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Abstract: In response to the limited data feature extraction capability of a single neural network and 
data feature loss in the serial connection of multiple neural networks in fault diagnosis, a parallel 
network structure model comprising Convolutional Neural Networks (CNN) and Long Short-Term 
Memory (LSTM) networks is proposed, called CNN-LSTM parallel network model. The model’s key is 
to simultaneously extract features from spatial and temporal dimensions of Supervisory Control and 
Data Acquisition (SCADA) data and make state judgments. Additionally, a partial ensemble learning 
meta-model was established to Identify fault types that are difficult to distinguish due to small differences 
in data. The CNN-LSTM parallel network model is employed for fault detection of the wind turbine using 
SCADA data. It‘s verified that the fault detection accuracy using the CNN-LSTM parallel network model 
is up to 99.60%, which is higher than the fault detection accuracy using single neural network models 
CNN and LSTM, as well as the CNN-LSTM serial connection model. Besides, the model outperforms the 
other models in terms of evaluation metrics, such as Mean Squared Error (MSE), Root Mean Squared 
Error (RMSE), and Mean Absolute Error (MAE). 
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1. Introduction 

With the continuous development of wind power technology, wind energy has been widely applied 
as a new type of clean energy [1]. A wind turbine is composed of diverse mechanical, electrical, and 
control components, and they operate continuously in challenging environments, which increases their 
susceptibility to various malfunctions. If left unaddressed, these faults can result in significant economic 
losses. In recent years, the theory of Deep Learning (DL) and deep network technologies have made 
significant breakthroughs in various fields[2]. Deep learning methods have been widely used in the fault 
diagnosis research of wind turbines [3,4]. 

Reference [5] proposed a new multivibrator fusion technology based on the Deep Belief Network 
(DBN), which uses different acceleration vibration signals of wind turbines as input vectors to diagnose 
bearing faults. Many researchers have studied wind turbine faults using SCADA data [6]. Reference [7] 
used CNN model to extract spatial features from SCADA data to identify the operating state of wind 
turbines. CNN is used for spatial feature extraction, but it has certain limitations in extracting features 
from time series data. Reference [8-9] proposed an improved CNN-LSTM serial connection model to 
classify and recognize 6 different operating states of wind turbine rolling bearings. The model utilizes 
CNN to extract spatial features from the data and then employs the LSTM network to extract temporal 
features from the extracted feature data. The drawback of this method is that CNN may discard some 
useful information between data, resulting in incomplete data obtained by the LSTM network, thereby 
affecting the recognition results. 

A CNN-LSTM parallel network model is proposed. To solve the limitations of a single neural 
network and the issue of losing useful feature information when using serial combination methods. The 
model acquires temporal and spatial features of SCADA data in a supervised learning manner to 
determine the type of wind turbine fault. A partial ensemble learning meta-model is established, it can 
accurately recognize fault types that are difficult to distinguish due to small differences in data, thus 
improving the accuracy of fault diagnosis. 
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2. CNN-LSTM parallel network model 

2.1 CNN model 

CNN consists of three components: convolutional layer, pooling layer, and fully connected layer. The 
function of the convolutional layer is to explore the intrinsic connections between data through local 
perception and weight sharing. The 1D-CNN model is used to process the one-dimensional SCADA data. 
The mapped features obtained from the convolution layer are then sent to the pooling layer for 
downsampling. Finally, the processed features are fed into the fully connected layer for recognition. The 
computational formula is as 

𝑋𝑋 = [𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋𝑘𝑘, . . . ,𝑋𝑋𝑛𝑛],                            (1) 

𝑋𝑋𝑘𝑘 = �𝑥𝑥𝑘𝑘
(1), 𝑥𝑥𝑘𝑘

(2),. . .,𝑥𝑥𝑘𝑘
(𝑗𝑗)�,                             (2) 

𝑧𝑧𝑘𝑘 = 𝜑𝜑(𝑊𝑊 ∗ 𝑋𝑋𝑘𝑘 + 𝑏𝑏𝑘𝑘) ,                             (3) 

where 𝑋𝑋 is the dataset; 𝑛𝑛 is the number of data in the dataset; 𝑗𝑗 is the number of features in a 
single data; 𝑧𝑧𝑘𝑘  is the convolutional output; 𝜑𝜑() is the activation function; 𝑊𝑊 is the convolutional 
kernel; ∗ is the convolutional process; 𝑏𝑏𝑘𝑘 is the bias term. 

2.2 LSTM model 

LSTM is considered a special type of RNN (Recurrent Neural Network) [10]. Its constituent is an 
Input Gate, Output Gate, and Forget Gate. These gates function are control and propagate information, 
addressing gradient vanishing and exploding during backpropagation in a time series, which are realized 
by (4), (5), (6), and (7). LSTM has advantages in handling time series prediction and classification 
problems. The basic unit of LSTM is shown in Fig. 1. 

𝑓𝑓1 = sigmoid �𝑤𝑤1 �
𝑠𝑠𝑡𝑡−1
𝑥𝑥𝑡𝑡 � + 𝑏𝑏1�,                           (4) 

𝑓𝑓2 = sigmoid �𝑤𝑤2 �
𝑠𝑠𝑡𝑡−1
𝑥𝑥𝑡𝑡 � + 𝑏𝑏2� ∗ tanh �𝑤𝑤�2 �

𝑠𝑠𝑡𝑡−1
𝑥𝑥𝑡𝑡 � + 𝑏𝑏�2�,              (5) 

ct = 𝑓𝑓1 ∗ ct-1 + 𝑓𝑓2,                               (6) 

𝑧𝑧𝑡𝑡(2) = sigmoid �𝑤𝑤3 �
𝑠𝑠𝑡𝑡−1
𝑥𝑥𝑡𝑡 � + 𝑏𝑏3� ∗ tanh(𝑐𝑐𝑡𝑡),                  (7) 

where 𝑓𝑓1 and 𝑓𝑓2 are the calculation results of the Forget Gate and Output Gate at the time 𝑡𝑡 , 
respectively; 𝑠𝑠𝑡𝑡−1 is the "short-term memory" at the time 𝑡𝑡 − 1; 𝑥𝑥𝑡𝑡 is the input content at the time 𝑡𝑡; 
𝑐𝑐𝑡𝑡−1 and 𝑐𝑐𝑡𝑡 are the "long-term memory" at time 𝑡𝑡 − 1 and 𝑡𝑡, respectively; 𝑧𝑧𝑡𝑡 is the output result at 
the time t; 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3and 𝑤𝑤�2 are the weight matrices of the Forget Gate, Input Gate, Output Gate, and 
cell state, respectively; 𝑏𝑏1,𝑏𝑏2,𝑏𝑏3,𝑎𝑎𝑛𝑛𝑎𝑎  𝑏𝑏�2 are the bias terms of the Forget Gate, Input Gate, Output Gate, 
and cell state, respectively; sigmoid is a function that takes values between 0 and 1. It performs 
element-wise multiplication, masking out elements with a value of 0; tanh is the hyperbolic tangent 
function. 

 
Figure 1: Structure diagram of the basic unit of LSTM 
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2.3 Partial Ensemble Learning meta-model 

A partial ensemble learning meta-model is used to reprocess small, difficult-to-distinguish fault types 
based on the predictions of multiple models [11]. In this paper, the prediction results of CNN and LSTM 
networks as input features to train the targeted meta-model. The entire process is shown in Fig. 2. 

 
Figure 2: Flowchart of partial ensemble learning 

2.4 CNN-LSTM parallel network model 

The following research presents a CNN-LSTM parallel network model. The input layer, CNN module, 
LSTM module, partial ensemble learning meta-model, and output layer are the five distinct components 
of this new model. Fig. 3 depicts the overall structure. 

 
Figure 3: Block diagram of the overall structure of the CNN-LSTM parallel network model 

3. Experimental Verification 

3.1 Data Preprocessing 

The research data in this thesis is derived from SCADA data from wind turbines in a wind farm in 
Jilin Province, China, in 2018. The data was collected every 10 seconds, yielding 10,800 data samples 
for 9 different fault categories, each comprising 1,200 data samples. 

To divide the time series data for the LSTM model, we used a time window with a timing length of 
5 and a step size of 1 [12]. The CNN model used the same number of samples as the LSTM model. 
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Finally, the training and testing sets were roughly divided into an 8:2 ratio. The training set had 8,800 
samples, whereas the testing set had 1,964 samples. The data was normalized using the Min-Max method. 
The method is given by 

𝑦𝑦′ = 𝑦𝑦−𝑥𝑥min
𝑥𝑥max−𝑥𝑥min

,                                 (8) 

where 𝑦𝑦′ is the normalized data; 𝑦𝑦 is the original data; 𝑥𝑥max and 𝑥𝑥min are the maximum value and 
minimum value in the original dataset, respectively. 

3.2 Experimental setup 

3.2.1 CNN structure parameter settings 

This work investigates the effect of the number of layers in a convolutional layer on performance. It 
was found that the use of 3 convolutional layers is most appropriate. The size of the convolutional kernel 
is usually chosen between 3 and 5 based on previous experience [13]. Three identical 3x1 convolutional 
kernels were chosen based on the study's data properties. The number of filters in the first convolutional 
layer was set to 32 to better extract input information, and the following layers were doubled in number 
to increase network width. 

3.2.2 Dropout parameter settings 

The Dropout layer serves to prevent overfitting and reduce computational load. Setting different 
Dropout rates can lead to different performance effects of the model [8]. We conducted five sets of 
experiments using different dropout rates (0.1, 0.2, 0.3, 0.4, and 0.5), and the results are shown in Fig. 4. 

 
Figure 4: Comparison diagram of different dropout ratio results 

The line graph indicates the accuracy, while the bar graph reflects the loss value, as illustrated in Fig 
4. When the Dropout rate is 0.2, it obtains the maximum accuracy and has the smallest loss value. This 
means that a dropout rate of 0.2 produces the best model performance. As a result, the dropout rate in the 
study is set to 0.2. 

3.2.3 Comparative experiment settings 

Four algorithmic models are used in comparison experiments with the same dataset. Experiment 1 
used a single LSTM network model [10]. Experiment 2 used a 1D-CNN network model for temporal 
feature sampling [13]. Experiment 3 used a CNN network model for spatial feature sampling [14]. 
Experiment 4 used a CNN-LSTM serial network model [8,15]. Each model was run 5 times with 30 
iterations per run. The results are shown in Table 3. 

3.3 Experimental results and analysis 

The recognition results of the two models in the fifth experiment are shown in Fig. 5. 
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(a) CNN confusion matrix              (b) LSTM confusion matrix 

Figure 5: Identify the resulting confusion matrix diagram 

As illustrated in Fig 5, there were mistakes in the prediction of the first and third fault classes, whereas 
the accuracy for the other classes was 100%. As a result, the first and third fault classes were chosen as 
the targets for the partial ensemble learning meta-model. A binary meta-model was built specifically for 
these two fault classes. The binary meta-model, which is made up of three convolutional layers, achieved 
a recognition rate of 98.3% for the two fault classes. Fig. 6 shows the meta-model's recognition results. 

  
Figure 6: Metamodel recognition rate change chart 

The formula for calculating the overall fault recognition rate is given as 

𝐴𝐴1 = (1 − (N2 ∗ (1 − A2))/N1) ∗ 100%,                    (9) 

where 𝐴𝐴1  and A2  are the overall model recognition rate and meta-model recognition rate, 
respectively; N1 and N2 are the number of overall samples and meta-model input overall samples, 
respectively.  

Table 1 shows the results of 10 experiments performed on the CNN-LSTM parallel network model. 

Table 1: Experimental results of CNN-LSTM parallel network model 

Numble Test Loss Test Accuracy(%) 
1 0.0095 99.762 
2 0.0083 99.864 
3 0.0082 99.887 
4 0.0096 99.864 
5 0.0095 99.841 
6 0.0095 99.841 
7 0.0094 99.875 
8 0.0083 99.864 
9 0.0085 99.864 

10 0.0082 99.909 
average 0.0089 99.857 

To showcase the superior diagnostic accuracy of the CNN-LSTM parallel network model, it was 
compared to four different algorithmic models, as detailed in Section 2.2.4 Experimental Setup. Each of 
these models was executed 5 times with 30 iterations and the results of these executions are shown in 
Table 2. 
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Table 2: Compare experimental results 

Numble Name Training 
Accuracy(%) 

Test 
Accuracy(%) 

1 LSTM 99.12 98.93 
2 1D-CNN 99.17 99.19 
3 CNN 99.22 99.19 

4 CNN-LSTM Serial 
network model  99.11 99.39 

5 CNN-LSTM parallel 
network model 99.80 99.86 

These model evaluations are shown in Table 3. 

Table 3: Model evaluation 

Name MSE RMSE MAE r2_score 
LSTM 0.001554 0.039426 0.003415 0.983250 

1D-CNN 0.001062 0.032582 0.002368 0.988595 
CNN 0.001125 0.033539 0.002701 0.987837 

CNN-LSTM Serial 
network model 0.000978 0.031267 0.002203 0.989017 

CNN-LSTM Parallel 
network model 0.000654 0.025583 0.001658 0.992782 

Experimental Results Analysis: From Table 2 and Table 3, it can be observed that the proposed CNN-
LSTM parallel network model has a significant advantage in terms of fault type recognition accuracy. It 
also outperforms the other four models to varying degrees in all four evaluation criteria. Compared to the 
other four control experiments, the proposed method reduces MSE by 57.9%, 38.4%, 41.8%, and 33.1% 
respectively; RMSE by 35.1%, 21.5%, 23.7%, and 18.1% respectively; MAE by 51.4%, 30.0%, 38.6%, 
and 24.7% respectively; and increases r2_score by 0.97%, 0.42%, 0.50%, and 0.38% respectively. In 
conclusion, the CNN-LSTM parallel network model performs exceptionally well. 

4. Summary 

In-depth research was conducted to address the limitations of a single neural network in extracting 
multi-dimensional data features, as well as the drawbacks of the sequential combination approach that 
may overlook useful information and make it difficult to distinguish between similar fault types. The 
following conclusions were drawn:  

(1) Constructing a CNN-LSTM parallel network model allows for feature extraction from both the 
spatial and temporal aspects of the data. This maximizes the utilization of data information, avoids 
wasting data information, and improves fault recognition accuracy. 

(2) By using a partial ensemble learning meta-model, the prediction results of the two models are 
further processed to obtain new judgment results. The approach addresses the issue of low recognition 
accuracy caused by small differences between fault types in multi-type recognition. As a result, the 
recognition accuracy is further improved.  
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