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Abstract: Early diagnosis of skin cancer is crucial for improving patient survival rates. Existing deep 
learning-based classification models predominantly employ fixed, static attention mechanisms, which 
struggle to adaptively capture subtle features of lesions that vary in scale and morphology. This study 
proposes a dynamic attention network based on deep reinforcement learning (ResNetRL), aiming to 
enhance the model’s classification performance for melanoma by dynamically regulating multi-scale 
attention weights in real-time. We embed Dual-Scale Attention Modules (DAS) into the four stages of 
ResNet50, where the scaling factors for channel attention and spatial attention are dynamically adjusted 
by the DDPG (Deep Deterministic Policy Gradient) algorithm. A hybrid reward function is innovatively 
designed, incorporating three metrics: classification accuracy, loss trend, and lesion region stability. 
Evaluated on the ISIC skin cancer datasets (ISIC 2017 and ISIC 2019), the proposed method achieves 
classification accuracies of 89.81%, 88.83%, and 91.38%, respectively. This study validates the 
effectiveness of dynamic attention mechanisms in medical image analysis and provides a novel research 
approach and methodology for the field. 

Keywords: Melanoma Classification; Residual Network; Dynamic Attention; Deep Reinforcement 
Learning; DDPG 

1. Introduction 

Melanoma, as the most aggressive type of skin malignancy, requires accurate early classification to 
significantly improve patient survival rates. However, traditional diagnostic methods heavily rely on 
physicians’ subjective experience, leading to inefficiencies and high rates of misdiagnosis. Data from the 
International Skin Imaging Collaboration (ISIC) challenge indicates that even the optimal models achieve 
an average precision (AP) of only 0.691, highlighting the limitations of existing approaches [1]. Within 
dermatology, the manual diagnosis of melanoma remains a highly challenging task[2].In recent years, 
deep learning techniques have made significant progress in the field of medical image analysis [3]. Yu et 
al. [4]achieved a breakthrough in melanoma classification by improving the GoogLeNet architecture and 
proposing a method based on the feature encoding of local image patches. However, existing methods 
still face two key challenges: on one hand, merely increasing network depth can lead to gradient 
vanishing and training difficulties; on the other hand, traditional Convolutional Neural Networks (CNNs) 
struggle to effectively capture the subtle feature differences of melanoma, such as irregular borders and 
heterogeneous pigment distribution [5].Zhang et al.[6] designed a deep convolutional neural network 
model integrating attention mechanisms with residual learning for the automatic classification of skin 
melanoma. The core architecture of this network includes: multiple stacked attention residual blocks, 
which enhance the extraction of key features via the attention mechanism; a global average pooling layer 
to reduce feature dimensionality while preserving spatial information; and a fully connected classification 
layer for the final lesion classification output. By combining attention mechanisms with residual 
connections, this model effectively improved the accuracy of melanoma classification. 

The main contributions of this paper include: 

(1) Proposed an innovative dynamic attention learning paradigm addressing the limitations of existing 
static attention mechanisms in medical image classification, which struggle to adaptively capture multi- 
scale and morphologically varying lesion features, this study for the first time deeply integrates deep 
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reinforcement learning with a dynamic attention mechanism, constructing a novel network framework 
named ResNetRL. 

(2) Designed and implemented a dynamically adjustable dual-scale attention module. A self-
developed dual-scale attention module is embedded into the four feature stages of the ResNet50 backbone 
network. This module not only integrates channel and spatial attention but also innovatively introduces 
scaling fac- tors dynamically adjusted by a reinforcement learning agent, enabling adaptive optimization 
of attention intensity. 

(3) Constructed an end-to-end reinforcement learning control system based on DDPG.A complete 
stateaction-reward interaction framework is designed. 

2. Related Work 

2.1 ResNet Network Model 

 
Figure 1: Residual Module 

ResNet (Residual Network) addresses the issues of gradient vanishing and gradient explosion in deep 
network training through the introduction of residual learning. Its core component is the residual block, 
which employs “skip connections” to add the input to the output, mathematically expressed as y = f(x) + 
x. This design allows gradients to propagate directly through the shortcut connections, effectively 
alleviating gradient problems and ensuring that performance does not degrade as network depth 
increases. When the input and output dimensions do not match, a 1×1 convolutional layer is used to 
adjust the dimensions to ensure correct addition. The basic structure of the residual module is shown in 
Figure 1.  

The residual module illustrated in Figure 1(b) adopts a three-layer convolutional structure, which 
differs from the traditional two-layer design. Specifically, a 1×1 convolutional layer is introduced, 
primarily serving to reduce the computational load of the residual module. This design not only optimizes 
computational efficiency but also maintains the network’s depth and performance. Due to the existence 
of residual structures, ResNet can be designed with considerable depth without encountering gradient 
vanishing or explosion issues. This deep architecture enables ResNet to excel in handling complex image 
classification tasks, allowing it to learn richer feature representations.  

2.2 Attention Mechanism 

Attention Mechanism[7]is a computational technique that mimics the human cognitive focusing 
process by dynamically assigning weights to highlight critical information in the input data. Its core 
principle involves calculating the correlation between features, enabling the model to adaptively 
concentrate on task- relevant portions. Initially achieving breakthroughs in natural language processing 
(e.g., Transformer), this mechanism is now widely applied in fields such as computer vision and medical 
image analysis. Its advantages lie in enhancing model interpretability while improving the ability to 
capture long-range dependencies or subtle features. Channel Attention is an important form of attention 
mechanism, designed to allow networks to automatically learn the importance of each feature channel, 
thereby enhancing crucial channels and suppressing the influence of irrelevant or noisy channels. In 
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convolutional neural networks, feature maps consist of multiple channels, each corresponding to different 
features (e.g., edges, textures, etc.). The goal of channel attention is to dynamically adjust channel 
weights, enabling the network to focus on task-relevant features and reduce redundant information. 
SENet [8] is the most classic implementation method for channel attention. Its structure comprises two 
steps: Squeeze and Excitation. Squeeze: Compresses each channel to produce a channel descriptor vector. 

                                                           𝑧𝑧𝑐𝑐 = 1
𝐻𝐻×𝑊𝑊

∑ ∑ 𝑥𝑥𝑐𝑐(𝑖𝑖, 𝑗𝑗)𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1                                                     (1) 

Among them:𝑥𝑥 c(i,j) is the activation value of the c-th channel at position (i, j),H×W is the spatial 
size of the feature map. The operation produces a channel descriptor 𝑧𝑧 ∈ ℝ𝐶𝐶 (where 𝐶𝐶 is the total number 
of channels).The excitation step learns inter- channel relationships through a fully connected layer 
followed by a non-linear activation, generating a channel-wise weight vector 𝑠𝑠 defined as: 

𝑠𝑠 = σ�𝑊𝑊2 ⋅ δ(𝑊𝑊1 ⋅ 𝑧𝑧)�                                                         (2) 

Where 𝑧𝑧 denotes the channel descriptor vector obtained from the squeeze operation.𝑊𝑊1 and 𝑊𝑊2 represent 
the weights of two fully connected layers, forming a bottleneck structure to capture non-linear inter-
channel dependencies.𝛿𝛿 and 𝜎𝜎  refer to the ReLU and Sigmoid activation functions, respectively. The 
resulting weight vector 𝑠𝑠 is employed to recalibrate the importance of each feature channel. 

The learned weights are multiplied channel-wise with the original feature maps to obtain enhanced 
features. The spatial attention mechanism is a type of attention mechanism focused on the spatial 
dimensions of feature maps. By assigning attention weights to each position in the feature map, it 
enhances critical information and suppresses redundant information, thereby improving the model’s 
ability to perceive important features. It can be implemented in various ways, such as channel-weighted 
averaging, combining max pooling and average pooling, or dynamic attention based on convolution. The 
spatial attention mechanism performs well in tasks such as image classification, object detection, and 
image segmentation, significantly improving model performance and robustness while enhancing 
interpretability. 

2.3 Deep Reinforcement Learning 

Reinforcement Learning (RL) is a crucial paradigm in machine learning [9], focusing on how an 
agent[10] learns an optimal policy through continuous interaction with its environment to maximize 
cumulative rewards. Its core principle is trial-and-error learning: based on the environmental state, the 
agent selects an action, receives immediate reward feedback, and through continuous exploration and 
exploitation, gradually optimizes its policy to achieve long-term objectives [11]. Due to its capability to 
address sequential decision-making problems, reinforcement learning is regarded as one of the key 
pathways toward achieving general artificial intelligence. The interactive model of this process is 
illustrated in the figure, reflecting the dynamic cyclical relationship among state, action, reward, and 
policy. Deep Reinforcement Learning (DRL) effectively addresses the challenges of discretization and 
combinatorial explosion faced by traditional methods in high-dimensional continuous state and action 
spaces by introducing deep neural networks as function approximators within the traditional 
reinforcement learning framework. Its core innovation lies in: the policy network directly maps high-
dimensional states into a probability distribution of actions or continuous parametric outputs; the value 
network enables accurate evaluation of arbitrary state-action pairs. By integrating the representational 
power of deep learning [12] with the sequential decision-making mechanism of reinforcement learning, 
deep reinforcement learning can jointly update policies and value functions using gradient optimization 
methods (such as Deep Q- Networks and their extensions). This approach demonstrates robust learning 
capabilities across a variety of complex tasks, ranging from video games to robotic control. 

3. Methods 

3.1 Overall Model Architecture 

In the task of melanoma image classification, this study adopts ResNet50 as the backbone network 
and introduces improvements upon it. ResNet50 consists of four convolutional stages, comprising 3, 4, 
6, and 3 residual blocks, respectively. When the input image size is 224×224 pixels, the output feature 
maps from each stage have dimensions of 56×56,28×28,14×14,and 7×7 sequentially. This hierarchical 
downsampling structure facilitates the extraction of multi-scale lesion features. The specific architectural 
parameters of the ResNet50 network are detailed in table 1. 
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Table 1: ResNet Module Architecture 
Block Output Size Layer Details 

Conv Block 1 56×56 

[ 1 × 1, 64 

  3 × 3, 64 

  1 × 1, 256 ] × 3 

Conv Block 2 28×28 

[ 1 × 1, 128 

  3 × 3, 128 

  1 × 1, 512 ] × 4 

Conv Block 3 14×14 

[ 1 × 1, 256 

  3 × 3, 256 

  1 × 1, 1024 ] × 6 

Conv Block 4 7×7 

[ 1 × 1, 512 

3 × 3, 512 

     1 × 1, 2048 ] × 3 

The overall architecture of the model proposed in this paper is based on a pre-trained ResNet50 as 
the backbone network. The convolutional layers, batch normalization layers, activation layers, and max 
pooling layers of the original ResNet50 constitute the front-end feature extractor. At the output ends of 
its four core residual blocks (layer1 to layer4), we have inserted DAS modules respectively. These 
modules integrate channel attention and spatial attention mechanisms, with their attention weights 
dynamically adjusted through reinforcement learning, thereby adaptively enhancing the multi-scale 
features extracted at each stage. Finally, the enhanced features are aggregated via a global average 
pooling layer and mapped to the target class space by a fully connected classification layer, completing 
the binary classification task for melanoma. The model structure is shown in Figure 2: 

 
Figure 2: Model Architecture 

3.2 DAS Module 

The DAS module proposed in this study integrates channel attention and spatial attention, and 
innovatively introduces dual-scale scaling parameters dynamically regulated by a reinforcement learning 
agent. The module consists of two core components: a channel attention sub-module based on the 
Squeeze-and-Excitation structure, and a spatial attention sub-module based on spatial pooling fusion. 
Both sub-modules employ residual connection designs, and their respective enhancement processes can 
be expressed as fol- lows: 

𝑥𝑥channel = 𝑥𝑥 × (1 + channel_att × channel_scale)                                      (3) 
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𝑥𝑥spatial = 𝑥𝑥 × (1 + spatial_att × spatial_scale)                                         (4) 

Where channel_att and spatial_att represent the channel and spatial attention weights, respectively. 
channel_scale and spatial_scale are learnable scaling factors constrained by the tanh activation 
function[13]. These two scaling factors are initialized with a distribution of (-0.5, 0.5) and are not updated 
through conventional backpropagation during training.  Instead, they are dynamically adjusted by the 
action vectors generated by the DDPG algorithm, enabling adaptive optimization of the attention 
mechanism’s intensity. 

3.3 DDPG Dynamic Regulation Mechanism 

To dynamically optimize the scaling parameters within the DAS module, this study designs a 
reinforcement learning framework based on the Deep Deterministic Policy Gradient (DDPG) algorithm 
[14]. Through continuous interaction between the agent and the training environment, this framework 
achieves fine-grained regulation of eight scaling factors (corresponding to four DAS modules). 

State Representation: The state observed by the agent is a 20-dimensional vector, comprising four 
components:(1) Model performance metrics: sliding window accuracy and loss calculated based on a 
100- sample window; (2) Training progress information: the proportion of completed epochs and batches; 
(3) Attention parameters: the current values of the eight scaling factors from the four DAS modules; (4) 
Trend indicators: the most recent four change trend values for accuracy and loss. Action Space and 
Network Output: The action space is designed as an 8-dimensional continuous vector, where each 
dimension corresponds to an adjustment command for a scaling factor. This action vector is generated 
by the Actor policy network. The Actor network takes the 20-dimensional state as input, processes it 
through a shared feature extractor consisting of two fully connected layers (each with 128 neurons and 
using the ReLU activation function), and finally generates raw action values via a linear output layer. To 
ensure the numerical range of the output actions is controllable, a tanh activation function is applied after 
this output layer, constraining each dimension’s action value to the interval -1,1. Positive values indicate 
a recommendation to enhance the corresponding scaling factor, while negative values suggest 
suppression. These values directly correspond to the adjustment direction and magnitude for each scaling 
factor. Parameter Update Strategy: When executing actions, a fine-grained incremental update strategy 
is employed: 

scale(i)new = clip�scale(𝑖𝑖)old + α ⋅ at
(i),   − 0.5,  0.5�                                   (5) 

Where,at
(i)is the i-th dimensional component of the action 𝑎𝑎 𝑡𝑡 ，alpha =  0.0001 is the fine-tuning 

coefficient. This design ensures the smoothness of parameter variations and prevents training 
instability.Function clip(⋅,−0.5,0.5)constrains the final value of the scaling factor to the hard limit of [-
0.5, 0.5], preventing it from excessively deviating from the initial distribution. Reward Function: A multi-
objective hybrid reward function is designed, comprehensively considering immediate performance, 
long-term optimization, and training stability: 

                   𝑅𝑅𝑡𝑡 = 𝑤𝑤1 ⋅ 𝑅𝑅immediate + 𝑤𝑤2 ⋅ 𝑅𝑅discounted + 𝑤𝑤3 ⋅ 𝑅𝑅long-term

−𝜆𝜆∑ ∣ scale ∣ +𝑅𝑅trend
                                   (6) 

Specifically, the immediate reward encourages an increase in accuracy (weight 1.2) and a decrease in 
loss (weight 0.1) for the current batch. The discounted reward applies a discount factor (gamma = 0.99) 
to future rewards, encouraging the agent to plan for long-term benefits. The long-term breakthrough 
reward is dynamically weighted and granted when model performance surpasses the historical best, based 
on the extent of improvement; Parameter Stability Penalty(−λ∑|{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}|)A stability penalty term with 
lambda = 0.1 is applied to suppress severe parameter fluctuations; the trend reward additionally 
encourages sustained improvement in the trends of both accuracy and loss. 

Network Architecture and Training Strategy: A standard Actor-Critic architecture is adopted, where 
both the Actor and Critic networks consist of two fully connected layers with 128 dimensions each [15]. 
Experience replay employs a prioritized mechanism with a buffer capacity of 20,000, a priority exponent 
alpha = 0.6, and an importance sampling exponent beta that gradually increases from 0.4 to 1.0. The 
exploration strategy uses an epsilon-greedy approach, with epsilon decaying from 1.0 to 0.01 at a rate of 
0.995. During training, attention parameters are updated every 5 batches, while the DDPG network is 
updated per batch using 32 samples, achieving synergistic optimization between classification training 
and reinforcement learning. 
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4. Experiment 

4.1 Experimental Setup and Data 

The experiments in this study were conducted on a Windows 10 operating system, utilizing an 
NVIDIA GeForce RTX 3060 GPU with 12GB of memory and 32GB of RAM. The datasets used in the 
experiments are from the skin disease database provided by the International Skin Imaging Collaboration 
(ISIC). The specific datasets used—the ISIC dataset, ISIC 2017, and ISIC 2019—are detailed in Table 2. 

Table 2: Datasets 

Dataset            Isic Isic2017 Isic2019 

Training Set Melanoma (Images) 438 348 3639 

Training Set Non-Melanoma (Images) 1739 1652 16625 

Test Set Melanoma (Images)                80 117 883 

Test Set Non-Melanoma (Images) 136 438 4184 

The data within each set can be classified into two major categories: melanoma and non-melanoma. 
In the experiments, melanoma is designated as the positive class. 

4.2 Data Preprocessing 

To ensure the consistency and quality of the input data, this study systematically preprocesses the 
image data. During preprocessing, all dermoscopic images are uniformly resized to 224×224 pixels to 
meet the standard input requirements of the backbone network ResNet50. To enhance data diversity and 
improve model generalization, random horizontal flips, brightness and contrast adjustments (±20%), and 
translations of up to 10% are applied to augment the data. Subsequently, the images are converted into 
PyTorch tensors and normalized to the [0, 1] range. Finally, standardization is performed using the mean 
and standard deviation from the ImageNet dataset to make the input data distribution more suitable for 
neural network training. 

4.3 Algorithm Evaluation Metrics 

This paper evaluates the classification results using Accuracy (ACC) and the Area Under the ROC 
Curve (AUC), calculated as follows: 

                                                 ACC = TP+TN
TP+TN+FP+FN

                                                             (7) 

AUC = ∫ TPR1
0 �FPR-1(𝑢𝑢)�  𝑑𝑑𝑑𝑑                                            (8) 

Where: TP and FP represent True Positives and False Positives, respectively. TN and FN represent 
True Negatives and False Negatives, respectively. A larger value for AUC and ACC indicates better 
classification performance. 

4.4 Analysis of Experimental Results 

This model employs a transfer learning strategy for training, using a ResNet50 backbone pre-trained 
on the ImageNet dataset. The top fully connected classification layer is replaced to adapt to the binary 
classification task in this study. The main training hyperparameters are set as follows: the optimizer is 
Adam with an initial learning rate of 0.001, the total number of training epochs is 100, and the batch size 
is 32. To ensure reproducibility, the random seed is set to 42, and the cross-entropy loss function is used 
as the loss function, which is suitable for multi-class classification tasks. To systematically validate the 
effectiveness of the proposed dynamic attention mechanism, we designed multiple ablation experiments. 
First, to investigate the impact of the attention module insertion position and multi-layer attention 
combinations on performance, we inserted CBAM attention modules after different layers of ResNet50 
and compared them with a baseline variant where CBAM was inserted after all four layers. Specifically, 
CBAMx indicates that the CBAM module is inserted only after the x-th convolutional stage (layerx) of 
ResNet50, while CBAM indicates that CBAM modules are inserted after all four stages. The 
experimental results are shown in Table 3: 
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Table 3: Experimental Results 

Model Isic 2017 2019 

 acc auc acc auc acc auc 

Resnet50 83.80 86.71 84.00 82.69 84.09 83.34 

CBAM1 84.26 90.55 84.5 83.45 86.86 88.43 

CBAM2 86.57 90.80 86.83 85.10 87.53 88.11 

CBAM3 87.04 91.03 87.00 84.37 87.11 88.46 

CBAM4 86.11 91.96 87.67 84.24 87.72 88.43 

CBAM 87.04 91.44 87.33 83.73 88.36 88.46 

Ours 89.81 92.38 88.83 88.73 91.38 91.81 

The experimental results indicate that introducing CBAM attention modules at various layers of 
ResNet50 consistently improves performance. All CBAM variants significantly outperform the original 
ResNet50 baseline across major metrics, with particularly notable gains in AUC. However, analysis of 
the impact of the attention module insertion position reveals that there is no universally optimal single 
insertion layer.The optimal insertion strategy varies depending on the dataset and evaluation metric: on 
the ISIC dataset, deep-layer insertion (CBAM4) performs best in capturing discriminative features, 
achieving the highest AUC (91.96%); whereas on the ISIC 2019 dataset, the full-layer insertion strategy 
(CBAM) yields the best overall performance (accuracy 88.36%, AUC 88.46%). This demonstrates that 
while static attention mechanisms can provide performance gains, their effectiveness is highly dependent 
on the tuning of insertion positions, and performance improvements have inherent limitations. The 
ResNetRL model proposed in this study circumvents the cumbersome search for insertion strategies 
through its innovative dynamic attention regulation mechanism. As shown in Table 3, this method 
achieves leading performance across all six evaluation metrics on three datasets. To further validate the 
general applicability of the proposed framework, we applied its core principles to various backbone 
networks, including the lightweight ResNet18[16], the deeper ResNet101 [17], the cardinality-based 
ResNeXt50[18], and the multi- scale feature-based Res2Net50. The experimental results show that our 
method consistently outperforms its corresponding baseline models and the optimal CBAM variants on 
each backbone network. This strongly demonstrates that our proposed approach is a universal, robust 
dynamic attention enhancement framework whose effectiveness does not rely on specific network 
architectures. It provides a widely applicable performance improvement solution for medical image 
classification tasks. The experimental results are shown in Table 4: 

Table 4: Results of Other Models 

Model  Isic 2017 2019 

  acc auc acc auc acc auc 

 

Resnet18 

Baseline 85.65 89.17 84.17 85.15 87.23 88.66 

BestCBAMVariant 88.43 92.03 88.00 87.52 88.83 90.15 

Ours 91.2 93.43 89 87.54 91.32 91.02 

 

ResNeXt50 

Baseline 85.19 86.3 82.83 76.16 87.41 88.25 

BestCBAMVariant 89.81 88.85 85.83 85.95 90.55 92.23 

Ours 91.67 91.49 88.33 85.88 91.2 93.02 

 

Res2Net50 

Baseline 84.72 88.91 84.5 84.6 86.86 87.27 

BestCBAMVariant 88.43 92.9 86.5 87.71 91.04 92.64 

Ours 90.28 93.17 90.17 88.05 91.34 92.80 

 

ResNet101 

Baseline 86.57 88.65 86.00 84.20 86.4 86.49 

BestCBAMVariant 89.81 90.8. 87.5 87.04 90.17 90.69 

Ours 90.28 89.41 89.67 87.12 91.02 91.83 

5. Conclusion 

To address the challenges of subtle lesion features and low classification accuracy in the binary 
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classification task of melanoma images, this paper proposes a dynamic attention network based on deep 
reinforcement learning (ResNetRL). By embedding dual-scale attention modules into the four stages of 
ResNet50 and innovatively employing the DDPG algorithm to dynamically regulate the scaling factors 
of channel and spatial attention, the model achieves adaptive enhancement of multi-scale features. The 
reinforcement learning agent interacts with the environment to autonomously make decisions and 
optimize the distribution of attention weights, while the dynamic attention mechanism effectively focuses 
on critical lesion regions and suppresses irrelevant background interference. Experimental validation on 
the ISIC series of datasets demonstrates that the proposed model outperforms traditional methods in 
melanoma image classification, significantly improving classification accuracy. It is hoped that the 
method proposed in this paper will provide new technical insights for the intelligent classification of 
melanoma images and serve as a reference for the further application of dynamic structural learning in 
the field of medical image analysis. 
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