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Abstract: During the transportation of finished grain, particularly over long distances, dynamic
fluctuations in temperature and humidity can affect the biochemical mechanisms of the grain, leading to
increased energy loss and a higher risk of mold formation. However, existing prediction methods (e.g.,
LSTM, Informer) exhibit significant shortcomings in addressing these issues, especially in handling non-
stationary time-series signals and cross-regional environmental coupling effects. To this end, this paper
proposes a prediction method based on wavelet transform and the iTransformer model. This method
innovatively constructs a dual-channel wavelet adaptive optimization module that dynamically selects
the optimal wavelet basis functions for the temperature and humidity signals, respectively, to perform
decomposition, achieving noise suppression and enhancement of key fluctuation features. Subsequently,
the reconstructed features are input in parallel with the original data into the iTransformer model to
improve prediction accuracy. Experimental results show that on the simulated Northeast-to-Yangtze-
River-Delta transportation dataset, the proposed method achieves an MSE of 0.231 and an MAE of 0.233,
which are significantly lower than those of the baseline and other prediction models. This research
provides a new technical pathway for grain quality regulation in complex transportation environments.
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1. Introduction

Accurately predicting temperature and humidity is critical for ensuring grain quality during long-
distance, cross-ecological zone transportation, a process that faces severe technical challenges. The time-
series data from this context exhibits complex non-stationarity, characterized by the coupling of low-
frequency trends driven by diurnal temperature variations and regional climate shifts, with high-
frequency fluctuations caused by abrupt events such as loading and unloading operations. The risks of
energy loss and mold formation in grain increase sharply when the temperature exceeds 25°C or the
diurnal temperature difference is greater than 10°C.

Although existing time-series forecasting models, from classic LSTMs to advanced Transformer
variants, have been widely applied, they share common limitations in addressing these specific
challenges. These models struggle to effectively handle the non-stationary properties of the signals while
simultaneously preserving long-term trends and accurately capturing the short-term, sharp fluctuations
crucial for grain quality. Furthermore, the commonly used mixed-encoding approach often leads to
feature interference between different variables.

To address this research gap, this paper proposes an innovative prediction method that fuses wavelet
transform with the iTransformer model. The method employs a dynamic adaptive wavelet module to
denoise the signals and enhance key fluctuation features to tackle non-stationarity. Subsequently, it
leverages the unique independent variable encoding mechanism of iTransformer to model the multi-
dimensional features without interference. The core contribution of this research lies in being the first to
combine a dynamic wavelet basis selection strategy with the iTransformer architecture, providing an
effective solution for the precise prediction problem in complex transportation environments and
verifying its superiority through simulated experiments.
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2. Related Work

In the domain of temperature and humidity forecasting for grain transportation, traditional statistical
models like ARIMA! struggle to fit non-linear dynamics, while classic deep learning models such as
LSTM™ and GRUP! have limitations in capturing long-range dependencies, especially in accurately
predicting local abrupt events within non-stationary signals.

Transformer-based models have recently become mainstream. Although the foundational
Transformer model demonstrates powerful long-range modeling capabilities', its variants still have
specific shortcomings. For instance, Informer®! improves long-sequence forecasting efficiency with
sparse attention but at the cost of sensitivity to high-frequency abrupt events. While PatchTST!®
improves predictions for multi-scale series through patching, its mixed-encoding mechanism fails to
resolve the issue of feature interference among multivariate inputs.

To address this feature interference, the recently proposed iTransformer”! model significantly
enhances prediction accuracy for non-stationary multivariate signals via its innovative independent
variable encoding mechanism. Concurrently, wavelet transform™®], a technique from signal processing, is
widely used for signal denoising and feature enhancement due to its excellent time-frequency analysis
capabilities, and a few studies have attempted to combine it with deep learning models.”) However, these
fusion methods typically rely on fixed wavelet basis functions, limiting their adaptability to complex
signals.

In summary, existing methods either struggle to capture critical local fluctuations, suffer from feature
interference, or lack an adaptive signal processing capability. This research aims to fill these gaps by
fusing a dynamic wavelet selection strategy with the independent encoding advantages of the
iTransformer model.

3. Methodology
3.1. Overall Framework

The core of our proposed prediction framework lies in the integration of dynamic wavelet feature
enhancement with the iTransformer model. The overall process is illustrated in Figure 1: First, we
independently apply a single-level wavelet decomposition to the input temperature and humidity signals.
During this process, a dynamic basis selection strategy (detailed in Section 3.2.2) is employed to choose
the optimal wavelet basis for each signal. The resulting low-frequency components are preserved directly
to maintain long-term trends, while the high-frequency components undergo soft-thresholding denoising
and a 30x feature enhancement to amplify key fluctuation characteristics.
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Figure 1: The process of signal decomposition and reconstruction.

VA -

Raw Bnln-ddod
Series E“‘he"d'“g Variate Tokens

Multivariate
Attention
—
g__K} v

Figure 2: Internal execution details of iTransformer.
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Subsequently, the processed high- and low-frequency components are reconstructed into an enhanced
time series. Finally, this reconstructed series is concatenated with the original signals to form a four-
dimensional input tensor (original temperature, original humidity, reconstructed temperature,
reconstructed humidity), which is then fed into the iTransformer model for the final prediction. This dual-
channel input approach both preserves original information and provides enhanced features. The
processing of this concatenated data within the iTransformer is shown in Figure 2. This model
architecture, reproduced from reference[7], performs a collaborative analysis on the four-dimensional
features through its independent variable encoding mechanism.

3.2. Wavelet Feature Extraction and Enhancement

The wavelet processing module in this paper is designed to denoise the original signals and enhance
key fluctuation features. We independently apply a single-level Discrete Wavelet Transform (DWT) to
the temperature and humidity signals, decomposing them into low-frequency approximation coefficients
(cA1) and high-frequency detail coefficients (cD:). A single decomposition level was chosen to
effectively separate high- and low-frequency information while avoiding the boundary effects that can
be introduced by multi-level decomposition.

To improve the precision of the signal decomposition, we propose a dynamic wavelet basis selection
strategy. From a candidate set of 28 functions (covering Haar, Daubechies, Symlets, and Coiflets
families), this strategy selects the optimal basis function for each signal by minimizing the Root Mean
Square Error (RMSE) between the original and reconstructed signals, as shown in Equation (1).
Experimental results identified Symlets3 (sym3) as the optimal basis for the temperature signal and
Coiflets2 (coif2) for the humidity signal.

Wavelet = arg min RMSE(x X ) ( 1 )

optimal original_ reconstructed
P wavelet € Q g

The high-frequency detail coefficients cD: obtained from the decomposition are first denoised using
a soft-thresholding method. The threshold T is dynamically determined by Equation (2), where the
scaling factor A is set to 0.02 (optimized via grid search).

T =A-max(l cD,l), A=0.02 ©)

The denoised high-frequency coefficients, cDaenoised, are calculated using Equation (3).

D =sign(cD)-max(| ¢D|-T,0) 3

lenoist

Subsequently, to emphasize the impact of abrupt events like loading and unloading, we apply a 30x
linear enhancement to the denoised high-frequency coefficients to obtain cDennanced( Equation 4).

CDenhanced e 'CDdenoised’ a=30 (4)

Finally, the preserved original low-frequency approximation coefficients, cAi, are combined with the
enhanced high-frequency components, cDennanced, and reconstructed via an inverse wavelet transform to
produce the final enhanced signal, Xreconstructed(Equation 5). This is then merged with the original signal to
form the multimodal input features (Equation 6).

—wVred ¢
*reconstructed W ([CAl ’LDcnhanccd]’Wavelet) (5 )

IHPUt = [xtemp > X 2 x[emp;ec > X humi_rec ] (6)

4. Experiments and Results
4.1. Experimental Setup

Dataset and Preprocessing: The dataset used in this study was generated by simulating the
temperature and humidity of an autumn transportation route from the Northeast to the Yangtze River
Delta in an artificial climate chamber, with a sampling frequency of every two minutes. After cleaning
and Min-Max normalization, the data was split into training, validation, and test sets with a 7:1:2 ratio.

Baselines and Parameters: To validate performance, we compared our method against several
baselines: Transformer™, Informerl’], DLinear!!”), TimeMixer!'l, PatchTSTIl, and our base model,
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iTransformer!”). For fairness, all models were trained with a unified parameter configuration: an input
sequence length of 48 and an output of 12; a hidden dimension (d_model) of 512 with 8 attention heads
(n_heads); and 2 encoder layers with 1 decoder layer. The feed-forward network (FFN) dimension was
2048 with a dropout rate of 0.1. Models were optimized using Adam with the GeLU activation function,
a batch size of 32, and an early stopping mechanism with a patience of 10. Detailed hardware
configurations are shown in Table 1.

Table 1: Experimental environment configuration.

Environment Information Specific Configuration
Operating System Windows 10
Development Language Python 3.8.20
Deep Learning Framework PyTorch 2.0.1 + CUDA 11.8
CPU Intel(R) Core(TM) i7-8700@3.20GHz
GPU NVIDIA GeForce RTX 2070
Memory (RAM) 16GB

Evaluation Metrics: We evaluate model performance using two complementary metrics. Mean
Squared Error (MSE), defined in Equation (7), is more sensitive to large errors, making it suitable for
assessing prediction accuracy on abrupt events. Mean Absolute Error (MAE), defined in Equation (8),
focuses more on overall stability and is used to measure performance in forecasting long-term trends.

In these equations, yi is the true value, Viis the predicted value, and N is the total number of samples.

1 & N
MSE=—3 (v -5) ()
N3
1 N
MAE = NZ| Y —)7[| (3

i=1
4.2. Experimental Results and Analysis

The predictive performance of our proposed method and the baselines was evaluated on the simulated
dataset, with the results summarized in Table 2. Our method achieves state-of-the-art performance,
reaching an MSE of 0.231 and an MAE of 0.233. This represents a significant improvement over the
baseline iTransformer (3.0% and 1.7% reductions in MSE and MAE, respectively) and substantially
outperforms all other models.

Table 2: Comparison results of the predictive performance of different models

Model MSE MAE

Transformer 0.673 0.626

Informer 1.162 0.803

DLinear 0.309 0.313

TimeMixer 0.254 0.251

PatchTST 0.240 0.236
iTransformer 0.238 0.237

Wavelet transform + iTransformer 0.231 0.233

Further analysis reveals clear performance tiers. Traditional models like Transformer and Informer
perform poorly (MSE > 0.6), struggling with the non-stationary signals due to their mixed-encoding
schemes and insensitivity to abrupt events. While more recent models like DLinear, TimeMixer, and
PatchTST show considerable improvement through innovative architectures, they still lack the sensitivity
to fully capture sharp local fluctuations, resulting in larger local errors.

The superiority of our method stems from the synergistic effect of its two core components. The
baseline iTransformer already demonstrates strong performance (MSE=0.238), leveraging its
independent variable encoding. Our key advantage lies in the wavelet pre-processing, which enhances
the critical fluctuation details in the input features. This allows the iTransformer to more accurately model
both the abrupt changes and long-term trends inherent in the transportation environment.

To more intuitively compare the prediction effects of the baseline iTransformer model and the method
proposed in this paper, we provide visual comparison charts of the true and predicted values for a subset
of sample points, as shown in Figures 3, 4, 5, and 6. Figures 3 and 4 show the prediction effects of the
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baseline iTransformer model, while Figures 5 and 6 show the effects of the proposed Wavelet Transform
+ iTransformer model. Overall, both models can accurately capture the general trends of the temperature
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and humidity signals, and their overall predictive performances are relatively close.
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Figure 3: Temperature comparison chart predicted by iTransformer.
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Figure 4: Humidity comparison chart predicted by iTransformer.
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Figure 5: Temperature comparison chart predicted by wavelet transform +iTransformer.
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Figure 6: Humidity comparison chart predicted by wavelet transform +iTransformer.
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However, a more detailed observation of the figures reveals that the Wavelet Transform +
iTransformer model demonstrates higher sensitivity and better predictive performance when forecasting
local sharp fluctuations or abrupt events in the temperature and humidity signals. Taking the abrupt
fluctuation region around the 26,000th sample point of the temperature signal as an example, the baseline
iTransformer model exhibits a noticeable error in its prediction of this fluctuation. In contrast,
the Wavelet Transform + iTransformer model is able to more accurately follow the trend of the actual
temperature changes, as shown in Figures 7.

(a) iTransformer (b) wavelet transform +iTransformer

Figure 7: Local temperature comparison.

Furthermore, a similar situation is observed in the prediction of the humidity signal. Taking the region
around the 28,000th sample point of the humidity signal as an example, the prediction curve of the
baseline iTransformer model exhibits considerable volatility and deviates significantly from the true
values in some periods. In contrast, the prediction curve of the Wavelet Transform + iTransformer model
as a whole aligns more closely with the fluctuation trend of the actual signal.as shown in Figures 8.

I

(a) iTransformer (b) wavelet transform +iTransformer

Figure 8: Local humidity comparison.

In summary, based on both the overall performance metrics and the visual comparison of the
prediction curves, the proposed "Wavelet Feature Enhancement + iTransformer Model" not only
significantly outperforms traditional time-series forecasting models in overall performance but also
demonstrates a more pronounced predictive advantage compared to using the advanced Transformer
variant alone. This confirms the innovativeness and effectiveness of the method presented in this paper.

5. Conclusion

This paper introduces a novel prediction model that fuses dynamic wavelet transform with
iTransformer, effectively solving the challenge of non-stationary temperature and humidity forecasting
in cross-ecological zone grain transportation. By employing an adaptive wavelet module to denoise
signals and enhance key fluctuation features, combined with the independent variable encoding
mechanism of iTransformer, our model achieves a precise capture of complex time-series signals. On the
simulated Northeast-to-Yangtze-River-Delta transportation dataset, our method achieves State-of-the-Art
(SOTA) performance (MSE=0.231, MAE=0.233), significantly outperforming a range of mainstream
baselines, including Transformer and Informer. This research confirms the innovativeness and
effectiveness of the proposed fusion framework, establishing a new technical pathway for precise grain
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quality regulation in complex environments and offering a valuable reference for integrating signal
processing with advanced Transformer architectures in time-series forecasting.

While the proposed method has demonstrated excellent performance, future work can be extended in
the following directions: (1) Optimizing the dynamic wavelet basis function selection strategy to further
enhance the model's adaptability; (2) Incorporating multi-source heterogeneous data, such as grain type,
packaging materials, and weather factors, to explore a more comprehensive set of influencing factors;
and (3) Conducting on-site validation in real-world transportation scenarios to further test and improve
the model's generalization and practical value.
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