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Abstract: Early diagnosis of skin cancer is crucial for improving patient survival rates. Existing deep
learning-based classification models predominantly employ fixed, static attention mechanisms, which
struggle to adaptively capture subtle features of lesions that vary in scale and morphology. This study
proposes a dynamic attention network based on deep reinforcement learning (ResNetRL), aiming to
enhance the model’s classification performance for melanoma by dynamically regulating multi-scale
attention weights in real-time. We embed Dual-Scale Attention Modules (DAS) into the four stages of
ResNet50, where the scaling factors for channel attention and spatial attention are dynamically adjusted
by the DDPG (Deep Deterministic Policy Gradient) algorithm. A hybrid reward function is innovatively
designed, incorporating three metrics: classification accuracy, loss trend, and lesion region stability.
Evaluated on the ISIC skin cancer datasets (ISIC 2017 and ISIC 2019), the proposed method achieves
classification accuracies of 89.81%, 88.83%, and 91.38%, respectively. This study validates the
effectiveness of dynamic attention mechanisms in medical image analysis and provides a novel research
approach and methodology for the field.

Keywords: Melanoma Classification, Residual Network; Dynamic Attention;, Deep Reinforcement
Learning; DDPG

1. Introduction

Melanoma, as the most aggressive type of skin malignancy, requires accurate early classification to
significantly improve patient survival rates. However, traditional diagnostic methods heavily rely on
physicians’ subjective experience, leading to inefficiencies and high rates of misdiagnosis. Data from the
International Skin Imaging Collaboration (ISIC) challenge indicates that even the optimal models achieve
an average precision (AP) of only 0.691, highlighting the limitations of existing approaches [1]. Within
dermatology, the manual diagnosis of melanoma remains a highly challenging task[2].In recent years,
deep learning techniques have made significant progress in the field of medical image analysis [3]. Yu et
al. [4]achieved a breakthrough in melanoma classification by improving the GoogLeNet architecture and
proposing a method based on the feature encoding of local image patches. However, existing methods
still face two key challenges: on one hand, merely increasing network depth can lead to gradient
vanishing and training difficulties; on the other hand, traditional Convolutional Neural Networks (CNNs)
struggle to effectively capture the subtle feature differences of melanoma, such as irregular borders and
heterogeneous pigment distribution [5].Zhang et al.[6] designed a deep convolutional neural network
model integrating attention mechanisms with residual learning for the automatic classification of skin
melanoma. The core architecture of this network includes: multiple stacked attention residual blocks,
which enhance the extraction of key features via the attention mechanism; a global average pooling layer
to reduce feature dimensionality while preserving spatial information; and a fully connected classification
layer for the final lesion classification output. By combining attention mechanisms with residual
connections, this model effectively improved the accuracy of melanoma classification.

The main contributions of this paper include:

(1) Proposed an innovative dynamic attention learning paradigm addressing the limitations of existing
static attention mechanisms in medical image classification, which struggle to adaptively capture multi-
scale and morphologically varying lesion features, this study for the first time deeply integrates deep
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reinforcement learning with a dynamic attention mechanism, constructing a novel network framework
named ResNetRL.

(2) Designed and implemented a dynamically adjustable dual-scale attention module. A self-
developed dual-scale attention module is embedded into the four feature stages of the ResNet50 backbone
network. This module not only integrates channel and spatial attention but also innovatively introduces
scaling fac- tors dynamically adjusted by a reinforcement learning agent, enabling adaptive optimization
of attention intensity.

(3) Constructed an end-to-end reinforcement learning control system based on DDPG.A complete
stateaction-reward interaction framework is designed.

2. Related Work
2.1 ResNet Network Model
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Figure 1: Residual Module

ResNet (Residual Network) addresses the issues of gradient vanishing and gradient explosion in deep
network training through the introduction of residual learning. Its core component is the residual block,
which employs “skip connections” to add the input to the output, mathematically expressed as y = f(x) +
x. This design allows gradients to propagate directly through the shortcut connections, effectively
alleviating gradient problems and ensuring that performance does not degrade as network depth
increases. When the input and output dimensions do not match, a 1x1 convolutional layer is used to
adjust the dimensions to ensure correct addition. The basic structure of the residual module is shown in
Figure 1.

The residual module illustrated in Figure 1(b) adopts a three-layer convolutional structure, which
differs from the traditional two-layer design. Specifically, a 1x1 convolutional layer is introduced,
primarily serving to reduce the computational load of the residual module. This design not only optimizes
computational efficiency but also maintains the network’s depth and performance. Due to the existence
of residual structures, ResNet can be designed with considerable depth without encountering gradient
vanishing or explosion issues. This deep architecture enables ResNet to excel in handling complex image
classification tasks, allowing it to learn richer feature representations.

2.2 Attention Mechanism

Attention Mechanism[7]is a computational technique that mimics the human cognitive focusing
process by dynamically assigning weights to highlight critical information in the input data. Its core
principle involves calculating the correlation between features, enabling the model to adaptively
concentrate on task- relevant portions. Initially achieving breakthroughs in natural language processing
(e.g., Transformer), this mechanism is now widely applied in fields such as computer vision and medical
image analysis. Its advantages lie in enhancing model interpretability while improving the ability to
capture long-range dependencies or subtle features. Channel Attention is an important form of attention
mechanism, designed to allow networks to automatically learn the importance of each feature channel,
thereby enhancing crucial channels and suppressing the influence of irrelevant or noisy channels. In
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convolutional neural networks, feature maps consist of multiple channels, each corresponding to different
features (e.g., edges, textures, etc.). The goal of channel attention is to dynamically adjust channel
weights, enabling the network to focus on task-relevant features and reduce redundant information.
SENet [8] is the most classic implementation method for channel attention. Its structure comprises two
steps: Squeeze and Excitation. Squeeze: Compresses each channel to produce a channel descriptor vector.

1 ..
Ze = oxw ?:1 Z}{Vzlxc(l']) (1)

Among them:x c(i,j) is the activation value of the c-th channel at position (i, j),HxW is the spatial
size of the feature map. The operation produces a channel descriptor z € R¢ (where C is the total number
of channels).The excitation step learns inter- channel relationships through a fully connected layer
followed by a non-linear activation, generating a channel-wise weight vector s defined as:

s=o(W, s(W; - 2)) )

Where z denotes the channel descriptor vector obtained from the squeeze operation.W; and W, represent
the weights of two fully connected layers, forming a bottleneck structure to capture non-linear inter-
channel dependencies.dand o refer to the ReLU and Sigmoid activation functions, respectively. The
resulting weight vector s is employed to recalibrate the importance of each feature channel.

The learned weights are multiplied channel-wise with the original feature maps to obtain enhanced
features. The spatial attention mechanism is a type of attention mechanism focused on the spatial
dimensions of feature maps. By assigning attention weights to each position in the feature map, it
enhances critical information and suppresses redundant information, thereby improving the model’s
ability to perceive important features. It can be implemented in various ways, such as channel-weighted
averaging, combining max pooling and average pooling, or dynamic attention based on convolution. The
spatial attention mechanism performs well in tasks such as image classification, object detection, and
image segmentation, significantly improving model performance and robustness while enhancing
interpretability.

2.3 Deep Reinforcement Learning

Reinforcement Learning (RL) is a crucial paradigm in machine learning [9], focusing on how an
agent[10] learns an optimal policy through continuous interaction with its environment to maximize
cumulative rewards. Its core principle is trial-and-error learning: based on the environmental state, the
agent selects an action, receives immediate reward feedback, and through continuous exploration and
exploitation, gradually optimizes its policy to achieve long-term objectives [11]. Due to its capability to
address sequential decision-making problems, reinforcement learning is regarded as one of the key
pathways toward achieving general artificial intelligence. The interactive model of this process is
illustrated in the figure, reflecting the dynamic cyclical relationship among state, action, reward, and
policy. Deep Reinforcement Learning (DRL) effectively addresses the challenges of discretization and
combinatorial explosion faced by traditional methods in high-dimensional continuous state and action
spaces by introducing deep neural networks as function approximators within the traditional
reinforcement learning framework. Its core innovation lies in: the policy network directly maps high-
dimensional states into a probability distribution of actions or continuous parametric outputs; the value
network enables accurate evaluation of arbitrary state-action pairs. By integrating the representational
power of deep learning [12] with the sequential decision-making mechanism of reinforcement learning,
deep reinforcement learning can jointly update policies and value functions using gradient optimization
methods (such as Deep Q- Networks and their extensions). This approach demonstrates robust learning
capabilities across a variety of complex tasks, ranging from video games to robotic control.

3. Methods
3.1 Overall Model Architecture

In the task of melanoma image classification, this study adopts ResNet50 as the backbone network
and introduces improvements upon it. ResNet50 consists of four convolutional stages, comprising 3, 4,
6, and 3 residual blocks, respectively. When the input image size is 224x224 pixels, the output feature
maps from each stage have dimensions of 56x56,28x28,14x14,and 7x7 sequentially. This hierarchical
downsampling structure facilitates the extraction of multi-scale lesion features. The specific architectural
parameters of the ResNet50 network are detailed in table 1.
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Table 1: ResNet Module Architecture

Block Output Size Layer Details
[1x1,64
Conv Block 1 56x56 3x3,64
1x1,256]1%3
[1x1,128
Conv Block 2 28x28 3x3,128
1x1,512]1%x4
[1x1,256
Conv Block 3 14x14 3x3,256
1x1,1024]1x%6
[1x1,512
Conv Block 4 7x7 3x3,512
1x1,2048]1x%3

The overall architecture of the model proposed in this paper is based on a pre-trained ResNet50 as
the backbone network. The convolutional layers, batch normalization layers, activation layers, and max
pooling layers of the original ResNet50 constitute the front-end feature extractor. At the output ends of
its four core residual blocks (layerl to layer4), we have inserted DAS modules respectively. These
modules integrate channel attention and spatial attention mechanisms, with their attention weights
dynamically adjusted through reinforcement learning, thereby adaptively enhancing the multi-scale
features extracted at each stage. Finally, the enhanced features are aggregated via a global average
pooling layer and mapped to the target class space by a fully connected classification layer, completing
the binary classification task for melanoma. The model structure is shown in Figure 2:

staget
56*56

stage2
28*28

Channel
Attention

stage3
14*14

Spatial
Attention

DAS
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Figure 2: Model Architecture
3.2 DAS Module

The DAS module proposed in this study integrates channel attention and spatial attention, and
innovatively introduces dual-scale scaling parameters dynamically regulated by a reinforcement learning
agent. The module consists of two core components: a channel attention sub-module based on the
Squeeze-and-Excitation structure, and a spatial attention sub-module based on spatial pooling fusion.
Both sub-modules employ residual connection designs, and their respective enhancement processes can
be expressed as fol- lows:

Xehannel = X X (1 + channel_att X channel_scale) 3)
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Xpatial = X X (1 + spatial_att X spatial_scale) “)

Where channel att and spatial att represent the channel and spatial attention weights, respectively.
channel scale and spatial scale are learnable scaling factors constrained by the tanh activation
function[13]. These two scaling factors are initialized with a distribution of (-0.5, 0.5) and are not updated
through conventional backpropagation during training. Instead, they are dynamically adjusted by the
action vectors generated by the DDPG algorithm, enabling adaptive optimization of the attention
mechanism’s intensity.

3.3 DDPG Dynamic Regulation Mechanism

To dynamically optimize the scaling parameters within the DAS module, this study designs a
reinforcement learning framework based on the Deep Deterministic Policy Gradient (DDPG) algorithm
[14]. Through continuous interaction between the agent and the training environment, this framework
achieves fine-grained regulation of eight scaling factors (corresponding to four DAS modules).

State Representation: The state observed by the agent is a 20-dimensional vector, comprising four
components:(1) Model performance metrics: sliding window accuracy and loss calculated based on a
100- sample window; (2) Training progress information: the proportion of completed epochs and batches;
(3) Attention parameters: the current values of the eight scaling factors from the four DAS modules; (4)
Trend indicators: the most recent four change trend values for accuracy and loss. Action Space and
Network Output: The action space is designed as an 8-dimensional continuous vector, where each
dimension corresponds to an adjustment command for a scaling factor. This action vector is generated
by the Actor policy network. The Actor network takes the 20-dimensional state as input, processes it
through a shared feature extractor consisting of two fully connected layers (each with 128 neurons and
using the ReLU activation function), and finally generates raw action values via a linear output layer. To
ensure the numerical range of the output actions is controllable, a tanh activation function is applied after
this output layer, constraining each dimension’s action value to the interval -1,1. Positive values indicate
a recommendation to enhance the corresponding scaling factor, while negative values suggest
suppression. These values directly correspond to the adjustment direction and magnitude for each scaling
factor. Parameter Update Strategy: When executing actions, a fine-grained incremental update strategy
is employed:

scalePnew = clip(scale(i)old +oa- ag), - 0.5, 0.5) %)

Where,ag)is the i-th dimensional component of the action at, alpha = 0.0001 is the fine-tuning
coefficient. This design ensures the smoothness of parameter variations and prevents training
instability. Function clip(:, —0.5,0.5)constrains the final value of the scaling factor to the hard limit of [-
0.5, 0.5], preventing it from excessively deviating from the initial distribution. Reward Function: A multi-
objective hybrid reward function is designed, comprehensively considering immediate performance,
long-term optimization, and training stability:

Rt = Wi Rimmediale +w; - Rdiscounted +ws - Rlong—lerm

—AY, | scale | +Ryend ©)

Specifically, the immediate reward encourages an increase in accuracy (weight 1.2) and a decrease in
loss (weight 0.1) for the current batch. The discounted reward applies a discount factor (gamma = 0.99)
to future rewards, encouraging the agent to plan for long-term benefits. The long-term breakthrough
reward is dynamically weighted and granted when model performance surpasses the historical best, based
on the extent of improvement; Parameter Stability Penalty(—A};|{scale}|)A stability penalty term with
lambda = 0.1 is applied to suppress severe parameter fluctuations; the trend reward additionally
encourages sustained improvement in the trends of both accuracy and loss.

Network Architecture and Training Strategy: A standard Actor-Critic architecture is adopted, where
both the Actor and Critic networks consist of two fully connected layers with 128 dimensions each [15].
Experience replay employs a prioritized mechanism with a buffer capacity of 20,000, a priority exponent
alpha = 0.6, and an importance sampling exponent beta that gradually increases from 0.4 to 1.0. The
exploration strategy uses an epsilon-greedy approach, with epsilon decaying from 1.0 to 0.01 at a rate of
0.995. During training, attention parameters are updated every 5 batches, while the DDPG network is
updated per batch using 32 samples, achieving synergistic optimization between classification training
and reinforcement learning.
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4. Experiment
4.1 Experimental Setup and Data

The experiments in this study were conducted on a Windows 10 operating system, utilizing an
NVIDIA GeForce RTX 3060 GPU with 12GB of memory and 32GB of RAM. The datasets used in the
experiments are from the skin disease database provided by the International Skin Imaging Collaboration
(ISIC). The specific datasets used—the ISIC dataset, ISIC 2017, and ISIC 2019—are detailed in Table 2.

Table 2: Datasets

Dataset Isic Isic2017  Isic2019
Training Set Melanoma (Images) 438 348 3639
Training Set Non-Melanoma (Images) 1739 1652 16625
Test Set Melanoma (Images) 80 117 883
Test Set Non-Melanoma (Images) 136 438 4184

The data within each set can be classified into two major categories: melanoma and non-melanoma.
In the experiments, melanoma is designated as the positive class.

4.2 Data Preprocessing

To ensure the consistency and quality of the input data, this study systematically preprocesses the
image data. During preprocessing, all dermoscopic images are uniformly resized to 224x224 pixels to
meet the standard input requirements of the backbone network ResNet50. To enhance data diversity and
improve model generalization, random horizontal flips, brightness and contrast adjustments (£20%), and
translations of up to 10% are applied to augment the data. Subsequently, the images are converted into
PyTorch tensors and normalized to the [0, 1] range. Finally, standardization is performed using the mean
and standard deviation from the ImageNet dataset to make the input data distribution more suitable for
neural network training.

4.3 Algorithm Evaluation Metrics

This paper evaluates the classification results using Accuracy (ACC) and the Area Under the ROC
Curve (AUC), calculated as follows:

ACC = — PN )
TP+TN+FP+FN

AUC = [ TPR (FPR'I(u)) du (8)

Where: TP and FP represent True Positives and False Positives, respectively. TN and FN represent
True Negatives and False Negatives, respectively. A larger value for AUC and ACC indicates better
classification performance.

4.4 Analysis of Experimental Results

This model employs a transfer learning strategy for training, using a ResNet50 backbone pre-trained
on the ImageNet dataset. The top fully connected classification layer is replaced to adapt to the binary
classification task in this study. The main training hyperparameters are set as follows: the optimizer is
Adam with an initial learning rate of 0.001, the total number of training epochs is 100, and the batch size
is 32. To ensure reproducibility, the random seed is set to 42, and the cross-entropy loss function is used
as the loss function, which is suitable for multi-class classification tasks. To systematically validate the
effectiveness of the proposed dynamic attention mechanism, we designed multiple ablation experiments.
First, to investigate the impact of the attention module insertion position and multi-layer attention
combinations on performance, we inserted CBAM attention modules after different layers of ResNet50
and compared them with a baseline variant where CBAM was inserted after all four layers. Specifically,
CBAMX indicates that the CBAM module is inserted only after the x-th convolutional stage (layerx) of
ResNet50, while CBAM indicates that CBAM modules are inserted after all four stages. The
experimental results are shown in Table 3:
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Table 3: Experimental Results

Model Isic 2017 2019
acc auc acc auc acc auc

Resnet50 83.80 86.71 84.00 82.69 84.09 83.34
CBAM1 84.26 90.55 84.5 83.45 86.86 88.43
CBAM2 86.57 90.80 86.83 85.10 87.53 88.11
CBAM3 87.04 91.03 87.00 84.37 87.11 88.46
CBAM4 86.11 91.96 87.67 84.24 87.72 88.43
CBAM 87.04 91.44 87.33 83.73 88.36 88.46
Ours 89.81 92.38 88.83 88.73 91.38 91.81

The experimental results indicate that introducing CBAM attention modules at various layers of
ResNet50 consistently improves performance. All CBAM variants significantly outperform the original
ResNet50 baseline across major metrics, with particularly notable gains in AUC. However, analysis of
the impact of the attention module insertion position reveals that there is no universally optimal single
insertion layer.The optimal insertion strategy varies depending on the dataset and evaluation metric: on
the ISIC dataset, deep-layer insertion (CBAM4) performs best in capturing discriminative features,
achieving the highest AUC (91.96%); whereas on the ISIC 2019 dataset, the full-layer insertion strategy
(CBAM) yields the best overall performance (accuracy 88.36%, AUC 88.46%). This demonstrates that
while static attention mechanisms can provide performance gains, their effectiveness is highly dependent
on the tuning of insertion positions, and performance improvements have inherent limitations. The
ResNetRL model proposed in this study circumvents the cumbersome search for insertion strategies
through its innovative dynamic attention regulation mechanism. As shown in Table 3, this method
achieves leading performance across all six evaluation metrics on three datasets. To further validate the
general applicability of the proposed framework, we applied its core principles to various backbone
networks, including the lightweight ResNet18[16], the deeper ResNet101 [17], the cardinality-based
ResNeXt50[18], and the multi- scale feature-based Res2Net50. The experimental results show that our
method consistently outperforms its corresponding baseline models and the optimal CBAM variants on
each backbone network. This strongly demonstrates that our proposed approach is a universal, robust
dynamic attention enhancement framework whose effectiveness does not rely on specific network
architectures. It provides a widely applicable performance improvement solution for medical image
classification tasks. The experimental results are shown in Table 4:

Table 4: Results of Other Models

Model Isic 2017 2019

acc auc acc auc acc auc
Baseline 85.65 89.17 84.17 8515 8723  88.66

Resnet18 BestCBAM Variant 88.43  92.03 88.00 8752 88.83  90.15
Ours 91.2 93.43 89 87.54 9132  91.02

Baseline 85.19 86.3 82.83 76.16 87.41  88.25

ResNeXt50 BestCBAM Variant 89.81 8885 8583 8595 9055 9223
Ours 91.67 9149 8833 85588 91.2 93.02
Baseline 84.72 8891 84.5 84.6 86.86  87.27
Res2Net50 BestCBAM Variant 88.43 92.9 86.5 87.71  91.04 92.64
Ours 90.28 93.17 90.17 88.05 9134  92.80
Baseline 86.57 88.65 86.00 84.20 86.4 86.49
ResNet101 BestCBAM Variant 89.81 90.8. 87.5 87.04  90.17  90.69
Ours 90.28 89.41 89.67 87.12 91.02 91.83

5. Conclusion

To address the challenges of subtle lesion features and low classification accuracy in the binary
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classification task of melanoma images, this paper proposes a dynamic attention network based on deep
reinforcement learning (ResNetRL). By embedding dual-scale attention modules into the four stages of
ResNet50 and innovatively employing the DDPG algorithm to dynamically regulate the scaling factors
of channel and spatial attention, the model achieves adaptive enhancement of multi-scale features. The
reinforcement learning agent interacts with the environment to autonomously make decisions and
optimize the distribution of attention weights, while the dynamic attention mechanism effectively focuses
on critical lesion regions and suppresses irrelevant background interference. Experimental validation on
the ISIC series of datasets demonstrates that the proposed model outperforms traditional methods in
melanoma image classification, significantly improving classification accuracy. It is hoped that the
method proposed in this paper will provide new technical insights for the intelligent classification of
melanoma images and serve as a reference for the further application of dynamic structural learning in
the field of medical image analysis.
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