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Abstract: Fouling is an issue that causes a lot of challenges in different areas. It is essential to study the 

different types of solid foulants and build-up methodology to engineer anti-fouling surfaces. In this work, 

three types of fouling, including ice fouling, protein fouling and marine fouling, with their designed 

antifouling materials and two general approaches are discussed. This work could be helpful in better 

understanding the bio-inspired surfaces for fouling resistance. 
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1. Introduction 

Fouling is a general designation of various sorts of solids that may accumulate on the surface and 

cause negative effects on the surface’s properties. The presence of fouling not only leads to potential 

dangers but also causes economic losses. Therefore, research to classify different types of solid foulants 

and build-up methodology to engineer anti-fouling surfaces should be of great significance. Fouling can 

be classified by its hardness. This classification is very useful in modeling the contact of surface, which 

would further help the design of anti-fouling surfaces. However, it does not fully meet the need in reality. 

Based on real world applications, fouling is also classified by their sources and environments.  

This paper mainly covers ice fouling, marine fouling and protein fouling, with them sorted into hard 

fouling and soft fouling. Based on this classification, we can get a thorough research on different types 

of fouling and come up with a useful conclusion on developing fouling resistance surfaces. 

One of the essential factors to determine whether a surface is anti-fouling or not is the contact angle 

of the surface. In this case, three different models were used to analyzed: the Young’s Model, the Wenzel 

State and the Cassie-Baxter State (Fig 1) [1]. 

 

Figure 1. Young’s Model [1] 

 

Figure 2. Model for Wenzel State [1] 
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Figure 3. Model for Cassie-Baxter State [1] 

In conclusion, the model of Cassie Baxter state can better reflect the real situation when air pockets 

are present underneath the contacting liquid, while the Wenzel model can better apply when air pockets 

are not present on a rough surface. 

2. Ice Fouling 

Ice, snow, or their mixtures, when they adhere to different electronic or transport devices, will cause 

significant damage to the equipment. The weight of the ice layers covered on the power lines can put a 

massive amount of stress on wires to overwhelm it, even cause a pole fire. Before looking into reasonable 

solutions, first, we need to understand the concept called the ice-adhesion strength. It can be expressed 

as: 

𝐼𝑐𝑒 𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝜏) =  
𝑀𝑎𝑥𝑖𝑢𝑚 𝑓𝑜𝑟𝑐𝑒𝑒 (𝑓𝑥)

𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐴𝑟𝑒𝑎 (𝐴)
                              (1) 

 

Figure 4. Testing Modes of Ice Adhesion Strength [2] 

The ice adhesion strength for different materials is analyzed, and results show that it could vary 

significantly between materials. Factors that contribute to low ice-adhesion materials are examined using 

the equation, 

𝜏 = 𝐴√
𝑊𝑎𝐺

𝑡
                                                                                (2) 

Where G is shear modulus, A is a constant, 𝑊𝑎 is the work of adhesion, and t is the thickness of the 

soft substrate [3].  

2.1 Antifouling by Preventing the Ice Formation 

One reasonable approach to preventing fouling by ice is condensation prevention. The 

superhydrophobic material fulfills the needs in some way. One of the superhydrophobic surfaces 

designed by Jung can delay nucleation for 25 hours at -21°C. Nevertheless, the ice was eventually formed 

around all the surface, which indicates that this antifouling approach has limitations [4]. 

Superhydrophobic material usually has complex geometry surfaces. In this case, when condensation 

happened between those complex geometry structure, it will increase the ice adhesion strength and make 

the deicing process hard. 

2.2 Antifouling by Reduction in Ice Adhesion Strength 

Thus, scientists try to implant an antifreeze protein in the surface. This organism can survive in 

subzero conditions [5]. The structure of this material is shown below (Fig. 5). 
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Figure 5. Schematic diagram of AFP functionalized aluminum [6]  

Also, Wong and his research group designed a new method of frost prevention [7]. The whole process 

is shown in Figure 6.  

The modulus of ice adhesion strength helps examining factors that lower the ice adhesion strength. 

Researchers use the material contained hygroscopic polymers instead of a lubricating surface. As a result, 

they developed a self-lubricating material with an ice adhesion strength of 0.4kPa [8], which is lower 

enough to prevent ice fouling. Besides, there is a way reducing the ice adhesion by electrolysis [9]. 

However, there are some surfaces of objects that are not electrically conductive. 

 

Figure 6. The mechanism of ice nucleation [6] 

3. Protein Fouling 

Protein fouling is one of the major components of biofouling. Nature gives different types of solutions 

to control protein fouling, for instance, grooming, sloughing and chemical secretions [10]. There is a wide 

range of industries suffering from bio-contamination, like the medical industry, food industry. Common 

effects of protein fouling to human activity are concluded in Tab.1 and Tab.2.  

Table 1.  Protein fouling in medical industry [10] 

Type of Fouling Associated Challenges 

Orthopedic implant Removal owing to infection 

Respirator Ventilator-associated pneumonia 

Contact lens Eye infection 

Catheter Urinary tract infections 

Hemodialysis Infectious break-outs 

Teeth/dental implant Periodontal disease, gingivitis 

Biosensor Failure from fibrous encapsulation 
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Table 2. Protein fouling in other industries [10] 

Type of Fouling Associated Challenges 

Membrane Reduced flux 

Heat exchanger  Reduced convention efficiency 

Drink water Pathogens in potable water 

Food, paper and paint Food spoilage and worker health risks 

Metal-cutting fluid Filter blockage and worker health risks 

3.1 Preventing Protein Absorption 

There are three ways to prevent protein absorption: PEG chains, SAM chains and Zwitterion [11]. They 

all involve forming a film to repel proteins or to strengthen protein resistance by taking advantage of the 

interactions between the polymers and the proteins.  

The principle of PEG chains is that using physical or chemical adsorption to attach PEG to the 

substrate to form a PEG protein resistant film (Fig. 7) [12].  

Self-assembled monolayer (SAM) is another way to increase protein resistance. The advantage of 

SAM is increasing the density of chains, which leads to more effective surface coverage. Zwitterions 

blind to water strongly to create a hydration layer, which prevents protein adsorption [14]. 

Phosphorylcholine (PC) is one of the commonly utilized zwitterionic surfaces. Zwitterionic PC groups 

and SAM oligo ethylene glycol are found to be synergistic. With a combination of them, better protein 

resistance is achieved [15]. 

 

Figure 7. PEG resist bio-fouling schematic diagram [13] 

These materials that prevent protein adsorption provide efficient antifouling strategies, but they still 

have limitations, which are discussed in Tab.2. 

Table 3. Limitations for materials that prevent protein adsorption [12, 13, 16, 17] 

Type Limitation Reason 

PEG Unable to reduce protein absorption 

to desired limit 

Less attached polymer chain density due to 

steric issues  

Cannot achieve as high protein 

resistance as SAM 

 

SAM Lower protein resistance Short chain length 

Selection on substrate Different conformation will be formed on 

different surface. Some conformation cannot 

resist protein. 

Lack robustness compared to PEG  
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3.2 Protein-Degrading Films 

A protein-degrading film is designed to degrade the protein. Protease coating is used on the surface 

of protecting container by two methods: degrade protein and the potential of degradation will reject to 

adsorb protein. A common protease is called α-chymotrypsin (α-CT). Sol-gel entrapment is better than 

covalent attachment for α-CT [18]. The leaching problem could be solved well with cylindrical nanotubes 

as the enzyme container [19]. Because some bacteria use protein and polysaccharides to build a connection 

to synthetic substrates, adding PMMA substrates can inhibit biofilm formation [20]. There are two main 

types of self-cleaning coatings: superhydrophobic films and photoactive films. The limitations for protein 

antifouling coatings are discussed in Tab.4. 

Table 4. Limitations for protein-degrading films [20, 21] 

Type Limitation Reason 

Sol-gel entrapped -CT  Less stable than covalent 

attachment 

Leaching and autolysis of enzyme is not 

controlled well 

Superhydrophobic film Contaminant may attach 

to uncovered surface 

Not degrade the contaminant so 

contaminant always exist 

Photoactive film Remain some contaminant Highly reactive species may not degrade 

all contaminants completely. The 

product of contaminant may still trouble. 

4. Marine Fouling 

Marine fouling is the colonization of organisms from diverse species in different sizes on submerged 

surfaces. Materials immersed in water create comfortable environment for the growth of marine 

organisms, which can be often seen in shipping and leisure vessels, etc. 

There are generally two types of marine fouling. One is the soft fouling formed by non-calcareous 

fouling organisms, like algae, and the other type is hard fouling caused by calcareous species, like 

mussels. The surface colonization can be simplified to the “successional model” (Fig. 8) [22].  

 

Figure 8. The simple successional model for the marine fouling [22] 

4.1 Chemical antifouling methods 

Free radicals or reactive oxygen generators can cause degradation of diatomaceous soils and thereby 

reduce fouling. Although they are usually equipped with photosensitizer dyes to induce more efficient 

light absorption, their performance is limited by the intensity of the incident light [11]. Another 

degradation mechanism is the use of biocides. However, these fungicides often cause damage to other 

organisms and cause unnecessary marine pollution.  
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4.2 Physical antifouling methods 

 

Figure 9. The protein repelling chemical heterogeneous or ‘mosaic-like’ surface [24]  

Amphiphilic polymer coatings (Fig. 9) can interfere with the sedimentation of hydrophilic and 

hydrophobic foulant by adjusting surface chemistry [23].  

Another physical method is to construct an antifouling surface with microtopography. From mollusk 

shells to shark skins, the biological surfaces of many marine animals have complex surface topography. 

Among them, shark skin and invertebrate shells have excellent performance on the surface of many 

marine organisms [25]. Molded topographies in PDMSe was inspired by the skin of fast-moving sharks at 

~1/25th of the scale. It could reduce 85% zoospores settlement of the macroalga Ulva compared with 

smooth PDMSe [26]. 

5. Conclusions 

Fouling is an issue that causes challenges in different areas. Although different types of fouling have 

their various anti-fouling materials, two general approaches were applied to solve the fouling issue. One 

is to prevent fouling species from attaching by making the surface fouling-unfavorable, and the other one 

is to make the attached foulants easily remove. Different antifouling materials were discussed in previous 

sections, but the current limitation is to find a method that works to prevent both soft and hard fouling. 

Future research on environmentally friendly antifouling materials is required under the surfaces' 

complicated environment. 
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