
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 8: 68-74, DOI: 10.25236/AJCIS.2023.060808

Published by Francis Academic Press, UK
-68-

Insurance Fraud Detection Based on XGBoost

Haoran Zheng1,a,#, Fan Peng2,b,#, Yawen Tian3,c,#, Zizhou Zhang4,d,#,
Wenting Zhang5,e,#

1Software Engineering, Shandong University of Technology, Zibo, Shandong, China
2Internet of Things Project, Hebei University of Technology, Tianjin, China
3McMaster University, Toronto, Ontario, Canada
4Nttingham University, Ningbo, Zhejiang, China
5Qihua Academy Nanchang, Nanchang, Jaingxi, China
a2490465137@qq.com, b1649824692@qq.com, c1255495322@qq.com, dssyzz30@nottingham.edu.cn,
e77998282qq.com
(#Co-first author)These authors contributed equally to this work.

Abstract: This research conducted a comprehensive study on predicting customer car insurance claims
using Gradient Boosting Decision Tree (GBDT) and XGBoost models. The process included data
exploration, feature engineering, model evaluation, and parameter tuning. The dataset was explored
based on variable types and missing values, and further processed through mean encoding and outlier
removal. Date features were also manipulated to create more meaningful features. Two models, GBDT
and XGBoost, were trained and evaluated based on their AUC (Area Under the Curve) values. Both
models demonstrated good predictive power, with GBDT slightly outperforming XGBoost. The results
of this study provide valuable insights for predicting insurance claims, offering significant implications
for further research and practical applications.

Keywords: GBDT, XGBoost, Machine Learning, Car Insurance Fraud Detection

1. Introduction

A major use in the insurance profession is now identifying insurance fraud. Insurance, as an integral
part of the financial system, is essential to the protection of livelihoods and the advancement of society.
However, insurance fraud has been on the rise, costing insurance providers and the entire financial
system an enormous amount of money. Such conduct gravely undermines the stability and operation of
insurance businesses and erodes the public's trust in the insurance system. The purposeful giving of
misleading information or careful planning of accidents and losses on the part of the insured in order to
receive false protection is referred to as insurance fraud. This unethical behavior not only jeopardizes
the interests of insurance providers, but it also places an additional burden on loyal customers, raising
the general price of insurance.

The risk control methods used by insurance firms for traditional insurance fraud prevention is quite
easy to understand. Insurance firms essentially get anti-fraud tips through sample cases and operator
experience. However, insurance companies frequently lack the capacity to thoroughly analyze and mine
basic underwriting and claims data in order to rapidly recognize hidden risk indicators, which makes it
difficult to identify fraud signals in time while managing cases. An additional challenge faced by
insurance firms in addressing fraud is the absence of a data exchange mechanism. Machine learning,
deep learning, and other algorithms are being used and developed quickly due to the big data
technology's increasing maturity and the rapid increase in computing power, technological innovations
like image recognition.

Currently, machine learning technology is crucial to the insurance industry's efforts to combat fraud,
particularly when it comes to accurately identifying and preventing fraud. Machine learning technology
is being employed mostly in anti-fraud applications by developing pertinent models, diligently
establishing the features of fraud cases, and employing algorithms to quantitatively estimate the level
of fraud risk in claims examples. This approach can dramatically reduce labor expenses for insurance
firms while increasing the reliability and efficiency of fraud risk identification.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 8: 68-74, DOI: 10.25236/AJCIS.2023.060808

Published by Francis Academic Press, UK
-69-

2. Related Work

With the rise of machine learning algorithms, researchers have started to apply techniques such as
Random Forest, Support Vector Machine, and others to the field of insurance fraud detection. These
methods can automatically learn patterns from data and build predictive models to assist in fraud
detection. In recent years, ensemble learning techniques like XGBoost and Gradient Boosting Trees
have been widely used for fraud detection. Hancock, J.T., and Khoshgoftaar, T.M.[1] proposed using the
Catboost algorithm to achieve higher average AUC values, resulting in better performance compared to
other algorithms in insurance fraud detection tasks. Sri Ghattamaneni, Ricardo Portilla, Nikhil Gupta[2]
mentioned improving fraud detection model accuracy by combining multiple base models to create an
anti-fraud framework.

Furthermore, the rapid development of deep learning techniques has sparked a research trend in the
insurance fraud detection domain. Sumaya Sanober et al.[3] proposed using a novel deep learning
framework implemented in Spark for financial fraud detection, leading to higher precision and accuracy.
Additionally, using deep autoencoders has been shown to improve accuracy and enhance fraud
detection effectiveness.

As discussed by Wang Weiwei[4], utilizing data and model training can significantly improve the
accuracy of system analysis and reduce operational maintenance costs. This paper introduces a novel
feature selection method based on stacking and compares the proposed architecture with various
algorithm models through analytical methods. The innovation and differences of this method mainly lie
in the aspects of feature engineering and multi-model ensemble. First, this study addresses the
characteristics of insurance fraud features by employing encoding techniques like MeanEncoder to
process categorical variables, fully utilizing their classification information. Second, the study
incorporates multiple machine learning models such as GBDT and XGBoost, enhancing fraud detection
robustness and reliability by combining predictions from different models.

Moreover, this research extensively validates and applies the proposed approach on multiple real
insurance datasets, covering various insurance types and fraud scenarios. As Wang Chen et al.[5]
mentioned, combining fraud risk warning intelligent outreach methods achieves end-to-end
communication-side prevention and control. The validation on real data adds practical significance and
operability to the results of this study. Furthermore, the application in actual insurance business further
demonstrates the feasibility and effectiveness of this research.

In conclusion, by optimizing feature engineering and introducing a multi-model ensemble strategy,
this research improves the accuracy and efficiency of fraud detection. Moreover, the validation in
practical applications provides valuable references for risk management and business decision-making
in the insurance industry.

3. Model method

Figure 1: Model method

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 8: 68-74, DOI: 10.25236/AJCIS.2023.060808

Published by Francis Academic Press, UK
-70-

3.1. Data exploration

The content of data exploration can help us better understand the feature distribution, missing
values, and correlations among variables in the dataset, providing a foundation for subsequent feature
engineering and modeling (Figure 1).

Variable type exploration: By classifying the data according to variable types into numerical and
object variables, we can explore variable types. Numerical variables include continuous variables,
discrete variables, and single-value variables, while object variables are non-numerical variables.

In this study, we first used the 'data.dtypes' method to perform data type analysis, categorizing
variables into two data types: 'int64' and 'object'. Numerical features were stored in the
'numerical_feature' variable, while object-type features were stored in the 'object_feature' variable.

Analysis of Continuous, Discrete, and Single-value Variables: Based on the different characteristics
of the numerical variables in the data, we can further categorize them into continuous variables,
discrete variables, and single-value variables. Continuous variables refer to variables that can take any
numerical value, discrete variables are those that can only take a finite or countable number of values,
and single-value variables are variables that take only one value in a given dataset.

In this study, we draw frequency charts to examine the types and distribution of discrete variables,
in order to better understand the characteristics of the data. Through these frequency charts, we can
intuitively understand the value range, frequency of occurrence, and potential imbalances of each
discrete variable.

Missing Value Analysis for Object Variables: We determine whether each column of object
variables has missing values, and filter out the rows with missing values from the original data.

3.2. Feature engineering

Missing Value Processing: Firstly, by identifying the feature list with missing values, we can
determine which features have missing values.

Then, for these features with missing values, we fill in the missing values using the mode. With the
fillna function and mode() method, we can replace missing values with the mode of the corresponding
feature.

Outlier Processing: Outliers refer to values in the dataset that are significantly different from other
observations. For abnormal data, we can exclude them from the model training to achieve better results.

By using the 3σ rule (3-Sigma rule), we can determine the upper and lower limits based on the
data's mean and standard deviation, and values beyond this range are considered outliers.

Date Processing: For features containing dates, such as 'policy_bind_date' and 'incident_date', we
first use the pd.to_datetime function to convert them into date format.

Then, by calculating the time difference between the two dates, we create a new feature 'delta_time',
representing the number of days between the accident date and the policy signing date.

We also extract the month from 'incident_date' and convert it to a string format as a new feature,
'picked_month'.

Correlation Analysis: By calculating the correlation matrix among numerical variables and
visualizing the correlation with a heatmap, we can identify variables with correlation higher than 0.6.

In this case, we find a high correlation between 'age' and 'customer_months', and remove them from
the numerical features.

Moreover, we also remove the target variable 'fraud' from the correlation analysis.

Mean Encoding: For variables with more than 10 discrete values, we use MeanEncoder to encode
the discrete values into continuous values for subsequent analysis.

First, we identify the feature list to be mean-encoded and remove these features from the object
features.

Next, we use the MeanEncoder class to mean-encode these features, and add the encoded features
to the dataset.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 8: 68-74, DOI: 10.25236/AJCIS.2023.060808

Published by Francis Academic Press, UK
-71-

Finally, we use LabelEncoder to label-encode the remaining object features, converting them into
numerical features.

3.3. Model Evaluation

In this study, we employed the Gradient Boosting Decision Tree (GBDT) and XGBoost models, and
evaluated them to determine their performance in prediction tasks. First, we split the dataset into
training and testing sets, with the training set accounting for 70% of the total samples. Then, we
initialized the GBDT and XGBoost models using pre-set parameters. Next, we trained these two
models on the training set, fitting them using the fit function.

XGBoost is a machine learning algorithm that improves predictive performance by combining
multiple decision trees. It utilizes gradient boosting techniques to iteratively train decision trees and
progressively refine the predictions. XGBoost also introduces regularization and automatic feature
importance learning to enhance the model's generalization capacity and reduce overfitting. With
parallel computation, XGBoost performs excellently when handling large-scale data. In general,
XGBoost is widely applied to various machine learning tasks due to its high performance, efficiency,
and accuracy.

Subsequently, we used the trained models to make predictions on the testing set and extracted the
positive class probabilities from the prediction probabilities. To assess model performance, we
computed the AUC (Area Under the Curve) metric.

Finally, we compiled the evaluation results of the two models into a table, which includes the model
names and their corresponding AUC values. By comparing the AUC values, we were able to
understand the relative performance of the GBDT and XGBoost models in prediction tasks.

In our study, two main model methods were adopted, which are the Gradient Boosting Decision
Tree (GBDT) and XGBoost. These methods can be understood as a process of executing a series of
iterative steps.

For GBDT, we first initialize a model that minimizes the loss, represented as F0(x). Then, a series
of loop iterations are carried out. In each iteration, we compute the gradient for each data point and fit a
new decision tree. Afterwards, we update the model through the learning rate and the decision tree. The
new model formula is as follows:

Fm(x) = Fm-1(x) + Learning_rate * Tree (1)

Finally, by continually iterating in this manner, we obtain the final model.

Here is the pseudo-code description for the Gradient Boosting Decision Tree (GBDT)(Table 1).

Table 1: GBDT

Method Name:GBDT
Input: Data: A dataset of customer car insurance claims, including features x, such as insurance
number, annual premium, age, etc.
Output: The probability of predicting as the positive class.
begin
 Initialize the model.F0(x) = argmin(Σl(yi, c)),Is the minimal loss across all samples.
 for i=1 to Maximum_rounds do
 for each (x, y) in Data do
 Compute the gradient g_i for each sample. end
 Generate a new decision tree such that Σ[g_i*score] is minimized, where score is the score
of the leaf node.
Add the new decision tree to the model,Fm(x) = Fm-1(x) + Learning_rate * Tree
 end
 Return the final model.F(x)
End.

For XGBoost, the method is similar to GBDT, but it introduces an additional regularization step, as
well as computation of the second-order gradient. On each data point, we compute gradients g_i and
h_i, and then fit a new decision tree taking into account the regularization factor. The model is updated
in the same way as GBDT, and the new model formula is:

Fm(x) = Fm-1(x) + Learning_rate * Tree (2)

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 8: 68-74, DOI: 10.25236/AJCIS.2023.060808

Published by Francis Academic Press, UK
-72-

Here is the pseudo-code description for the Gradient Boosting Decision Tree (XGBoost) (like Table
2).

Table 2: XGBoost

Method Name:XGBoost
Input: Data: A dataset of customer car insurance claims, including features x, such as insurance
number, annual premium, age, etc.
Output: The probability of predicting as the positive class.
begin
 Initialize the model.F0(x) = argmin(Σl(yi, c)),Is the minimal loss across all samples.
 for i=1 to Maximum_rounds do
 for each (x, y) in Data do
 Compute the gradient g_i for each sample g_i and h_i
 End
function XGBoost(Data, Maximum_rounds, Learning_rate)
 Generate a new decision tree such that Σ[g_i*score + 0.5 * h_i * score^2 + lambda *
||score||^2] is minimized,where score is the score of the leaf node.
 Add the new decision tree to the model.,Fm(x) = Fm-1(x) + Learning_rate * Tree
 end
 Return the final model F(x)
End

The results of this study indicate that both the GBDT and XGBoost models demonstrated good
predictive power on the test set. These results provide a strong basis for the selection of the optimal
model and have significant guiding significance for further research and applications.

4. Test

4.1. Dataset

Figure 2: Dataset

4.2. Hardware Environment

Table 3: Hardware Configuration

Name Configuration
Cpu 5900hx
Gpu 3080laptop
RAM 32G 3000hz

4.3. Evaluation Standard

In this case, the performance of the model is evaluated using the confusion matrix threshold（Table
3 and Figure 2).

4.4. Model Training

The dataset is divided using the train_test_split function. X_train and y_train are the features and

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 8: 68-74, DOI: 10.25236/AJCIS.2023.060808

Published by Francis Academic Press, UK
-73-

labels of the training set, while X_test and y_test are the features and labels of the test set. According to
the given parameter train_size=0.7, the training set accounts for 70% of the total dataset and the test set
accounts for 30%.

X_train,X_test,y_train,y_test = train_test_split(mean_X_train,y_label,train_size=0.7)

4.5. Parameter Tuning

In this test, the parameters of the GBDT and XGBoost models were adjusted and the impact of
changes in model parameters on model performance was recorded (Figure 3).

For the GBDT model, we adjusted the learning_rate to 0.1, n_estimators (number of weak learners)
to 30, max_depth (maximum depth of the tree) to 3, and min_samples_split (the minimum number of
samples required for further splitting of internal nodes) to 300.

For the XGBoost model, we adjusted the learning_rate to 0.01, reg_alpha (weight of the L1
regularization term) to 0, max_depth (maximum depth of the tree) to 3, gamma (minimum loss
reduction required to make a further partition on a leaf node) to 0, and min_child_weight (minimum
sum of instance weight needed in a child) to 1(Table 4).

Table 4: XGBoost model

Model Parameter Value
GBDT learning_rate 0.1

n_estimators 30
 max_depth 3

min_samples_split 300
XGBoost learning_rate 0.01

reg_alpha 0
max_depth 3

 gamma 0
min_child_weight 1

4.6. Feature Importance Ranking

Figure 3: Feature Importance Ranking.

4.7. Model Evaluation

The prediction accuracy of the GBDT model is slightly higher than that of the XGBoost model
(Table 5)

Table 5: Model Evaluation.

 GBDT XGBoost
AUC 0.884230 0.884230

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 8: 68-74, DOI: 10.25236/AJCIS.2023.060808

Published by Francis Academic Press, UK
-74-

5. Conclusion

This paper establishes XGBoost and Gradient Boosting Decision Trees (GBDT) models for data
classification. Each category is analyzed, and the data is processed to handle missing values and
outliers. Finally, the models are trained and evaluated. The novelty of this paper lies in using two
gradient boosting ensemble learning algorithms, XGBoost and GBDT, for the classification task.
Different parameters are adjusted to control the complexity and fitting ability of GBDT and XGBoost,
such as learning rate, tree depth, regularization coefficient, etc. These parameters can impact the
model's generalization ability and training speed, and their selection and optimization depend on the
characteristics of the dataset. Model optimization can be further explored by trying different types of
machine learning models, such as decision trees, random forests, support vector machines, gradient
boosting trees, neural networks, etc. Different models may exhibit varying adaptability to the data's
features and patterns, and experimenting with various models can help identify the most suitable one.
Fine-tuning model parameters can be achieved by adjusting the chosen model's settings to optimize its
performance. Techniques like cross-validation and grid search can be utilized to find the best
combination of parameters.

References

[1] Hancock, J. T., & Khoshgoftaar, T. M. (2021). Gradient boosted decision tree algorithms for
medicare fraud detection. SN Computer Science, 2(4), 268.
[2] Sri, G., & Ricardo, P. (2021). Combining Rules-Based and Machine Learning Models to Combat
Financial Fraud .The Databricks Blog.
[3] Sanober, S., Alam, I., Pande, S., Arslan, F., Rane, K. P., Singh, B. K., ... & Shabaz, M. (2021). An
enhanced secure deep learning algorithm for fraud detection in wireless communication. Wireless
Communications and Mobile Computing, 2021, 1-14.
[4] Wang, X., Yi, Z., & Wu, H. (2018, August). Research and Improvement of Internet Financial
Anti-Fraud Rules Based on Information Gain and Support. In Journal of Physics: Conference Series
(Vol. 1069, No. 1, p. 012104). IOP Publishing.
[5] Wang, C., Luo, Q., Pan, L., Yuan, T. S., & Liu, Y. Z. (2022). Research and Application of Real-time
Intelligent Anti-fraud System Based on Trusted AI and Spatio-temporal Big Data. Telecommunications
Engineering Technology and Standardization. 35(12), 34-39.

	3.1. Data exploration
	3.2. Feature engineering
	3.3. Model Evaluation
	4.1. Dataset
	4.2. Hardware Environment
	4.3. Evaluation Standard
	4.4. Model Training
	4.5. Parameter Tuning
	4.6. Feature Importance Ranking
	4.7. Model Evaluation

