataset EI ODP ReliefF CHI F_score MI Fisher FSMCDE 

ME Acc 70.52 67.746 67.749 77.267 78.603 77.197 78.074 
F1 68.89 66.357 67.213 76.549 77.752 76.479 77.961 

PR Acc 79.545 82.291 88.818 90.064 88.745 90.091 89.9 
F1 79.722 82.178 88.812 90.097 88.839 89.931 90.018 

BR Acc 63.232 76.446 75.518 75.821 68.946 76.964 89.964 
F1 62.126 76.883 75.043 75.994 69.807 77.05 89.747 

DB Acc 55.429 88.714 87.31 87.214 88.595 86.357 90.167 
F1 41.623 88.548 87.333 87.202 88.439 85.744 90.118 

DBS Acc 56.19 92.071 90.524 90.119 91.214 90.238 93.3 
F1 43.598 92.147 90.677 90.295 91.376 90.38 93.297 

BC Acc 66.085 72.993 71.162 73.221 71.287 72.949 81.667 
F1 53.158 67.961 66.864 69.777 64.836 69.405 79.552 

MU Acc 84.474 82.44 70.913 78.907 84.542 79.039 92.285 
F1 84.538 82.401 70.849 78.827 84.498 78.97 92.304 

SO Acc 70.348 69.945 70.957 71.324 71.879 70.402 91.052 
F1 70.13 69.546 70.855 71.304 71.777 70.375 88.554 

IO Acc 82.585 82.596 82.525 82.485 82.108 82.511 87.461 
F1 81.141 81.141 81.026 80.928 80.605 81.013 87.56 

WI Acc 68.31 68.552 68.382 68.16 68.493 68.454 75.33 
F1 67.763 68.163 68.308 67.807 67.964 67.942 70.372 

4.2. Comparison with Instance Selection Algorithms 

To further verify the effectiveness of FSMCDE in the instance selection, we compare it with the fuzzy 
rough prototype selection (FRPS)[7]. It is determined to use lower (FRPSI) and upper (FRPSII) 
approximation membership as a quality measure to select instances.  
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In Table 4 and Table 5, FSMCDE can always achieve the best classification results on C4.5 and KNN 
classifiers compared with FRPSI and FRPSII. In terms of the number of instances, it is clear that 
FSMCDE is more suitable for processing high-dimensional data sets. FSMCDE can effectively obtain 
reasonable instance selection results, while FRPSI and FRPSII will get more extreme instance selection 
results, such as filtering too many instances, or not filtering any instances. Therefore, FSMCDE can 
perform effective instance selection to obtain high-quality instances and improve classification results. 

Table 4: The number of instances selected by the three instance selection algorithms and the accuracy 
and F1 score on the C4.5 classifier 

Dataset FRPSI  FRPSII  FSMCDE 
Instances Acc F1 Instances Acc F1 Instances Acc F1 

ME \ \ \ \ \ \ 2025 92.24 92.25 
PR 96 81.02 80.88 102 82.96 82.9 100 89.8 89.81 
BR 16 67 67.67 45 64.25 64.54 74 92.23 92.39 
DB 16 49.5 49.33 64 70.91 70.9 60 86.33 86.27 

DBS 19 52 52 64 75.14 75.07 55 85.23 85.27 
BC 45 65 64.12 149 67.13 67.23 157 78.91 78.85 
MU 309 84.34 84.36 476 81.64 81.64 403 95.23 95.21 
SO 200 73.25 73.02 208 74.21 74.15 206 94.41 94.22 
IO 174 92.07 92.05 351 89 88.98 347 96.51 96.5 
WI 143 92.88 92.82 178 93.75 93.71 174 97.35 97.36 

Table 5: The number of instances selected by the three instance selection algorithms and the accuracy 
and F1 score on the KNN classifier 

Dataset 
FRPSI  FRPSII  FSMCDE 

Instances Acc F1 Instances Acc F1 Instances Acc F1 
ME \ \ \ \ \ \ 2025 78.07 77.96 
PR 96 82.12 82.12 102 78.8 78.98 100 89.9 90.02 
BR 16 69.5 66 45 73.3 67.22 74 89.96 89.75 
DB 16 50 49 64 55.48 41.51 60 90.17 90.12 

DBS 19 72 66.33 64 56.55 44.51 55 93.3 93.3 
BC 45 62.3 49.97 149 69.87 58.1 157 81.67 79.55 
MU 309 88.57 88.67 476 84.37 84.46 403 92.29 92.3 
SO 200 70.8 70.51 208 70.8 70.51 206 91.05 88.55 
IO 174 69.68 65.4 351 82.1 80.48 347 87.46 87.56 
WI 143 71.31 71.47 178 69.3 68.86 174 75.33 70.37 

4.3. Comparison with Feature Selection + Instance Selection Algorithms  

Table 6: The number of instances, the number of features and the accuracy, F1 score on the C4.5 
classifier of the three features + instance selection algorithms 

Dataset FRPSⅡ-FISC FISC-FRPSⅡ FSMCDE 
(Ins, Fea) Acc F1 (Ins, Fea) Acc F1 (Ins, Fea) Acc F1 

ME \ \ \ (1253,50) 79.63 79.71 (2025,42) 92.24 92.25 
PR (102, 50) 83 83.11 (101, 50) 84.47 84.44 (100,10) 89.8 89.81 
BR (45, 50) 79.55 79.37 (35, 50) 81.17 79.96 (74,6) 92.23 92.39 
DB (64, 50) 80.67 80.62 (61, 50) 87.07 87.16 (60,24) 86.33 86.27 

DBS (64, 50) 80.57 80.24 (58, 50) 89.27 89.44 (55,21) 85.23 85.27 
BC (149, 50) 73.61 73.38 (146, 50) 76.32 76.48 (157,28) 78.91 78.85 
MU (476, 50) 78.85 78.84 (458, 50) 78.52 78.54 (403,40) 95.23 95.21 
SO (208, 50) 74.61 74.54 (208, 50) 75.1 75 (206,13) 94.41 94.22 
IO (351, 34) 88.92 88.91 (351, 34) 88.44 88.4 (347,24) 96.51 96.5 
WI (178, 13) 92.93 92.89 (178, 13) 93.11 93.1 (174,9) 97.35 97.36 

Finally, this paper compares FSMCDE with feature + instance algorithm to show the superiority of 
FSMCDE in feature and instance collaborative reduction. We use the Fisher score and FRPS II with 
better classification results to combine, and the number of features is set to 50. Table 6 shows the number 
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of features and instances selected by the algorithms. The format is (number of instances, number of 
features), and we abbreviate it as (Ins, Fea). Fisher score is abbreviated as FISC. 

According to Table 6, FSMCDE has the highest classification results on all datasets. The accuracy 
and F1 score of FSMCDE were 7.2 % and 7.3 % higher than the second place, respectively. FSMCDE 
can always show stability on high-dimensional data sets, and the two comparison algorithms will 
frequently fail to filter out any instance or filter out too many instances. Therefore, FSMCDE can better 
identify high-resolution features and noise instances, efficiently perform collaborative reduction, 
improve data quality, and effectively improve classification performance. 

5. Conclusions 

Based on the incremental update theory of the DE0 lower approximation set in semi-monolayer 
covering rough set, this paper proposes the feature and instance collaborative reduction algorithm 
(FSMCDE). Firstly, the incremental update theory and incremental limit of DE0 lower approximation 
set are designed. Secondly, features are continuously added to the set-valued system, and the incremental 
algorithm is used to quickly update the lower approximation set until it reaches the limit, thereby 
completing the collaborative reduction of features and instances. Finally, experiments show that 
FSMCDE can efficiently perform collaborative reduction and improve classification performance, which 
is basically better than all comparison algorithms. In addition, this paper does not consider the imbalance 
problem of the data set, and the method of dealing with the class imbalance problem will be fruitful. We 
will address these issues as part of our future work. 
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