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Abstract: This paper builds a decision model for intelligent networked vehicles (ICV) lane changing 
behavior based on the idea of game theory. Focusing on the complex traffic conditions of three-lane 
highway with multi-vehicle interaction and competition, we solve the ICV lane change decision problem 
by pairing ICVs two by two, formulating a multi-group game and comparing the game gain results to 
find the best. Based on Time-to-Collision (TTC), we design the payoff function of this decision model 
game so that the game results in a pure strategy Nash equilibrium (PSNE), and obtain the unique optimal 
lane change decision for a given state by designing the objective function of the lane change game. The 
joint simulation by PreScan/Simulink/CarSim software verifies the rationality of the payoff function and 
the validity and applicability of the lane-changing model. 
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1. Introduction 

The continuous development of Telematics and Vehicle-Circuit Collaboration (VCC) technology 
makes real-time information exchange and cooperative control between vehicles possible [1]. Compared 
with self-driving cars, intelligent networked vehicles can exchange their own state with the surrounding 
vehicles and release their driving intentions in real time, which greatly reduces their perception and 
reaction time. The information exchange and collaboration between intelligent networked vehicles can 
improve the efficiency of lane changing and avoid the occurrence of collisions. 

Lane-changing behavior is the basic behavior of the vehicle driving process, the vehicle needs to 
obtain a better driving environment in the driving process to produce the intention of lane-changing and 
thus lane-changing, according to the vehicle's motivation to lane-changing behavior is divided into free 
lane-changing and forced lane-changing[2]. 

In this paper, a new free lane-changing decision-making scheme is proposed based on game-theoretic 
ideas by focusing on the complex traffic conditions of highway three-lane multi-vehicle interaction 
competition with intelligent networked vehicles as the carrier. Different from the computationally 
complex multi-vehicle game lane-changing decision-making scheme in the current literature, without 
affecting the reliability of the solution, this paper disassembles the multi-vehicle game into several sets 
of two-two pairwise games, and aims at the pure-strategy Nash equilibrium solution, designs a 
computationally simple and fast decision-making payoff function algorithm that effectively reduces the 
computational burden of the on-vehicle computer, and puts forward a method for quickly determining 
the optimal decision from the solutions to multiple games, avoiding the computation of the optimal 
decision, and avoiding the computation of the optimal decision. A method to determine the optimal 
decision from multiple game solutions is proposed, which avoids the computationally complex n-
dimensional game solutions. Considering the unexpected conditions that may occur in the actual driving 
environment, the decision model is allowed to reconsider its decision by repeating the game with the 
newly collected real-time vehicle data exchanged between intelligent networked vehicles at a certain 
time period, in order to cope with the unexpected conditions and to improve the applicability of the lane-
changing decision model. 

2. Game Theory 

Game theory is a mathematical mathematical theory and methodology for studying optimal decision 
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making in the interaction of rational intelligences. The goal of a participant in a game is to obtain the 
highest possible payoff by choosing an appropriate strategy, taking into account that all other participants 
will also try to maximize their own payoffs. 

The game payoffs are represented by a payoff matrix, as shown in Figure 1. The game has two 
participants A and B, each with two different strategies. Participant A can execute either U or D. 
Participant B can execute either L or R. Participants A and B will receive gains aij and bij(i=1,2; j=1,2) 
for a particular combination of strategies. 

 
Figure 1: Game payoff matrix. 

The set of strategies available to participant i is denoted as Ai={s1 
i ,…,sn 

i }, where sj 
i  denotes the jth 

strategy available to player i[3]. The symbol si is used to denote the strategy of participant i. The symbol 
s-i is used to denote the strategies adopted by all other players except participant i, i.e., s-i = {s1, ..., si-1, 
si+1, ..., sN}. 

The gain that participant i obtains in the game is denoted as Ji (s) = Ji (si, s-i). Define strategy s* 
i as the 

best strategy of participant i for a given combination of strategies s-i, and the gain of participant i under 
the best strategy Ji (s* 

i , s-i) ≥ Ji (si, s-i). A pure strategy Nash equilibrium (PSNE) is said to be achieved in 
the game if all participants make the best strategy for each other, i.e., all participants choose strategies s
* 
i ,  s* 

-isuch that inequality (1)(2) holds.  

Ji(s* 
i , s* 

-i)≥Ji(si, s* 
-i)                            (1) 

Ji(s* 
i , s* 

-i)≥Ji(s* 
i , s-i)                            (2) 

When participants are in NE, no participant can unilaterally change his or her strategy to increase his 
or her payoff, and NE results in maximizing the payoffs of the game to each other. 

3. Game Formulation For Highway Lane-Changing 

3.1. Lane-Changing State Variables 

Vehicle (E) is traveling on a multi-lane highway shared by several other vehicles as shown in Figure 
2. The vehicles around E are denoted as left-back (LB), right-back (RB), and center-front (MF) vehicles. 
The state variables are defined as the longitudinal distance d and speed v of each vehicle with respect to 
E. The symbol di is used to denote the longitudinal distance between E and vehicle i, where i∈{MF, LB, 
RB}. vi denotes the speed of vehicle i, where i∈{E, MF, LB, RB}. 

 
Figure 2: Lane-changing scenario in a multi-lane highway 

For this particular scenario, there are three participants making decisions, namely E, LB, and RB. The 
car in front of E is unlikely to respond to E's demand to change lanes. Thus, the set of participants in the 
game is N = {E, LB, RB}. 

E has three strategies, keeping the current lane (K), changing lanes to the left (L) and changing lanes 
to the right (R). Thus, AE = {K, L, R}.LB has two strategies, allowing lane change (Y) and disallowing 
lane change (N).RB has the same strategy as LB, i.e., ALB = ARB = {Y, N}. 
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3.2. Pairwise Games Formulation 

In existing studies, the three-vehicle game uses three-dimensional arrays as the payoff matrix, which 
is computationally complex. In this paper, the three-vehicle game is decomposed into two sets of two-
vehicle games to solve this problem, i.e., let E play with LB and RB respectively.E plays the first set of 
games with LB to decide whether it can change lanes to the left or not, and the corresponding payoff 
matrices are shown in Figure 3. At the same time, E plays the second set of games with RB to decide 
whether it can change lanes to the right, and the corresponding payoff matrix is shown in Figure 4. If the 
solution of both sets of games is that E keeps driving in the current lane, then this is the optimal strategy 
for E. If the solution of one and only one of the sets of games is to change lanes, then E changes lanes to 
the corresponding side; if the solution of both sets of games is that E changes lanes, then E changes lanes 
to the side with the higher payoff. The optimal strategy for E can be quickly derived by comparing the 
payoff values of the two sets of games. 

 
Figure 3: Game 1. E plays against LB only.      Figure 4: Game 2. E plays against RB only. 

3.3. Repeated Play with Changing Payoffs 

By appropriately designing the payoff function, the solution of the game generates optimal decisions 
in each given state. However, the state of vehicles in the highway lane changing game may change 
suddenly, so the optimal strategy at a given moment may not be optimal after some time. In order to cope 
with unexpected situations and avoid performing unsafe maneuvers, this paper designs a decision 
algorithm that allows E to repeat the game every 0.1 seconds, so that E can quickly reconsider the 
decisions made based on the most recently obtained data. 

4. Payoff Design 

4.1. Paper Times-to-Collision as Decision Variables 

The TTC between E and any other vehicle i is represented by Ti
[4-5]. 

MFE

MF
MF vv

T
−

=
d

                                                    (3) 

ELB

LB
LB vv

T
−

=
d

                                                    (4) 

Figure 5 shows the definition of collision times for E and other vehicles in the center and left lanes. 
Similarly, the same definition is given for E and right lane vehicles, which will not be repeated in this 
paper. 

 
Figure 5: Definition of variables for the agents payoff. 

In addition to TTC, define TH as the lane change time of a human-driven car on a highway, and 
according to the literature[6], TH = 5.6s is selected. 
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Define TC 
LB as the time when LB overtakes E, LBl as the length of LB and El as the length of E. 

ELB

ELBMFC
LB vv

llT
−

++
=

d
                                               (5) 

Define TI 
MF as the impending collision time (ITTC) between E and the vehicle MF, i.e., the value that 

the TTC will have when E is traveling at its desired speed vE,d. 

MFdE

MFI
MF vv

T
−

=
,

d
                                                 (6) 

4.2. Payoffs for Lane-Changing Games 

Due to the symmetry of the two sets of games in Figures 4 and 5, the following focuses on the design 
of the game payoff function between E and LB. 

If TI 
MF<TH, E switches to the left, and if TH>TLB, E stays in the original lane; if TC 

LB<TH, E is not 
allowed to switch lanes, and if TLB>TH, E is allowed to switch lanes. Based on the above rule, define: 

)()(22 LBH
I

MFMF TTTTa −+−=                              (7) 

I
MFH TTaa −== 1211                                  (8) 

H
C

LB TTb −=11                                     (9) 

HLB TTbb −== 2212                                  (10) 

In any case, K/Y is an undesired outcome of the game, i.e., E's choice to keep the original lane strategy 
and LB's choice to allow a lane change is never an optimal strategy combination. Therefore, define: 

ε−= 1121 aa                                     (11) 

ε−= 1221 bb                                     (12) 

εis an arbitrary positive constant, andε= 1 is chosen in this paper. a21 and b21 are designed to prevent 
K/Y from being a Nash equilibrium of the game. Moreover, the design ensures that there must be a pure 
strategy Nash equilibrium (PSNE) in the game. 

4.3. Objective Function for Lane-Changing Games 

With the above payoff function, the PSNE in the game can be quickly found according to the 
following rules. 

1) When 12111222 , bbaa ≥≥ , PSNE is L/Y and K/N; 

2) When 12111222 , bbaa << , PSNE is L/N; 

3) when 12111222 , bbaa <≥ , PSNE is K/N; 

4) When 12111222 , bbaa ≥< , PSNE is L/Y. 

There are two PSNEs in Rule 1), and the lane-switching decision model requires that the final decision 
is uniquely determined. This problem is solved by designing the objective function. 

According to the definition of Nash equilibrium, when the participants are in NE, no participant can 
unilaterally change his/her strategy to increase his/her payoff.The outcome of NE is to maximize the 
payoffs of the game to each other. Based on this, define the objective function: 

)max( 111
ijijij baJ +=                               (13) 

1
ijJ denotes the maximum value of the sum of the gains of the E and LB games under the PSNE 
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strategy, and the lane-changing decision model selects the optimal strategy based on the solution of the 
objective function. Similarly, the game between E and RB also results in a solution of the objective 
function 2

ijJ . By comparing the solutions of the objective functions of the two sets of games in search of 
an optimal solution, the final lane-changing decision of E is arrived at, and then the vehicle E executes 
to carry out the corresponding lane-changing operation.  

5. Simulated Implementation 

Based on PreScan/Simulink/CarSim software, a joint simulation platform is constructed, and three 
working conditions are set up to simulate and verify the validity and applicability of the game lane-
changing decision-making model in different lane-changing scenarios. 

 
Figure 6: Three-lane highway scene. 

In a three-lane highway scenario, as shown in Figure 6, E is traveling in the middle lane (lane 2), and 
the vehicle ahead, MF, is traveling too slowly to meet E's speed expectation (in this simulation, the 
desired speed of the controlled vehicle E is set to be vE,d=110km/h), and E generates the motivation to 
change lanes.The parameter configuration of each vehicle is shown in Table 1. 

Table 1: Vehicle parameter configuration. 

Vehicle Lane Vehicle model Vehicle length (m) 
E 2 Audi_A8_Sedan 5.21 

MF 2 Fiat_Bravo_Hatchback 4.34 
LB 1 BMW_X5_SUV 4.79 
RB 3 Ford_Focus_Stationwagon 4.56 

Case 1: The initial information of the vehicle is shown in Table 2. 

Table 2: Initial vehicle information for Case 1. 

Case 1 E MF LB RB 
vi (km/h) 90 80 100 100 

di (m) 0 25 30 40 
Based on the initial state information of each vehicle in Table 2, the vehicle simulation test is launched, 

and the payoffs of vehicles is shown in tables 3 and 4. 

Table 3: The payoffs of Game 1 in Case 1. 

  LB 
E Y N 

L 2.602,8.788 2.602,5.191 
K 1.602,4.191 0.804,5.191 

Table 4: The payoffs of Game 2 in Case 1. 

  RB 
E Y N 

R 2.602,12.303 2.602,8.788 
K 1.602,7.788 -2.793,8.788 

From Table 3, the PSNE of Game 1 is L/Y and 1
11J =11.39, so the decision of vehicle E in Game 1 is 

to change lane to the left. From Table 4, the PSNE for Game 2 is R/Y and 2
22J =14.905, so the decision 

of vehicle E in Game 2 is to change lane to the right. Because of 1
11J < 2

22J , the final decision of the 
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game lane change decision model is for vehicle E to change lane to the right, and the system outputs the 
target lane 3 as shown in Figure 7. 

 
Figure 7: Target Lane for Vehicle E in Case 1. 

A comparison of the horizontal and longitudinal positions of vehicle E, LB and RB traveling is shown 
in Figure 8. As can be seen in Figure 8(a), Vehicle E received a decision command to change lanes to the 
right (lane 3) and then started the lane changing behavior to the right lane. Figure 8(b), it can be seen that 
E and LB always maintain a safe distance during the lane change and no collision occurs. 

 
(a) Horizontal position comparison.            (b) Longitudinal position comparison. 

Figure 8: Comparison of horizontal and longitudinal positions of vehicles in Case 1. 

Case 2: Increase the speed of vehicle RB from 100km/h to 120km/h, and keep the rest of the variables 
the same as case 1 to start the simulation.The payoffs of vehicles is shown in tables 5 and 6. 

Table 5: The payoffs of Game 1 in Case 2. 

  LB 
E Y N 

L 2.602,8.788 2.602,5.191 
K 1.602,4.191 0.804,5.191 

Table 6: The payoffs of Game 2 in Case 2. 

  RB 
E Y N 

R 2.602,0.375 2.602,-0.798 
K 1.602,-1.798 6.793,-0.798 

From Table 5, the PSNE of Game 1 is L/Y and 1
11J =11.39, so the decision of vehicle E in Game 1 is 

to change lanes to the left. From Table 6, the PSNE for Game 2 is R/Y and K/N, 2
22J =5.995, so the 

decision of vehicle E in Game 2 is to maintain the current lane. Because of 1
11J > 2

22J , the final decision 
of the game lane change decision model is for vehicle E to change lane to the left , and the system outputs 
the target lane 1 as shown in Figure 9. 
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Figure 9: Target Lane for Vehicle E in Case 2. 

A comparison of the horizontal and longitudinal positions of vehicle E, LB and RB traveling is shown 
in Figure 10. As can be seen in Figure 10(a), Vehicle E received a decision command to change lanes to 
the left (lane 1) and then started the lane changing behavior to the left lane. From Figure 10(b), it can be 
seen that E and LB always maintain a safe distance during the lane change and no collision occurs. 

 
(a) Horizontal position comparison.            (b) Longitudinal position comparison. 

Figure 10: Comparison of horizontal and longitudinal positions of vehicles in Case 2. 

Case 3: The initial state information of each vehicle is kept the same as that of Case 1. In order to 
test the applicability of the repeated game function of this game lane-changing model, vehicle RB is 
allowed to travel at an initial speed of 100km/h for 0.2s and then suddenly accelerate at an acceleration 
of 4m/s2. 

As shown in the simulation results in Figs. 11 and 12, vehicle E firstly changes lanes to the right, then 
starts to change lanes to the left after 1.5s, and finally completes the behavior of changing lanes to the 
left. 

 
Figure 11: Target Lane for Vehicle E in Case 3. 

 
Figure 12: Lane change scenario in Case 3. 

At the beginning of the simulation, the model outputs the decision instruction to change lane to the 
right (lane 3), and vehicle E starts to change lanes to the right. 0.2s later vehicle RB suddenly accelerates. 
The game lane changing model repeats the game every 0.1s. The payoffs for each vehicle at 1.5s are 
shown in Tables 7 and 8. 1

11J =170.876 in Game 1, 2
11J =6.704. 1

11J > 2
11J , so the final decision of the 
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game lane changing model for vehicle E to the left (lane 1) lane changing. At this time, vehicle E is 
located in the position of the right lane demarcation line, and receives the decision instruction to change 
lane to the left, and then vehicle E successfully completes the behavior of changing lanes to the left.  

Table 7: The payoffs of Game 1 in Case 3. 

    LB 
E Y N 

L 3.371,167.505 3.371,122.051 
K 2.371,121.051 -121.064,122.051 

Table 8: The payoffs of Game 2 in Case 3. 

    RB 
E Y N 

R 3.371,3.333 2.602,1.386 
K 2.371,0.386 -0.382,1.386 

As can be seen in Figure 13, Vehicle E and RB and LB always maintain a safe distance during the 
lane changing process and no collision occurs. 

 
(a) Horizontal position comparison.            (b) Longitudinal position comparison. 

Figure 13: Comparison of horizontal and longitudinal positions of vehicles in Case 23. 

6. Conclusions 

This paper utilizes the advantages possessed by intelligent networked vehicles and uses them as a 
carrier to conduct research on free lane-changing decision-making model of intelligent networked 
vehicles for highway scenarios, and puts forward a game-theoretic scheme to realize optimal decision-
making in multi-lane and multi-vehicle lane-changing scenarios, which greatly reduces the 
computational complexity required for solving the multi-player N-dimensional game. A multi-vehicle 
game lane-changing decision-making model is designed, and a joint simulation platform is built based 
on three simulation software, PreScan/Simulink/CarSim, and the simulation verifies the reasonableness 
of the designed game payoff function, the validity of the multi-vehicle game lane-changing decision-
making model, and the applicability of the game to deal with the unexpected situation. 
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