Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 10: 68-80, DOI: 10.25236/AJCIS.2025.081010

Research on Multi-Objective Markov Decision
Making for Sustainable Tourism

Liang Jiaming'?

ISchool of Computer Science and Technology, Harbin Institute of Technology, Weihai, Shandong, China,
264209
“liangim767@gmail.com

Abstract: An integrated framework based on multi-objective Markov decision processes (MOMDP) and
receding horizon control (RHC) is proposed to address the dynamic optimization of sustainable tourism
management. The core contribution lies in the development of a non-uniform grid state-space
discretization strategy, which achieves computational simplification by balancing accuracy and
efficiency, and in the use of backward induction for efficient policy derivation. Validation through case
studies in Juneau, Alaska, and Maui, Hawaii, demonstrates that the framework significantly outperforms
static  baseline policies, ensuring computational feasibility, effectively balancing economic,
environmental, and social objectives, and systematically establishing its strong generalization capability
across diverse socio-ecological contexts.

Keywords: Dynamic Programming; Markov Decision Process; Receding Horizon Control; Algorithm
Design; Sustainable Tourism

1. Introduction

As a vital engine of the global economy, the tourism industry, while driving development, often
places significant pressure on the socio-ecological systems it depends on, thus placing tourism
destination managers in a complex multi-objective optimization dilemma. The core of this challenge can
be summarized as the "triple bottom line" of sustainable development: economic viability, environmental
integrity, and social equity [1. However, these three objectives are often inherently conflicting, forcing
policymakers to make difficult trade-offs between competing priorities. Currently, the escalating
environmental change and climate crisis further exacerbate this contradiction 3!, Faced with such a
dynamic and complex system, traditional tourism management strategies, such as setting fixed annual
visitor capacity or implementing seasonal pricing, are proving inadequate . Such static policy baselines
not only struggle to flexibly respond to changes within the system but may also trigger "policy
resistance,”" meaning policy failure due to neglecting feedback mechanisms and time delays, or even
causing unexpected negative consequences [°!. (See Figure 1)
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Fig.1 Triple Bottom Line Schematic for Sustainable Tourism

Therefore, there is an urgent need for a dynamic adaptive management framework capable of
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responding to changing conditions to achieve intelligent decision support. Researchers have deployed
IoT sensors on popular routes to monitor congestion and dynamically adjust access prices or visitor flow
guidance [°1, Such applications can shift management from reactive to proactive optimization, thus more
effectively balancing multiple objectives. In recent years, with the rise of the "smart tourism" concept,
big data, IoT, and Al technologies have also been widely applied to optimize tourism services, manage
visitor flow, and improve sustainability [, providing new ideas for adaptive management.

To make tourism decision-making processes more intelligent and efficient, researchers have
developed Environmental Decision Support Systems (EDSS) 1. When simulating complex socio-
ecological systems, several modeling paradigms have emerged, with System Dynamics (SD) and Agent-
Based Models (ABM) being two typical methods.

o System dynamics (SD) is a top-down approach that focuses on describing the macroscopic overall
behavior of a system through stocks, flows, and feedback loops ). SD models can effectively capture
high-order dynamics and nonlinear relationships at the system level, but their limitation lies in their
inability to represent the heterogeneity of individuals within the system and the spatial dynamics at the
micro level.

o Agent-based modeling (ABM) is a bottom-up approach that observes emerging patterns at the
macroscopic level by simulating the behavior and interactions of autonomous agents (such as tourists
and businesses) ['Y. ABM has significant advantages in simulating complex and heterogeneous behaviors,
for example, it can be used to study the formation mechanism of overtourism. However, it is often
difficult to directly derive globally optimal management strategies from ABM simulations.

Furthermore, there is growing academic interest in hybrid models (Hybrid ABM-SD) that combine
the advantages of both approaches, with the aim of providing a more comprehensive solution to complex
natural resource management problems 111,

2. Positioning of the Research Using the MOMDP Framework

The SD model can predict the evolution trajectory of macroeconomic variables under specific
assumptions and is suitable for scenario analysis, but it cannot directly solve for the optimal control
sequence. ABM can reveal emergent patterns that may result from individual behavior, but it does not
itself generate a top-down optimal strategy. Unlike SD and ABM, which are mainly used as descriptive
and simulation tools, the MOMDP framework proposed in this study is essentially a multi-objective
prescriptive optimization tool. It provides a perspective that complements the above paradigms. It aims
to use real-time and historical data to provide tourism destination managers with a dynamic data-driven
strategy planning through a prescriptive optimization model, filling the gap between descriptive
simulation and prescriptive policy optimization, and providing a more accurate computational path for
how to intelligently manage sustainable tourism systems.

3. Multi-objective Markov Decision Process for Destination Management

First, the sustainable tourism management problem is formalized as a finite-term multi-objective
Markov decision process, defined by a quintupleM = (S, 4, P, R,y). Table 1 provides the key symbols
used in the model and their definitions.

Tab.1 Model Symbols & Definitions

Symbols Definitions Units
S State Space -
St tSystem State Vector at Time[q.(t), r<(t), qs(t)] -
q.(t) Environmental Quality Index Dimensionless
re(t) Cumulative Protection Investment US Dollars
gs(t) Social Sentiment Index Dimensionless (0 — 100)
A Action Space -
a; tAction Vector at Time[Nmax(t), Paaj(t), C(t)] -
N Actual Daily Tourist Count Person-Days
Ny (t) Daily Tourist Limit Person-Days
Pqi(t) Dynamic Pricing Adjustment Factor Dimensionless
Cn(t) Investment Mitigation US Dollars per Day
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P(s'|s,a) State Transition Probability Function -
R(s,a) Vector Value Reward Function -
Recon Economic Benefit Reward US Dollars per Day
Reny Environmental Benefit Reward Dimensionless
Rsoc Social Benefit Reward Dimensionless
Y Discount Factor Dimensionless
V(t) Tourist density Person-square-kilometer-hour
w.(t) Climate-driven stochastic environmental stress Dimensionless
a, B, Ve Environmental stress model calibration coefficient -
Y Environmental resilience coefficient -
P.(t) Local resident population Person
oF Social tolerance threshold Dimensionless
We, We, W Scalar weights for multi-objective rewards Dimensionless
H Finite Predictive Horizon of RHC (Rolling Window Time unit (e.g., day)
Length)
Ppase Base cost US Dollars
1) Depreciation or inflation factor, used for Dimensionless
accumulating protection investmentcDecay
ESI Environmental Stress Index Dimensionless
CRHI Coral Reef Health Index Dimensionless (based on
coverage)
AT Local temperature increment caused by tourism Temperature (°C)

activities, used for glacier ablation models

3.1 State Space(S)Variable definition
The state of the system at timetis defined by a continuous vectors; = [q.(t), T.(t),qs(t)] €
sindicates that:

¢ Environmental Quality Index(q.(t)): A standardized continuous variable representing the health of
the ecosystem. For example, in the Juneau case, it could be an indicator related to the amount of glacial
material loss; in the Hawaii case, it could be a reef health index related to the coverage of living corals.

o Cumulative Protection Investment(r.(t)): A continuous variable representing the total investment
in environmental mitigation measures, adjusted for inflation.

 Social Sentiment Index(q,(t)): A continuous variable representing resident satisfaction. This index
is calibrated using periodic resident survey data and correlated with objective indicators such as the ratio
of tourists to residents.

3.2 Action Space(A)Variable definition

Actions that decision-makers can take at any given timetare represented by a strategy vectora, =
[Nmax (), Paqj(t), Cp(t)] € Aindicates that:

o Daily Tourist Limit(N..x(t)): A discrete or continuous variable used to set the maximum number
of tourists allowed per day.

o Dynamic Pricing Adjustment Factor(P.q(t)): A continuous variable (e.g., a multiplier of base fees)
used to regulate demand through price levers.

Investment Mitigation(C,,(t)): A continuous variable representing funds allocated to environmental
restoration and social infrastructure improvements.

3.3 System Dynamics and Transition Model(P)

State transitions are stochastic, and we model them as a deterministic evolutionary process plus an
additive stochastic term:

3t+1:f(3taat)+wt (D

¢ Environmental Quality Transition(q.(t + 1)):
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.t +1)=gq.(t) — Agfom® + Agle 2)

Where the degradation termAqg egrade s tourist density V' (t) and Nonlinear Function of Climate

Pressure. This formalizes the Environmental Stress Index (ESI) in the original study and acknowledges
the nonlinear impact of tourist footprint on the ecosystem [121,

o Recovery termAg;¢°°7®"is a function of mitigating investmentC,,(t):
Agreeowr =1 - O, (£) (3)
o Protective Investment Transition(r.(t + 1)):
r.t+1D)=0—6)-r.() + C.(t) “4)
Wheredis a depreciation or inflation factor.
¢ Social Sentiment Transition(q,(t + 1)):
g, (t+1) =g, () — Ag™ + Agjm 5)

Where the stress termAg$t¢Sis a function of the ratio of tourists to residents exceeding the social

carrying capacity threshold@;. This formalizes the social constraints in the original study and is supported
by research on social carrying capacity and resident sentiment [, The improvement termAgq, ' ‘is a
function of investment allocated to community projectsC,,(t).

o Random Components(wy):wiis a vector representing climate-driven uncertainties (e.g., unexpected
heat waves affecting glaciers or coral reefs), the distribution of which can be modeled according to IPCC
(Intergovernmental Panel on Climate Change) scenarios.

3.4 Multi-Objective Rewards and Value Functions(R)

o Economic Rewards(R .o, (t)):
Recon (1) = (Paase = Pty (8)) - N (8) = Cope (N (£)) — Cin (1) (6)
This is the net economic output after deducting operating costs and mitigation investments.
o Environmental Rewards(Ren(t)):
R ()= — Agoor (7

Rewards are defined as negative values for environmental degradation, thus incentivizing the model
to minimize environmental damage.

o Social Rewards(R;.c(t)):
R ()=0,t) ®
Rewards are directly equal to the current social sentiment index.

The reward function is vector-valued. To optimize it, we use a time-varying weighted sum method to
scalarize the multi-objective problem, which is a standard method in Multi-Objective Reinforcement
Learning (MORL).

Rovatar @) = w, ) * Recon @)+ wo (&) * Ropo () + w, (¢) - Ry () ©)

The weight vector can be dynamically adjusted by policymakers based on priorities at different times
(e.g., increasing environmental weights during ecologically sensitive seasons).

4. Algorithm Solution Based on Rolling Time-Domain Control

The core idea of this algorithm is: first, to transform the complex continuous problem into a
computationally tractable finite problem through state space discretization; then, to solve the finite-term
problem using backward induction; finally, to embed the finite-term solution into a rolling time-domain
control (RHC) framework to achieve adaptive online decision-making. The computational complexity
and the coping strategies adopted are discussed at the end of this chapter. (See Figure 2)
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Fig.2 Overall Methodology Flowchart

4.1 State Space Discretization Strategy

As defined in Section 3.1, the model's state space S consists of three continuous variables:
environmental quality indexq.(t), cumulative protection investmentr.(t)and social sentiment indexq;(t).
Applying dynamic programming algorithms directly to continuous space is not feasible; this is the so-

called "curse of dimensionality."

To achieve computational solution, this study uses the state space discretization method, defining a
finite set of discrete values for each continuous state variable, mapping the infinite continuous state space
S to a finite discrete state spaceSq.

¢ Discretization granularity selection: After weighing accuracy and computational cost, each variable
is discretized as follows:

Environmental Quality Indexq.: Range[0, 1], discretized into 21 levels, step size 0.05.

Cumulative Protection Investmentr.: Range[0, MAX_INVEST], discretized into 31 levels (the
maximum value is determined based on the case data and divided into equal intervals according to the
amount).

Social Sentiment Indexq,: Range[0, 100], discretized into 21 levels, step size 5.

e Mapping rule: Any continuous states = [q,, 7., ¢s]is mapped to a grid point in the discrete
spaceSusing the nearest neighbor rule.sy, that is, take the nearest discrete value for each dimension.

o Size of discrete space: After the above discretization, the size of the discrete state space is|S;| =
21 x 31 x 21 = 13671state points. This transforms the original infinite space problem into a finite-state
MDP problem, laying the foundation for applying dynamic programming algorithms such as backward
induction. (See Figure 3)
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Fig.3 State Space Discretization Schematic
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4.2 Finite-term optimization based on backward induction

For a discretized finite-term problemH, the optimal scalarized value functionV;"(s;)can be calculated
by backward induction. This method is essentially an application of dynamic programming to finite-term
problems.

The algorithm starts from the terminal timeHand iterates backward to calculate the optimal value
function and optimal policy for each state. The Bellman optimal equation for the finite-term problem is
defined as follows:

o Terminal condition: For all discrete statessq€ Sq, set the terminal valueVy(sq) = 0.
o Backward iteration: For time stept = H — 1,H — 2, ...,0:

Vi (sd) = I?Eaﬁ( Z P(S(li ‘Sd, a) [Rsralm" (dea) + ’th+1 (SA)J

(10)

WhereP (s|s4, a)is the state transition probability based on the discrete state, Rycqiqr(Sq, @)is the
scalarized immediate reward.

The backward induction process based on discrete state spaceS 4is as follows:

Algorithm 1: Backward Induction Algorithm for Finite-Term MOMDP:

1: Input: Discrete state spaceSq, Action spaced, Transition probability matrix P, Reward functionR,
Discount factory, Decision periodH

2: Initialization: Initialize terminal value function for alls«€ Sa, Vu(s4) < 0  # Initialize terminal
value function

3:fort=H—1to0do # Backward iteration time step

4:  for each discrete state S4€ Sa, do

5 best_value < —oo

6: for each actiona € Ado

7: # Calculate expected value under actionaExpected value below
8: Qvalue<_ 0

9: for each possible next state sy do

10: Qvatue= Qvatuet+P(Sy|Sa, @) * [Rscatar(Sa, @) + v * Vi1 (5]
11: end for

12: if Quane> best_value then

13: best_value < Qae

14: m(sa) < a  #Update the optimal strategy

15: end if

16:  end for

17:  Vi(sd) < best_value  #Update the optimal value function
18: end for

19: end for

20: Output: Optimal Value Function Family {V o ,...,V z1 } And the optimal strategy
family{my, ..., Ty}

4.3 Optimization of the calculation process

The backward induction method in Section 4.2 provides an optimal open-loop plan for a fixed finite-
term problem. However, tourism management is a continuous process subject to external disturbances
(such as weather events and economic fluctuations). To achieve adaptive online decision-making, we
embed the finite-term solver into a rolling time-domain control (RHC) framework. (See Figure 4)

RHC, also known as Model Predictive Control (MPC) in the control field, is essentially about solving
a short-term finite-term optimization problem at each decision point and only executing the first action,
forming a "rolling" decision window. This strategy introduces a feedback mechanism, enabling the
system to respond to real-time state changes. Through the RHC framework, decision-making is no longer
a one-off offline plan, but an online rolling optimization process, thus exhibiting strong robustness to
model mismatch and unforeseen disturbances.

Published by Francis Academic Press, UK
-73-



Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 10: 68-80, DOI: 10.25236/AJCIS.2025.081010

A 4

Initialization: specify the prediction horizon H State transition: the system moves to
and the global terminal time Tend, and set =0 St+1 According to a*sand the random
¢ disturbance w
State observation: obtain the current true state 1 l
St .
¢ Time update: t—z+1

State discretization: Sr—Sa_r (nearest-neighbor
mapping)
Optimization: with Sa ras the initial state,
solve the H-step finite-horizon MOMDP to
obtain the action sequence a*s, -, a*+H-1

Has the global terminal time been
reached, > tend?

Action execution: execute only the first action —

Fig.4 RHC Implementation Flowchart
4.4 Computational complexity and feasibility analysis

A brief analysis of the computational burden of the proposed algorithm is provided to illustrate its
feasibility.

o Source of Complexity: The main computational cost of the algorithm comes from the backward
induction in the algorithm1. Its complexity isO(H X |S;| X |A| X |S;|), where|S,|is the number of
discrete states,|A|is the size of the action space (determined by discretization),|S;|is the number of
possible next states for each state-action pair (in the implementation, we define this through a probability
transition matrix).

o Feasibility Explanation: Although the state space is large, the computation is feasible for the
following reasons:

(1) Finite prediction horizonH: RHC typically employs a smallerH(as in 5-10), avoiding the huge
computational burden of indefinite problems.

(2) Offline computation: For given model parameters, the entire backward induction process of the
algorithm1can be pre-computed offline, obtaining the optimal policy table for all states at all time
steps{mo, ..., Tu-1}. In the online RHC loop, stepcOnly one table lookup operation is needed (based on
the current discrete statess.and time indextlookupmt(sas)) to obtain the action, with extremely low
computational overhead, which can meet real-time requirements.

5. Empirical evidence and generalization ability analysis

To train and validate the effectiveness and adaptability of the model, it was applied to two different
tourism ecosystem cases: glacier tourism in Juneau, Alaska, and marine tourism in Maui, Hawaii. By
systematically reconfiguring and calibrating the model, it was demonstrated that the MOMDP RHC
framework is a general decision support tool, not just a solution for specific cases.

5.1 Case study: Glacier tourism in Juneau, Alaska

5.1.1 Ecosystem Sub-model: Glacial Melting

In the Juneau case, environmental quality statusq.is defined as an indicator negatively correlated with

glacial mass loss. Environmental degradationAq?°9"**is primarily driven by two factors: local warming

and tourist activity. While the direct causal relationship between tourist activity and glacial melt is
complex, the additional energy generated by tourism activities (such as transportation and infrastructure
energy consumption) can be considered a contribution to local melt. Studies have shown that tourism
emissions do indeed affect the local environment ['* . A simplified day-to-day model is planned to
estimate melt, where tourism activity is modeled as a small positive increment to local temperature, thus
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affecting the melt rate ')
5.1.2 Socioeconomic Sub-model: Resident Sentiment

The calibration of socio-emotional statusq,is based on resident survey data from Juneau. These
surveys show that resident support for tourism has declined over time due to overcrowding and traffic
congestion 191, Therefore, the social stress function is directly linked to the ratio of tourists to residents
(N(t)/P,(t)), and the threshold (0,= 0.18, approximately 5.5 tourists per resident) derived from
empirical data in the original study is used as the key parameter triggering a decline in resident
satisfaction.

5.1.3 Parameterization and Results

The economic and social components of the model were parameterized using official data from the
Juno Economic Development Commission and the Tourism Authority, including tourist numbers,
consumer spending, and resident demographics. By simulating the RHC strategy, we compared the
sustainability index trajectories under three scenarios: (1) a "business as usual" scenario with no
intervention; (2) a static policy scenario with a fixed tourist cap; and (3) a dynamic adaptive policy
scenario using this framework. The simulation results are consistent with the findings of the original
study: the dynamic strategy can reduce the rate of glacier retreat by 40% while increasing tourism revenue
by 23%, significantly better than the static baseline. (See Figures 5 and 6)
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Fig.6 Tourism Revenue under Different Policies
5.2 Generalized Case Study: Marine Tourism in Maui, Hawaii

To systematically demonstrate the model's generalization ability, it was transferred from a cold glacial
environment to a tropical marine ecosystem. At the heart of this process was demonstrating that the
structure of the MOMDP RHC framework is domain-independent, while the specific definitions of the
transfer and reward functions are domain-dependent. The flexibility of the framework was demonstrated
by systematically replacing the Juneau-specific sub-models.
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5.2.1 Ecosystem Sub-model: Coral Reef Health

In the Maui case, the driving factors of environmental statusq.It was redefined as a Coral Reef Health

Index (CRHI), which can be quantified based on indicators such as live coral coverage. Environmental
degrade

degradation termAgq, also become the main threats to coral reefs:
o Terrestrial runoff pollution: including the discharge of sediments, nutrients, and wastewater, which
can damage water quality and lead to coral reef degradation ['71

¢ Direct impacts of tourists: including chemical contamination in sunscreen (such as oxybenzone)
and physical damage ['®! (such as trampling).

Investment MitigationC ,,(t) The applications have also changed accordingly, for example, to improve
wastewater treatment facilities and fund coral reef restoration projects. (See Figure 7)

5.2.2 Socioeconomic Sub-model: Recalibration for Hawaii

The socioeconomic parameters [ of the model were recalibrated using official data released by the
Department of Business, Economic Development & Tourism (DBEDT) and the Hawaii Tourism
Authority (HTA). Population data for Maui County (approximately 164,000 in 2023-2024) 2%, Socio-
emotional modelg,The calibration is based on a Hawaiian resident sentiment survey, which clearly points
to a link between tourism and rising living costs, overcrowding, and other issues 2!, Furthermore, the
case study specifically considers the unique impact of tourism on Hawaiian indigenous culture, a crucial
factor in the Hawaiian social context (221

5.2.3 Cross-validation and Performance

The reparameterized model was applied to Maui, yielding a new optimal strategy combination for the
island. By comparing the model structure and performance of the Juno and Maui case studies, it was
found that despite significant differences in specific parameter values and sub-model functions, the
overall framework of the MOMDP RHC remains effective. This demonstrates the adaptability and
portability of the framework, enabling it to provide decision support for tourist destinations with different
environmental and socio-cultural backgrounds. Table 2 lists the key model parameter calibration values
from the two case studies, visually illustrating the model's adaptation process.

Tab.2 Model Calibration for Juneau and Maui Cases

Parameters Alaska Maui Description and Data Sources
Environmental 0.47 0.62 Nonlinear impact coefficient of tourist density on the environment,
Stress Coefficienta calibrated based on glaciological monitoring data and coral reef
degradation studies.
Environmental 1.8 1.5 Index of the impact of tourist density, reflecting nonlinear effects.
Stress Indexf
Social tolerance 0.18 0.25 Critical value for the ratio of tourists to residents; exceeding this value
threshold®s will lead to a significant decline in resident satisfaction. Estimated based
on resident survey data from Juno and Hawaii.
Economic incentive 0.33 0.38 Positive impact of tourism revenue on system attractiveness (next
coefficientn period's tourist volume). Fitted based on historical revenue and tourist
growth data.
Environmental 0.41 0.45 Negative impact of environmental degradation on system attractiveness.
deterrence factord Estimated based on a survey of tourists' sensitivity to environmental
quality.
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Fig.7 Coral Reef Health Index Comparison
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6. Analysis and discussion
6.1 Policy sensitivity of key parameters

To assess the robustness of the model and identify the factors with the greatest impact on
policymaking, the project conducted a comprehensive sensitivity analysis. By perturbing key parameters
(such as daily tourist volumeN, carbon footprint per tourist, mitigation investmentCetc.) around their
baseline values +20%, we quantified the changes in model outputs (economic benefits, environmental
impact, resident satisfaction).

The analysis results (see Table 3) reveal several key points:

o Tourist numbers(N)are the most sensitive lever: an increase in tourist numbers contributes far more
to environmental stress than to economic income, mainly due to the nonlinear effects of environmental
impact. When tourist numbers exceed a critical threshold (e.g., Juno's8,500person-days), environmental
degradation and social stress rise sharply, leading to superlinear growth in mitigation costs, thus eroding
economic benefits.

o Individual impacts are more critical than overall investment: reducing the carbon footprint of each
tourist (e.g., through promoting green transportation) is more effective at reducing environmental stress
than increasing overall mitigation investment proportionallyC,,. This suggests that targeted interventions
(e.g., incentives) for tourist behavior are more efficient than general end-of-pipe treatment investments.

o Hard constraints of social thresholds: Resident satisfaction is highly sensitive to the ratio of tourists
to residents. Once this proportion exceeds the social tolerance threshold®Even with acceptable economic
and environmental indicators, a sharp decline in social satisfaction can jeopardize the long-term social
permission of tourism.

These findings highlight the importance of nonlinear relationships and critical thresholds in the
system. For example, recovery costs increase exponentially after the Environmental Stress Index (ESI)
exceeds 8.6; a tourist-to-resident ratio exceeding 0.22 is significantly correlated with community protests.
These thresholds, validated by Monte Carlo simulations under 95% of climate scenarios, provide a solid
scientific basis for developing preventative rather than reactive management policies. (See Figure 8)

Tab.3 Key Parameter Sensitivity Analysis Summary

Parameter (perturbation) +20%) Impact on Impact on Impact on social
economic environmental | satisfaction (%)
benefits (%) | pressure (%)

Daily Tourist Limit(N yax) +16.4 +36.6 +24.0
Carbon footprint per tourist +4.0 +18.0 +2.5
Investment Mitigation(C,,) +20.0 +22.0 +4.0

Economic benefit coefficient() +19.0 +4.0 +1.5
Social tolerance threshold(0s) +12.0 +15.0 +28.0

Environmental Pressure
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6.2 Implications for Adaptive Policymaking

The results of this study strongly support the use of dynamic, adaptive policies to replace static
baselines. Compared to setting a fixed annual tourist cap, this framework can dynamically adjust tourist
caps and pricing factors based on the real-time state of the systemst (including current environmental
quality and resident sentiment). This feedback mechanism enables management strategies to respond
quickly to seasonal fluctuations, contingencies, and long-term trends, thereby maximizing long-term
comprehensive benefits while maintaining system stability.

Furthermore, this framework can be used as a policy experimentation platform. Policymakers can
simulate the long-term consequences of different policy choices (e.g., different weightings or investment
strategies) in a virtual environment, thereby assessing their potential impact, identifying risks, and
optimizing decisions before implementation. This provides a powerful tool for achieving more prudent,
evidence-based, and forward-looking tourism governance.

6.3 Limitations and Future Research Directions

While this framework demonstrates great potential, some limitations remain, while also opening new
directions for future research.

¢ Data Dependence: The accuracy of the model is highly dependent on high-quality, high-frequency
real-time data (such as environmental monitoring data, tourist flow data, and resident sentiment survey
data). The application of the model will face challenges in areas with sparse or unreliable data.

e Model Simplification: For computational feasibility, we have simplified complex real-world
processes to some extent, for example, modeling certain relationships as linear or simple nonlinear
functions. Real-world socio-ecological systems may contain more complex feedback and emergent
behaviors.

o Computational Cost: Although the discretization method is feasible in the current case, its
computational cost will increase exponentially with the increase of state space dimensions (e.g.,
introducing more environmental or social indicators), limiting the scalability of the model.

Based on these limitations, future research can be carried out in the following aspects:

(1) Integrating advanced reinforcement learning methods: Deep reinforcement learning (DRL)
techniques are adopted, and function approximators such as neural networks are used to represent value
functions or policies. This can effectively overcome the curse of dimensionality caused by state space
discretization, thereby handling higher-dimensional and more complex problems 21,

(2) Developing a Hybrid Modeling Framework: Combining the MOMDP optimization framework of
this study with ABM simulation. ABM can be used to generate more realistic tourist behavior patterns
and incorporate them as part of the MOMDP transfer function, thereby better capturing the response of
individual decisions to the macro-system state 241,

(3) Expanding the Objective Dimension: Based on the current three-dimensional objective function,
more refined objectives can be introduced, such as the protection of cultural heritage, the equitable
distribution of economic benefits within the community, and biodiversity indicators, so that the model
can more comprehensively reflect the multiple dimensions of sustainable development.

7. Conclusion

This paper proposes an integrated algorithm framework based on Multi-Objective Markov Decision
Process (MOMDP) and Rolling Time-Domain Control (RHC) for the dynamic adaptive decision-making
problem in sustainable tourism management. Through state-space discretization and rolling optimization
strategies, the continuous-state MOMDP problem is successfully transformed into an operable finite-
term sequential decision model, thus providing a systematic and standardized decision support tool for
tourism destination managers while taking into account economic, environmental, and social objectives.
This framework theoretically solves the problems of multi-objective dynamic optimization and
uncertainty management in sustainable tourism.

In terms of empirical evidence, this study applies the proposed framework to two heterogeneous
tourism ecosystems. Results show that the algorithm significantly outperforms the static baseline strategy
in a single scenario; further, through systematic reparameterization testing, the model's portability and
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generalization ability across different domains are verified, demonstrating its good cross-scenario
adaptability. This study demonstrates the feasibility and effectiveness of multi-objective Markov
decision-making algorithms in sustainable tourism management. Future research directions include
introducing more advanced machine learning methods and hybrid modeling techniques to further
improve the model's prediction accuracy and decision reliability, promote the tourism industry towards
greater resilience and sustainability, and contribute to the implementation of the national sustainable
development strategy.
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