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Abstract: An integrated framework based on multi-objective Markov decision processes (MOMDP) and 
receding horizon control (RHC) is proposed to address the dynamic optimization of sustainable tourism 
management. The core contribution lies in the development of a non-uniform grid state-space 
discretization strategy, which achieves computational simplification by balancing accuracy and 
efficiency, and in the use of backward induction for efficient policy derivation. Validation through case 
studies in Juneau, Alaska, and Maui, Hawaii, demonstrates that the framework significantly outperforms 
static baseline policies, ensuring computational feasibility, effectively balancing economic, 
environmental, and social objectives, and systematically establishing its strong generalization capability 
across diverse socio-ecological contexts. 
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1. Introduction 

As a vital engine of the global economy, the tourism industry, while driving development, often 
places significant pressure on the socio-ecological systems it depends on, thus placing tourism 
destination managers in a complex multi-objective optimization dilemma. The core of this challenge can 
be summarized as the "triple bottom line" of sustainable development: economic viability, environmental 
integrity, and social equity [1] . However, these three objectives are often inherently conflicting, forcing 
policymakers to make difficult trade-offs between competing priorities. Currently, the escalating 
environmental change and climate crisis further exacerbate this contradiction [2,3] . Faced with such a 
dynamic and complex system, traditional tourism management strategies, such as setting fixed annual 
visitor capacity or implementing seasonal pricing, are proving inadequate [4] . Such static policy baselines 
not only struggle to flexibly respond to changes within the system but may also trigger "policy 
resistance," meaning policy failure due to neglecting feedback mechanisms and time delays, or even 
causing unexpected negative consequences [5] . (See Figure 1) 

 
Fig.1 Triple Bottom Line Schematic for Sustainable Tourism 

Therefore, there is an urgent need for a dynamic adaptive management framework capable of 
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responding to changing conditions to achieve intelligent decision support. Researchers have deployed 
IoT sensors on popular routes to monitor congestion and dynamically adjust access prices or visitor flow 
guidance [6] . Such applications can shift management from reactive to proactive optimization, thus more 
effectively balancing multiple objectives. In recent years, with the rise of the "smart tourism" concept, 
big data, IoT, and AI technologies have also been widely applied to optimize tourism services, manage 
visitor flow, and improve sustainability [7] , providing new ideas for adaptive management. 

To make tourism decision-making processes more intelligent and efficient, researchers have 
developed Environmental Decision Support Systems (EDSS) [8] . When simulating complex socio-
ecological systems, several modeling paradigms have emerged, with System Dynamics (SD) and Agent-
Based Models (ABM) being two typical methods. 

● System dynamics (SD) is a top-down approach that focuses on describing the macroscopic overall 
behavior of a system through stocks, flows, and feedback loops [9] . SD models can effectively capture 
high-order dynamics and nonlinear relationships at the system level, but their limitation lies in their 
inability to represent the heterogeneity of individuals within the system and the spatial dynamics at the 
micro level. 

● Agent-based modeling (ABM) is a bottom-up approach that observes emerging patterns at the 
macroscopic level by simulating the behavior and interactions of autonomous agents (such as tourists 
and businesses) [10] . ABM has significant advantages in simulating complex and heterogeneous behaviors, 
for example, it can be used to study the formation mechanism of overtourism. However, it is often 
difficult to directly derive globally optimal management strategies from ABM simulations. 

Furthermore, there is growing academic interest in hybrid models (Hybrid ABM-SD) that combine 
the advantages of both approaches, with the aim of providing a more comprehensive solution to complex 
natural resource management problems [11] . 

2. Positioning of the Research Using the MOMDP Framework 

The SD model can predict the evolution trajectory of macroeconomic variables under specific 
assumptions and is suitable for scenario analysis, but it cannot directly solve for the optimal control 
sequence. ABM can reveal emergent patterns that may result from individual behavior, but it does not 
itself generate a top-down optimal strategy. Unlike SD and ABM, which are mainly used as descriptive 
and simulation tools, the MOMDP framework proposed in this study is essentially a multi-objective 
prescriptive optimization tool. It provides a perspective that complements the above paradigms. It aims 
to use real-time and historical data to provide tourism destination managers with a dynamic data-driven 
strategy planning through a prescriptive optimization model, filling the gap between descriptive 
simulation and prescriptive policy optimization, and providing a more accurate computational path for 
how to intelligently manage sustainable tourism systems. 

3. Multi-objective Markov Decision Process for Destination Management 

First, the sustainable tourism management problem is formalized as a finite-term multi-objective 
Markov decision process, defined by a quintuple𝑀𝑀 = (𝑆𝑆,𝐴𝐴,𝑃𝑃,𝑅𝑅, 𝛾𝛾). Table 1 provides the key symbols 
used in the model and their definitions. 

Tab.1 Model Symbols & Definitions 

Symbols Definitions Units 
𝑺𝑺 State Space - 
𝒔𝒔t 𝑡𝑡System State Vector at Time[𝒒𝒒e(𝒕𝒕), 𝒓𝒓c(𝒕𝒕),𝒒𝒒s(𝒕𝒕)] - 

𝑞𝑞e(𝑡𝑡) Environmental Quality Index Dimensionless 
𝑟𝑟c(𝑡𝑡) Cumulative Protection Investment US Dollars 
𝑞𝑞s(𝑡𝑡) Social Sentiment Index Dimensionless (0 − 100) 
𝑨𝑨 Action Space - 
𝒂𝒂t 𝑡𝑡Action Vector at Time[𝑵𝑵max(𝒕𝒕),𝑷𝑷adj(𝒕𝒕),𝑪𝑪m(𝒕𝒕)] - 
𝑁𝑁 Actual Daily Tourist Count Person-Days 

𝑁𝑁max(𝑡𝑡) Daily Tourist Limit Person-Days 
𝑃𝑃adj(𝑡𝑡) Dynamic Pricing Adjustment Factor Dimensionless 
𝐶𝐶m(𝑡𝑡) Investment Mitigation US Dollars per Day 
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𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎) State Transition Probability Function - 
𝑅𝑅(𝑠𝑠,𝑎𝑎) Vector Value Reward Function - 
𝑅𝑅econ Economic Benefit Reward US Dollars per Day 
𝑅𝑅env Environmental Benefit Reward Dimensionless 
𝑅𝑅soc Social Benefit Reward Dimensionless 
𝛾𝛾 Discount Factor Dimensionless 

𝑉𝑉(𝑡𝑡) Tourist density Person-square-kilometer-hour 
𝜔𝜔e(𝑡𝑡) Climate-driven stochastic environmental stress Dimensionless 
𝛼𝛼,𝛽𝛽, 𝛾𝛾env Environmental stress model calibration coefficient - 

𝜓𝜓 Environmental resilience coefficient - 
𝑃𝑃r(𝑡𝑡) Local resident population Person 
𝛩𝛩s Social tolerance threshold Dimensionless 

𝜔𝜔e,𝜔𝜔c,𝜔𝜔s Scalar weights for multi-objective rewards Dimensionless 
𝐻𝐻 Finite Predictive Horizon of RHC (Rolling Window 

Length) 
Time unit (e.g., day) 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Base cost US Dollars 
𝛿𝛿 Depreciation or inflation factor, used for 

accumulating protection investment𝑐𝑐Decay 
Dimensionless 

𝐸𝐸𝐸𝐸𝐸𝐸 Environmental Stress Index Dimensionless 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Coral Reef Health Index Dimensionless (based on 

coverage) 
𝛥𝛥𝛥𝛥 Local temperature increment caused by tourism 

activities, used for glacier ablation models 
Temperature (°𝐶𝐶) 

3.1 State Space(𝑺𝑺)Variable definition 

The state of the system at time 𝑡𝑡 is defined by a continuous vector𝒔𝒔𝒕𝒕 = [𝒒𝒒𝒆𝒆(𝒕𝒕), 𝒓𝒓𝒄𝒄(𝒕𝒕),𝒒𝒒𝒔𝒔(𝒕𝒕)] ∈
𝑠𝑠indicates that: 

● Environmental Quality Index(𝑞𝑞e(𝑡𝑡)): A standardized continuous variable representing the health of 
the ecosystem. For example, in the Juneau case, it could be an indicator related to the amount of glacial 
material loss; in the Hawaii case, it could be a reef health index related to the coverage of living corals. 

● Cumulative Protection Investment(𝑟𝑟c(𝑡𝑡)): A continuous variable representing the total investment 
in environmental mitigation measures, adjusted for inflation. 

● Social Sentiment Index(𝑞𝑞s(𝑡𝑡)): A continuous variable representing resident satisfaction. This index 
is calibrated using periodic resident survey data and correlated with objective indicators such as the ratio 
of tourists to residents. 

3.2 Action Space(𝑨𝑨)Variable definition 

Actions that decision-makers can take at any given time𝑡𝑡are represented by a strategy vector𝒂𝒂𝒕𝒕 =
[𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡),𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡),𝐶𝐶𝑚𝑚(𝑡𝑡)] ∈ 𝐴𝐴indicates that: 

● Daily Tourist Limit(𝑁𝑁max(𝑡𝑡)): A discrete or continuous variable used to set the maximum number 
of tourists allowed per day. 

● Dynamic Pricing Adjustment Factor(𝑃𝑃adj(𝑡𝑡)): A continuous variable (e.g., a multiplier of base fees) 
used to regulate demand through price levers. 

Investment Mitigation(Cm(𝑡𝑡)): A continuous variable representing funds allocated to environmental 
restoration and social infrastructure improvements. 

3.3 System Dynamics and Transition Model(𝑷𝑷) 

State transitions are stochastic, and we model them as a deterministic evolutionary process plus an 
additive stochastic term: 

                            (1) 

● Environmental Quality Transition(𝑞𝑞e(𝑡𝑡 + 1)): 
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                      (2) 

Where the degradation term∆𝑞𝑞𝑒𝑒
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is tourist density𝑉𝑉(𝑡𝑡)and Nonlinear Function of Climate 

Pressure. This formalizes the Environmental Stress Index (ESI) in the original study and acknowledges 
the nonlinear impact of tourist footprint on the ecosystem [12] . 

● Recovery term∆𝑞𝑞𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟is a function of mitigating investment𝐶𝐶m(𝑡𝑡): 

                               (3) 

● Protective Investment Transition(𝑟𝑟c(𝑡𝑡 + 1)): 

                           (4) 

Where𝛿𝛿is a depreciation or inflation factor. 

● Social Sentiment Transition(𝑞𝑞s(𝑡𝑡 + 1)): 

                         (5) 

Where the stress term∆𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠is a function of the ratio of tourists to residents exceeding the social 
carrying capacity threshold𝛩𝛩s. This formalizes the social constraints in the original study and is supported 
by research on social carrying capacity and resident sentiment [13] . The improvement term∆𝑞𝑞𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖is a 
function of investment allocated to community projects𝐶𝐶m(𝑡𝑡). 

● Random Components(wt):𝑤𝑤tis a vector representing climate-driven uncertainties (e.g., unexpected 
heat waves affecting glaciers or coral reefs), the distribution of which can be modeled according to IPCC 
(Intergovernmental Panel on Climate Change) scenarios. 

3.4 Multi-Objective Rewards and Value Functions(𝑹𝑹) 

● Economic Rewards(𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)): 

                  (6) 

This is the net economic output after deducting operating costs and mitigation investments. 

● Environmental Rewards(𝑅𝑅env(𝑡𝑡)): 

                               (7) 

Rewards are defined as negative values for environmental degradation, thus incentivizing the model 
to minimize environmental damage. 

● Social Rewards(𝑅𝑅soc(𝑡𝑡)): 

                                (8) 

Rewards are directly equal to the current social sentiment index. 

The reward function is vector-valued. To optimize it, we use a time-varying weighted sum method to 
scalarize the multi-objective problem, which is a standard method in Multi-Objective Reinforcement 
Learning (MORL). 

                   (9) 

The weight vector can be dynamically adjusted by policymakers based on priorities at different times 
(e.g., increasing environmental weights during ecologically sensitive seasons). 

4. Algorithm Solution Based on Rolling Time-Domain Control 

The core idea of this algorithm is: first, to transform the complex continuous problem into a 
computationally tractable finite problem through state space discretization; then, to solve the finite-term 
problem using backward induction; finally, to embed the finite-term solution into a rolling time-domain 
control (RHC) framework to achieve adaptive online decision-making. The computational complexity 
and the coping strategies adopted are discussed at the end of this chapter. (See Figure 2) 
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Fig.2 Overall Methodology Flowchart 

4.1 State Space Discretization Strategy 

As defined in Section 3.1, the model's state space 𝐒𝐒 consists of three continuous variables: 
environmental quality index𝑞𝑞e(𝑡𝑡), cumulative protection investment𝑟𝑟c(𝑡𝑡)and social sentiment index𝑞𝑞s(𝑡𝑡). 
Applying dynamic programming algorithms directly to continuous space is not feasible; this is the so-
called "curse of dimensionality." 

To achieve computational solution, this study uses the state space discretization method, defining a 
finite set of discrete values for each continuous state variable, mapping the infinite continuous state space 
S to a finite discrete state spaceSd. 

● Discretization granularity selection: After weighing accuracy and computational cost, each variable 
is discretized as follows: 

Environmental Quality Index𝑞𝑞e: Range[0, 1], discretized into 21 levels, step size 0.05. 

Cumulative Protection Investment 𝑟𝑟 c: Range [0,𝑀𝑀𝑀𝑀𝑀𝑀_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼] , discretized into 31 levels (the 
maximum value is determined based on the case data and divided into equal intervals according to the 
amount). 

Social Sentiment Index𝑞𝑞s: Range[0, 100], discretized into 21 levels, step size 5. 

● Mapping rule: Any continuous state 𝑠𝑠 = [𝑞𝑞𝑒𝑒 , 𝑟𝑟𝑐𝑐 , 𝑞𝑞𝑠𝑠] is mapped to a grid point in the discrete 
space𝑆𝑆dusing the nearest neighbor rule.𝑠𝑠d, that is, take the nearest discrete value for each dimension. 

● Size of discrete space: After the above discretization, the size of the discrete state space is|𝑆𝑆𝑑𝑑| =
21 × 31 × 21 = 13671state points. This transforms the original infinite space problem into a finite-state 
MDP problem, laying the foundation for applying dynamic programming algorithms such as backward 
induction. (See Figure 3) 

 
Fig.3 State Space Discretization Schematic 
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4.2 Finite-term optimization based on backward induction 

For a discretized finite-term problem𝐻𝐻, the optimal scalarized value function𝑉𝑉𝑡𝑡∗(𝑠𝑠𝑑𝑑)can be calculated 
by backward induction. This method is essentially an application of dynamic programming to finite-term 
problems. 

The algorithm starts from the terminal time𝐻𝐻and iterates backward to calculate the optimal value 
function and optimal policy for each state. The Bellman optimal equation for the finite-term problem is 
defined as follows: 

● Terminal condition: For all discrete states𝑠𝑠d∈ 𝑆𝑆d, set the terminal value𝑉𝑉H(sd) = 0. 

● Backward iteration: For time step𝑡𝑡 = 𝐻𝐻 − 1,𝐻𝐻 − 2, … ,0: 

                       (10) 

Where𝑃𝑃(𝒔𝒔𝒅𝒅′ |𝒔𝒔𝒅𝒅,𝒂𝒂)is the state transition probability based on the discrete state, 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒔𝒔𝒅𝒅,𝒂𝒂)is the 
scalarized immediate reward. 

The backward induction process based on discrete state space𝑺𝑺𝒅𝒅is as follows: 

Algorithm 1: Backward Induction Algorithm for Finite-Term MOMDP: 
1: Input: Discrete state space𝑺𝑺d, Action space𝑨𝑨, Transition probability matrix𝑷𝑷, Reward function𝑅𝑅, 

Discount factor𝛾𝛾, Decision period𝐻𝐻 
2: Initialization: Initialize terminal value function for all𝒔𝒔d∈ 𝑺𝑺d, 𝑉𝑉H(𝒔𝒔d) ← 0   # Initialize terminal 

value function 
3: 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 𝐻𝐻 − 1 𝑡𝑡𝑡𝑡 0 𝑑𝑑𝑑𝑑   # Backward iteration time step 
4:   𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒔𝒔d∈ 𝑺𝑺d, 𝑑𝑑𝑑𝑑 
5:     𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← −∞ 
6:     𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝒂𝒂 ∈ 𝑨𝑨 𝑑𝑑𝑑𝑑 
7: # Calculate expected value under action𝑎𝑎Expected value below 
8:     𝑄𝑄value← 0 
9:     𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒔𝒔𝒅𝒅′  𝑑𝑑𝑑𝑑 
10:        𝑄𝑄value← 𝑄𝑄value+𝑃𝑃(𝒔𝒔𝒅𝒅′ |𝒔𝒔d,𝒂𝒂) ∗ [𝑅𝑅scalar(𝒔𝒔d,𝒂𝒂) + 𝛾𝛾 ∗ 𝑉𝑉t+1(𝒔𝒔𝒅𝒅′ )] 
11:    𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 
12:    𝑖𝑖𝑖𝑖 𝑄𝑄value> 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 
13:       𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑄𝑄value 
14:       𝜋𝜋t(𝒔𝒔d) ← 𝒂𝒂   #Update the optimal strategy 
15:    𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 
16:   𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 
17:   𝑉𝑉t(𝒔𝒔d) ← 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣   #Update the optimal value function 
18:  𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 
19: 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 
20: Output: Optimal Value Function Family {𝑉𝑉 0 , . . . ,𝑉𝑉 H-1 } And the optimal strategy 

family{𝜋𝜋0, . . . ,𝜋𝜋H-1} 

4.3 Optimization of the calculation process 

The backward induction method in Section 4.2 provides an optimal open-loop plan for a fixed finite-
term problem. However, tourism management is a continuous process subject to external disturbances 
(such as weather events and economic fluctuations). To achieve adaptive online decision-making, we 
embed the finite-term solver into a rolling time-domain control (RHC) framework. (See Figure 4) 

RHC, also known as Model Predictive Control (MPC) in the control field, is essentially about solving 
a short-term finite-term optimization problem at each decision point and only executing the first action, 
forming a "rolling" decision window. This strategy introduces a feedback mechanism, enabling the 
system to respond to real-time state changes. Through the RHC framework, decision-making is no longer 
a one-off offline plan, but an online rolling optimization process, thus exhibiting strong robustness to 
model mismatch and unforeseen disturbances. 
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Fig.4 RHC Implementation Flowchart 

4.4 Computational complexity and feasibility analysis 

A brief analysis of the computational burden of the proposed algorithm is provided to illustrate its 
feasibility. 

● Source of Complexity: The main computational cost of the algorithm comes from the backward 
induction in the algorithm1. Its complexity is𝑂𝑂(𝐻𝐻 × |𝑆𝑆𝑑𝑑| × |𝐴𝐴| × |𝑆𝑆𝑑𝑑′ |), where|𝑆𝑆𝑑𝑑|is the number of 
discrete states,|𝐴𝐴|is the size of the action space (determined by discretization),|𝑆𝑆𝑑𝑑′ |is the number of 
possible next states for each state-action pair (in the implementation, we define this through a probability 
transition matrix). 

● Feasibility Explanation: Although the state space is large, the computation is feasible for the 
following reasons: 

(1) Finite prediction horizon𝐻𝐻: RHC typically employs a smaller𝐻𝐻(as in 5-10), avoiding the huge 
computational burden of indefinite problems. 

(2) Offline computation: For given model parameters, the entire backward induction process of the 
algorithm1can be pre-computed offline, obtaining the optimal policy table for all states at all time 
steps{𝜋𝜋0, . . . ,𝜋𝜋H-1}. In the online RHC loop, step𝑐𝑐Only one table lookup operation is needed (based on 
the current discrete state𝒔𝒔d,tand time index𝑡𝑡lookup𝜋𝜋𝜋𝜋(𝒔𝒔d,t)) to obtain the action, with extremely low 
computational overhead, which can meet real-time requirements. 

5. Empirical evidence and generalization ability analysis 

To train and validate the effectiveness and adaptability of the model, it was applied to two different 
tourism ecosystem cases: glacier tourism in Juneau, Alaska, and marine tourism in Maui, Hawaii. By 
systematically reconfiguring and calibrating the model, it was demonstrated that the MOMDP RHC 
framework is a general decision support tool, not just a solution for specific cases. 

5.1 Case study: Glacier tourism in Juneau, Alaska 

5.1.1 Ecosystem Sub-model: Glacial Melting 

In the Juneau case, environmental quality status𝑞𝑞eis defined as an indicator negatively correlated with 
glacial mass loss. Environmental degradation∆𝑞𝑞𝑒𝑒

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑is primarily driven by two factors: local warming 
and tourist activity. While the direct causal relationship between tourist activity and glacial melt is 
complex, the additional energy generated by tourism activities (such as transportation and infrastructure 
energy consumption) can be considered a contribution to local melt. Studies have shown that tourism 
emissions do indeed affect the local environment [14] . A simplified day-to-day model is planned to 
estimate melt, where tourism activity is modeled as a small positive increment to local temperature, thus 

Start

State observation: obtain the current true state 
st

State discretization: St→Sd_t (nearest-neighbor 
mapping)

Has the global terminal time been 
reached, t ≥ tend?

End

Yes

No

Initialization: specify the prediction horizon 𝐻𝐻 
and the global terminal time Tend, and set t=0

Optimization: with Sd_t as the initial state, 
solve the H-step finite-horizon MOMDP to 

obtain the action sequence a*t,…,a*t+H-1

Action execution: execute only the first action

Time update: t←t+1

State transition: the system moves to 
 St+1 According to a*t and the random 

disturbance 𝑤𝑤 t
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affecting the melt rate [15] . 

5.1.2 Socioeconomic Sub-model: Resident Sentiment 

The calibration of socio-emotional status𝑞𝑞 sis based on resident survey data from Juneau. These 
surveys show that resident support for tourism has declined over time due to overcrowding and traffic 
congestion [16] . Therefore, the social stress function is directly linked to the ratio of tourists to residents 
(𝑁𝑁(𝑡𝑡)/𝑃𝑃 r(𝑡𝑡)), and the threshold (𝛩𝛩 s= 0.18 , approximately 5.5 tourists per resident) derived from 
empirical data in the original study is used as the key parameter triggering a decline in resident 
satisfaction. 

5.1.3 Parameterization and Results 

The economic and social components of the model were parameterized using official data from the 
Juno Economic Development Commission and the Tourism Authority, including tourist numbers, 
consumer spending, and resident demographics. By simulating the RHC strategy, we compared the 
sustainability index trajectories under three scenarios: (1) a "business as usual" scenario with no 
intervention; (2) a static policy scenario with a fixed tourist cap; and (3) a dynamic adaptive policy 
scenario using this framework. The simulation results are consistent with the findings of the original 
study: the dynamic strategy can reduce the rate of glacier retreat by 40% while increasing tourism revenue 
by 23%, significantly better than the static baseline. (See Figures 5 and 6) 

 
Fig.5 Glacier Retreat under Different Policies 

 
Fig.6 Tourism Revenue under Different Policies 

5.2 Generalized Case Study: Marine Tourism in Maui, Hawaii 

To systematically demonstrate the model's generalization ability, it was transferred from a cold glacial 
environment to a tropical marine ecosystem. At the heart of this process was demonstrating that the 
structure of the MOMDP RHC framework is domain-independent, while the specific definitions of the 
transfer and reward functions are domain-dependent. The flexibility of the framework was demonstrated 
by systematically replacing the Juneau-specific sub-models. 
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5.2.1 Ecosystem Sub-model: Coral Reef Health 

In the Maui case, the driving factors of environmental status𝑞𝑞eIt was redefined as a Coral Reef Health 
Index (CRHI), which can be quantified based on indicators such as live coral coverage. Environmental 
degradation term∆𝑞𝑞𝑒𝑒

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑also become the main threats to coral reefs: 

● Terrestrial runoff pollution: including the discharge of sediments, nutrients, and wastewater, which 
can damage water quality and lead to coral reef degradation [17] . 

● Direct impacts of tourists: including chemical contamination in sunscreen (such as oxybenzone) 
and physical damage [18] (such as trampling). 

Investment Mitigation𝐶𝐶m(𝑡𝑡)The applications have also changed accordingly, for example, to improve 
wastewater treatment facilities and fund coral reef restoration projects. (See Figure 7) 

5.2.2 Socioeconomic Sub-model: Recalibration for Hawaii 

The socioeconomic parameters [19] of the model were recalibrated using official data released by the 
Department of Business, Economic Development & Tourism (DBEDT) and the Hawaii Tourism 
Authority (HTA). Population data for Maui County (approximately 164,000 in 2023-2024) [20] . Socio-
emotional model𝑞𝑞sThe calibration is based on a Hawaiian resident sentiment survey, which clearly points 
to a link between tourism and rising living costs, overcrowding, and other issues [21] . Furthermore, the 
case study specifically considers the unique impact of tourism on Hawaiian indigenous culture, a crucial 
factor in the Hawaiian social context [22] . 

5.2.3 Cross-validation and Performance 

The reparameterized model was applied to Maui, yielding a new optimal strategy combination for the 
island. By comparing the model structure and performance of the Juno and Maui case studies, it was 
found that despite significant differences in specific parameter values and sub-model functions, the 
overall framework of the MOMDP RHC remains effective. This demonstrates the adaptability and 
portability of the framework, enabling it to provide decision support for tourist destinations with different 
environmental and socio-cultural backgrounds. Table 2 lists the key model parameter calibration values 
from the two case studies, visually illustrating the model's adaptation process. 

Tab.2 Model Calibration for Juneau and Maui Cases 
Parameters Alaska Maui Description and Data Sources 

Environmental 
Stress Coefficient𝛼𝛼 

0.47 0.62 Nonlinear impact coefficient of tourist density on the environment, 
calibrated based on glaciological monitoring data and coral reef 

degradation studies. 
Environmental 
Stress Index𝛽𝛽 

1.8 1.5 Index of the impact of tourist density, reflecting nonlinear effects. 

Social tolerance 
threshold𝛩𝛩s 

0.18 0.25 Critical value for the ratio of tourists to residents; exceeding this value 
will lead to a significant decline in resident satisfaction. Estimated based 

on resident survey data from Juno and Hawaii. 
Economic incentive 

coefficient𝜂𝜂 
0.33 0.38 Positive impact of tourism revenue on system attractiveness (next 

period's tourist volume). Fitted based on historical revenue and tourist 
growth data. 

Environmental 
deterrence factor𝜆𝜆 

0.41 0.45 Negative impact of environmental degradation on system attractiveness. 
Estimated based on a survey of tourists' sensitivity to environmental 

quality. 

 
Fig.7 Coral Reef Health Index Comparison 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 10: 68-80, DOI: 10.25236/AJCIS.2025.081010 

Published by Francis Academic Press, UK 
-77- 

6. Analysis and discussion 

6.1 Policy sensitivity of key parameters 

To assess the robustness of the model and identify the factors with the greatest impact on 
policymaking, the project conducted a comprehensive sensitivity analysis. By perturbing key parameters 
(such as daily tourist volume𝑁𝑁, carbon footprint per tourist, mitigation investment𝐶𝐶metc.) around their 
baseline values ±20%, we quantified the changes in model outputs (economic benefits, environmental 
impact, resident satisfaction). 

The analysis results (see Table 3) reveal several key points: 

● Tourist numbers(N)are the most sensitive lever: an increase in tourist numbers contributes far more 
to environmental stress than to economic income, mainly due to the nonlinear effects of environmental 
impact. When tourist numbers exceed a critical threshold (e.g., Juno's8,500person-days), environmental 
degradation and social stress rise sharply, leading to superlinear growth in mitigation costs, thus eroding 
economic benefits. 

● Individual impacts are more critical than overall investment: reducing the carbon footprint of each 
tourist (e.g., through promoting green transportation) is more effective at reducing environmental stress 
than increasing overall mitigation investment proportionally𝐶𝐶m. This suggests that targeted interventions 
(e.g., incentives) for tourist behavior are more efficient than general end-of-pipe treatment investments. 

● Hard constraints of social thresholds: Resident satisfaction is highly sensitive to the ratio of tourists 
to residents. Once this proportion exceeds the social tolerance threshold𝛩𝛩Even with acceptable economic 
and environmental indicators, a sharp decline in social satisfaction can jeopardize the long-term social 
permission of tourism. 

These findings highlight the importance of nonlinear relationships and critical thresholds in the 
system. For example, recovery costs increase exponentially after the Environmental Stress Index (ESI) 
exceeds 8.6; a tourist-to-resident ratio exceeding 0.22 is significantly correlated with community protests. 
These thresholds, validated by Monte Carlo simulations under 95% of climate scenarios, provide a solid 
scientific basis for developing preventative rather than reactive management policies. (See Figure 8) 

Tab.3 Key Parameter Sensitivity Analysis Summary 

Parameter (perturbation) ±𝟐𝟐𝟐𝟐%) Impact on 
economic 

benefits (%) 

Impact on 
environmental 
pressure (%) 

Impact on social 
satisfaction (%) 

Daily Tourist Limit(𝑁𝑁max) ±16.4 ±36.6 ∓24.0 
Carbon footprint per tourist ∓4.0 ∓18.0 ±2.5 
Investment Mitigation(𝐶𝐶m) ∓20.0 ∓22.0 ±4.0 

Economic benefit coefficient(𝛽𝛽) ±19.0 ±4.0 ±1.5 
Social tolerance threshold(𝛩𝛩s) ±12.0 ∓15.0 ±28.0 

 
Fig.8 Sensitivity Analysis Radar 
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6.2 Implications for Adaptive Policymaking 

The results of this study strongly support the use of dynamic, adaptive policies to replace static 
baselines. Compared to setting a fixed annual tourist cap, this framework can dynamically adjust tourist 
caps and pricing factors based on the real-time state of the system𝐬𝐬t (including current environmental 
quality and resident sentiment). This feedback mechanism enables management strategies to respond 
quickly to seasonal fluctuations, contingencies, and long-term trends, thereby maximizing long-term 
comprehensive benefits while maintaining system stability. 

Furthermore, this framework can be used as a policy experimentation platform. Policymakers can 
simulate the long-term consequences of different policy choices (e.g., different weightings or investment 
strategies) in a virtual environment, thereby assessing their potential impact, identifying risks, and 
optimizing decisions before implementation. This provides a powerful tool for achieving more prudent, 
evidence-based, and forward-looking tourism governance. 

6.3 Limitations and Future Research Directions 

While this framework demonstrates great potential, some limitations remain, while also opening new 
directions for future research. 

● Data Dependence: The accuracy of the model is highly dependent on high-quality, high-frequency 
real-time data (such as environmental monitoring data, tourist flow data, and resident sentiment survey 
data). The application of the model will face challenges in areas with sparse or unreliable data. 

● Model Simplification: For computational feasibility, we have simplified complex real-world 
processes to some extent, for example, modeling certain relationships as linear or simple nonlinear 
functions. Real-world socio-ecological systems may contain more complex feedback and emergent 
behaviors. 

● Computational Cost: Although the discretization method is feasible in the current case, its 
computational cost will increase exponentially with the increase of state space dimensions (e.g., 
introducing more environmental or social indicators), limiting the scalability of the model. 

Based on these limitations, future research can be carried out in the following aspects: 

(1) Integrating advanced reinforcement learning methods: Deep reinforcement learning (DRL) 
techniques are adopted, and function approximators such as neural networks are used to represent value 
functions or policies. This can effectively overcome the curse of dimensionality caused by state space 
discretization, thereby handling higher-dimensional and more complex problems [23] . 

(2) Developing a Hybrid Modeling Framework: Combining the MOMDP optimization framework of 
this study with ABM simulation. ABM can be used to generate more realistic tourist behavior patterns 
and incorporate them as part of the MOMDP transfer function, thereby better capturing the response of 
individual decisions to the macro-system state [24] . 

(3) Expanding the Objective Dimension: Based on the current three-dimensional objective function, 
more refined objectives can be introduced, such as the protection of cultural heritage, the equitable 
distribution of economic benefits within the community, and biodiversity indicators, so that the model 
can more comprehensively reflect the multiple dimensions of sustainable development. 

7. Conclusion 

This paper proposes an integrated algorithm framework based on Multi-Objective Markov Decision 
Process (MOMDP) and Rolling Time-Domain Control (RHC) for the dynamic adaptive decision-making 
problem in sustainable tourism management. Through state-space discretization and rolling optimization 
strategies, the continuous-state MOMDP problem is successfully transformed into an operable finite-
term sequential decision model, thus providing a systematic and standardized decision support tool for 
tourism destination managers while taking into account economic, environmental, and social objectives. 
This framework theoretically solves the problems of multi-objective dynamic optimization and 
uncertainty management in sustainable tourism. 

In terms of empirical evidence, this study applies the proposed framework to two heterogeneous 
tourism ecosystems. Results show that the algorithm significantly outperforms the static baseline strategy 
in a single scenario; further, through systematic reparameterization testing, the model's portability and 
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generalization ability across different domains are verified, demonstrating its good cross-scenario 
adaptability. This study demonstrates the feasibility and effectiveness of multi-objective Markov 
decision-making algorithms in sustainable tourism management. Future research directions include 
introducing more advanced machine learning methods and hybrid modeling techniques to further 
improve the model's prediction accuracy and decision reliability, promote the tourism industry towards 
greater resilience and sustainability, and contribute to the implementation of the national sustainable 
development strategy. 
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