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Abstract: During the transportation of finished grain, particularly over long distances, dynamic 
fluctuations in temperature and humidity can affect the biochemical mechanisms of the grain, leading to 
increased energy loss and a higher risk of mold formation. However, existing prediction methods (e.g., 
LSTM, Informer) exhibit significant shortcomings in addressing these issues, especially in handling non-
stationary time-series signals and cross-regional environmental coupling effects. To this end, this paper 
proposes a prediction method based on wavelet transform and the iTransformer model. This method 
innovatively constructs a dual-channel wavelet adaptive optimization module that dynamically selects 
the optimal wavelet basis functions for the temperature and humidity signals, respectively, to perform 
decomposition, achieving noise suppression and enhancement of key fluctuation features. Subsequently, 
the reconstructed features are input in parallel with the original data into the iTransformer model to 
improve prediction accuracy. Experimental results show that on the simulated Northeast-to-Yangtze-
River-Delta transportation dataset, the proposed method achieves an MSE of 0.231 and an MAE of 0.233, 
which are significantly lower than those of the baseline and other prediction models. This research 
provides a new technical pathway for grain quality regulation in complex transportation environments. 
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1. Introduction 

Accurately predicting temperature and humidity is critical for ensuring grain quality during long-
distance, cross-ecological zone transportation, a process that faces severe technical challenges. The time-
series data from this context exhibits complex non-stationarity, characterized by the coupling of low-
frequency trends driven by diurnal temperature variations and regional climate shifts, with high-
frequency fluctuations caused by abrupt events such as loading and unloading operations. The risks of 
energy loss and mold formation in grain increase sharply when the temperature exceeds 25°C or the 
diurnal temperature difference is greater than 10°C. 

Although existing time-series forecasting models, from classic LSTMs to advanced Transformer 
variants, have been widely applied, they share common limitations in addressing these specific 
challenges. These models struggle to effectively handle the non-stationary properties of the signals while 
simultaneously preserving long-term trends and accurately capturing the short-term, sharp fluctuations 
crucial for grain quality. Furthermore, the commonly used mixed-encoding approach often leads to 
feature interference between different variables. 

To address this research gap, this paper proposes an innovative prediction method that fuses wavelet 
transform with the iTransformer model. The method employs a dynamic adaptive wavelet module to 
denoise the signals and enhance key fluctuation features to tackle non-stationarity. Subsequently, it 
leverages the unique independent variable encoding mechanism of iTransformer to model the multi-
dimensional features without interference. The core contribution of this research lies in being the first to 
combine a dynamic wavelet basis selection strategy with the iTransformer architecture, providing an 
effective solution for the precise prediction problem in complex transportation environments and 
verifying its superiority through simulated experiments. 
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2. Related Work  

In the domain of temperature and humidity forecasting for grain transportation, traditional statistical 
models like ARIMA[1] struggle to fit non-linear dynamics, while classic deep learning models such as 
LSTM[2] and GRU[3] have limitations in capturing long-range dependencies, especially in accurately 
predicting local abrupt events within non-stationary signals. 

Transformer-based models have recently become mainstream. Although the foundational 
Transformer model demonstrates powerful long-range modeling capabilities[4], its variants still have 
specific shortcomings. For instance, Informer[5] improves long-sequence forecasting efficiency with 
sparse attention but at the cost of sensitivity to high-frequency abrupt events. While PatchTST[6] 
improves predictions for multi-scale series through patching, its mixed-encoding mechanism fails to 
resolve the issue of feature interference among multivariate inputs. 

To address this feature interference, the recently proposed iTransformer[7] model significantly 
enhances prediction accuracy for non-stationary multivariate signals via its innovative independent 
variable encoding mechanism. Concurrently, wavelet transform[8], a technique from signal processing, is 
widely used for signal denoising and feature enhancement due to its excellent time-frequency analysis 
capabilities, and a few studies have attempted to combine it with deep learning models.[9] However, these 
fusion methods typically rely on fixed wavelet basis functions, limiting their adaptability to complex 
signals. 

In summary, existing methods either struggle to capture critical local fluctuations, suffer from feature 
interference, or lack an adaptive signal processing capability. This research aims to fill these gaps by 
fusing a dynamic wavelet selection strategy with the independent encoding advantages of the 
iTransformer model. 

3. Methodology 

3.1. Overall Framework 

The core of our proposed prediction framework lies in the integration of dynamic wavelet feature 
enhancement with the iTransformer model. The overall process is illustrated in Figure 1: First, we 
independently apply a single-level wavelet decomposition to the input temperature and humidity signals. 
During this process, a dynamic basis selection strategy (detailed in Section 3.2.2) is employed to choose 
the optimal wavelet basis for each signal. The resulting low-frequency components are preserved directly 
to maintain long-term trends, while the high-frequency components undergo soft-thresholding denoising 
and a 30x feature enhancement to amplify key fluctuation characteristics. 

 
Figure 1: The process of signal decomposition and reconstruction. 

 
Figure 2: Internal execution details of iTransformer. 
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Subsequently, the processed high- and low-frequency components are reconstructed into an enhanced 
time series. Finally, this reconstructed series is concatenated with the original signals to form a four-
dimensional input tensor (original temperature, original humidity, reconstructed temperature, 
reconstructed humidity), which is then fed into the iTransformer model for the final prediction. This dual-
channel input approach both preserves original information and provides enhanced features. The 
processing of this concatenated data within the iTransformer is shown in Figure 2. This model 
architecture, reproduced from reference[7], performs a collaborative analysis on the four-dimensional 
features through its independent variable encoding mechanism. 

3.2. Wavelet Feature Extraction and Enhancement 

The wavelet processing module in this paper is designed to denoise the original signals and enhance 
key fluctuation features. We independently apply a single-level Discrete Wavelet Transform (DWT) to 
the temperature and humidity signals, decomposing them into low-frequency approximation coefficients 
(cA₁) and high-frequency detail coefficients (cD₁). A single decomposition level was chosen to 
effectively separate high- and low-frequency information while avoiding the boundary effects that can 
be introduced by multi-level decomposition. 

To improve the precision of the signal decomposition, we propose a dynamic wavelet basis selection 
strategy. From a candidate set of 28 functions (covering Haar, Daubechies, Symlets, and Coiflets 
families), this strategy selects the optimal basis function for each signal by minimizing the Root Mean 
Square Error (RMSE) between the original and reconstructed signals, as shown in Equation (1). 
Experimental results identified Symlets3 (sym3) as the optimal basis for the temperature signal and 
Coiflets2 (coif2) for the humidity signal. 

 Wavelet arg min RMSE( , )
optimal original reconstructedwavelet Ω

=
∈

x x  (1) 

The high-frequency detail coefficients cD₁ obtained from the decomposition are first denoised using 
a soft-thresholding method. The threshold T is dynamically determined by Equation (2), where the 
scaling factor λ is set to 0.02 (optimized via grid search).  

 1max( ), 0.02T cDλ λ= ⋅ =∣ ∣  (2) 

The denoised high-frequency coefficients, cDdenoised, are calculated using Equation (3).  

 
denoised 1 1

sign( ) max( , 0)cD cD cD T= ⋅ −∣ ∣  (3) 

Subsequently, to emphasize the impact of abrupt events like loading and unloading, we apply a 30x 
linear enhancement to the denoised high-frequency coefficients to obtain cDenhanced(Equation 4).  

 , 30enhanced denoisedcD cDα α= ⋅ =  (4) 

Finally, the preserved original low-frequency approximation coefficients, cA₁, are combined with the 
enhanced high-frequency components, cDenhanced, and reconstructed via an inverse wavelet transform to 
produce the final enhanced signal, xreconstructed(Equation 5). This is then merged with the original signal to 
form the multimodal input features (Equation 6). 

 1([ , ], wavelet)reconstructed 1 enhancedx W cA cD−=  (5) 

 temp humi temp_rec humi_recInput [ , , , ]= x x x x  (6) 

4. Experiments and Results 

4.1. Experimental Setup 

Dataset and Preprocessing: The dataset used in this study was generated by simulating the 
temperature and humidity of an autumn transportation route from the Northeast to the Yangtze River 
Delta in an artificial climate chamber, with a sampling frequency of every two minutes. After cleaning 
and Min-Max normalization, the data was split into training, validation, and test sets with a 7:1:2 ratio. 

Baselines and Parameters: To validate performance, we compared our method against several 
baselines: Transformer[4], Informer[5], DLinear[10], TimeMixer[11], PatchTST[6], and our base model, 
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iTransformer[7]. For fairness, all models were trained with a unified parameter configuration: an input 
sequence length of 48 and an output of 12; a hidden dimension (d_model) of 512 with 8 attention heads 
(n_heads); and 2 encoder layers with 1 decoder layer. The feed-forward network (FFN) dimension was 
2048 with a dropout rate of 0.1. Models were optimized using Adam with the GeLU activation function, 
a batch size of 32, and an early stopping mechanism with a patience of 10. Detailed hardware 
configurations are shown in Table 1. 

Table 1: Experimental environment configuration. 

Environment Information Specific Configuration 
Operating System Windows 10 

 Development Language Python 3.8.20 
Deep Learning Framework PyTorch 2.0.1 + CUDA 11.8 

 CPU Intel(R) Core(TM) i7-8700@3.20GHz 
GPU  NVIDIA GeForce RTX 2070 

Memory (RAM) 16GB  
Evaluation Metrics: We evaluate model performance using two complementary metrics. Mean 

Squared Error (MSE), defined in Equation (7), is more sensitive to large errors, making it suitable for 
assessing prediction accuracy on abrupt events. Mean Absolute Error (MAE), defined in Equation (8), 
focuses more on overall stability and is used to measure performance in forecasting long-term trends. 

In these equations, yi is the true value, ŷi is the predicted value, and N is the total number of samples. 

 2

1

)ˆ1 (
N

i i
i

MSE y y
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= −∑  (7) 
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MAE y y
N =
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4.2. Experimental Results and Analysis 

The predictive performance of our proposed method and the baselines was evaluated on the simulated 
dataset, with the results summarized in Table 2. Our method achieves state-of-the-art performance, 
reaching an MSE of 0.231 and an MAE of 0.233. This represents a significant improvement over the 
baseline iTransformer (3.0% and 1.7% reductions in MSE and MAE, respectively) and substantially 
outperforms all other models. 

Table 2: Comparison results of the predictive performance of different models 

Model  MSE  MAE  
Transformer 0.673 0.626 

Informer 1.162 0.803 
DLinear 0.309 0.313 

TimeMixer 0.254 0.251 
PatchTST 0.240 0.236 

iTransformer 0.238 0.237 
Wavelet transform + iTransformer 0.231 0.233 

Further analysis reveals clear performance tiers. Traditional models like Transformer and Informer 
perform poorly (MSE > 0.6), struggling with the non-stationary signals due to their mixed-encoding 
schemes and insensitivity to abrupt events. While more recent models like DLinear, TimeMixer, and 
PatchTST show considerable improvement through innovative architectures, they still lack the sensitivity 
to fully capture sharp local fluctuations, resulting in larger local errors. 

The superiority of our method stems from the synergistic effect of its two core components. The 
baseline iTransformer already demonstrates strong performance (MSE=0.238), leveraging its 
independent variable encoding. Our key advantage lies in the wavelet pre-processing, which enhances 
the critical fluctuation details in the input features. This allows the iTransformer to more accurately model 
both the abrupt changes and long-term trends inherent in the transportation environment. 

To more intuitively compare the prediction effects of the baseline iTransformer model and the method 
proposed in this paper, we provide visual comparison charts of the true and predicted values for a subset 
of sample points, as shown in Figures 3, 4, 5, and 6. Figures 3 and 4 show the prediction effects of the 

https://www.google.com/url?sa=E&q=mailto:i7-8700@3.20GHz
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baseline iTransformer model, while Figures 5 and 6 show the effects of the proposed Wavelet Transform 
+ iTransformer model. Overall, both models can accurately capture the general trends of the temperature 
and humidity signals, and their overall predictive performances are relatively close. 

 
Figure 3: Temperature comparison chart predicted by iTransformer. 

 
Figure 4: Humidity comparison chart predicted by iTransformer. 

 
Figure 5: Temperature comparison chart predicted by wavelet transform +iTransformer. 

 
Figure 6: Humidity comparison chart predicted by wavelet transform +iTransformer. 
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However, a more detailed observation of the figures reveals that the Wavelet Transform + 
iTransformer model demonstrates higher sensitivity and better predictive performance when forecasting 
local sharp fluctuations or abrupt events in the temperature and humidity signals. Taking the abrupt 
fluctuation region around the 26,000th sample point of the temperature signal as an example, the baseline 
iTransformer model exhibits a noticeable error in its prediction of this fluctuation. In contrast, 
the Wavelet Transform + iTransformer model is able to more accurately follow the trend of the actual 
temperature changes, as shown in Figures 7. 

     
Figure 7: Local temperature comparison. 

Furthermore, a similar situation is observed in the prediction of the humidity signal. Taking the region 
around the 28,000th sample point of the humidity signal as an example, the prediction curve of the 
baseline iTransformer model exhibits considerable volatility and deviates significantly from the true 
values in some periods. In contrast, the prediction curve of the Wavelet Transform + iTransformer model 
as a whole aligns more closely with the fluctuation trend of the actual signal.as shown in Figures 8. 

    
Figure 8: Local humidity comparison. 

In summary, based on both the overall performance metrics and the visual comparison of the 
prediction curves, the proposed "Wavelet Feature Enhancement + iTransformer Model" not only 
significantly outperforms traditional time-series forecasting models in overall performance but also 
demonstrates a more pronounced predictive advantage compared to using the advanced Transformer 
variant alone. This confirms the innovativeness and effectiveness of the method presented in this paper. 

5. Conclusion 

This paper introduces a novel prediction model that fuses dynamic wavelet transform with 
iTransformer, effectively solving the challenge of non-stationary temperature and humidity forecasting 
in cross-ecological zone grain transportation. By employing an adaptive wavelet module to denoise 
signals and enhance key fluctuation features, combined with the independent variable encoding 
mechanism of iTransformer, our model achieves a precise capture of complex time-series signals. On the 
simulated Northeast-to-Yangtze-River-Delta transportation dataset, our method achieves State-of-the-Art 
(SOTA) performance (MSE=0.231, MAE=0.233), significantly outperforming a range of mainstream 
baselines, including Transformer and Informer. This research confirms the innovativeness and 
effectiveness of the proposed fusion framework, establishing a new technical pathway for precise grain 

(a) iTransformer (b) wavelet transform +iTransformer 

(a) iTransformer (b) wavelet transform +iTransformer 
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quality regulation in complex environments and offering a valuable reference for integrating signal 
processing with advanced Transformer architectures in time-series forecasting. 

While the proposed method has demonstrated excellent performance, future work can be extended in 
the following directions: (1) Optimizing the dynamic wavelet basis function selection strategy to further 
enhance the model's adaptability; (2) Incorporating multi-source heterogeneous data, such as grain type, 
packaging materials, and weather factors, to explore a more comprehensive set of influencing factors; 
and (3) Conducting on-site validation in real-world transportation scenarios to further test and improve 
the model's generalization and practical value. 
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