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Abstract: To address the issue of decreased segmentation accuracy in foggy images and the difficulty 
in accurately segmenting heavy fog regions in traditional semantic segmentation models, we propose 
an improved segmentation model that combines image Levels adjustment and attention mechanisms. 
Firstly, the fog density of the image is estimated using an atmospheric scattering model, and the image 
is adjusted based on the estimated fog density to highlight the information that was originally obscured 
by the fog. A dual branch input (DB Input), is constructed for both heavy fog and light fog areas to 
enhance the feature learning of the model without destroying the initial information of the foggy image. 
An RCCA module, which is a spatial domain attention mechanism, is introduced at the end of the dual 
branch input to enhance the region attention ability of the module in different branches. Experiments 
are conducted on the datasets Foggy Cityscapes and Foggy Uavid. The results show that the improved 
model achieves 70.6% and 66.7% in the mIOU accuracy, respectively, which is a 5.2% and 5.4% 
improvement over the original model, indicating better segmentation results. 

Keywords: fog density estimate; levels adaptive adjustment; attention mechanism; semantic 
segmentation; hazy images 

1. Introduction 

Semantic segmentation as an image pixel-level classification task has attracted extensive interest in 
academia and industries. It has shown great potential in many fields such as autonomous driving and 
drone monitoring[1, 2, 3]. Due to many reasons including air water vapor condensation and haze pollution, 
the image fog problem is widely present in visual scenes. With the intensive application of neural 
networks in the industry, it has gradually become a realistic requirement for various types of deep 
networks to operate properly in foggy scenes [4, 5].  

The proposal of FCN[6] enabled the segmentation accuracy of deep convolutional models to be 
greatly improved compared to traditional methods. Since then, deep models based on different 
improved ideas have emerged; Olaf Ronneberger[7] proposed the U-Net model with a symmetric 
encoder-decoder structure. U-Net passes low-level features into higher semantic information to recover 
the contours of the details; SegNet[8] optimizes the pooling process, which preserves the pooling 
information of the encoder and optimizes the process of the decoder; DeeplabV3+[9] improves the 
convolution structure by using a depth-separable convolution with the Atrous Spatial Pyramid Pooling 
(ASPP), which effectively extracts the multiscale information of the feature map. 

For the picture defogging problem, researchers have conducted defogging in terms of physical 
models[10, 11], nonphysical models[12, 13], and deep learning models[14]. For example, Kaiming He 
invented the dark channel prior theory, which has become one of the current standard defogging 
algorithms due to its stability and efficiency[15]; Histogram equalization series of defogging methods 
achieve the effect of dehaze by adjusting the image gray value distribution for image enhancement[16, 17]; 
Cai et al. proposed DehazeNet[18] to obtain clear images based on the physical model of the atmosphere 
and use deep learning to estimate the haze parameters in the atmosphere. 

Despite the development of both defogging and segmentation algorithms, the semantic 
segmentation task under fog graphs still needs further integration. Dai et al.[19] found that the 
segmentation of the light foggy images can guide the segmentation process of the heavy fog 
environments. Based on this idea, he proposed CMAda. However, the training of this model requires a 
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constraint on the fog concentration, and it needs to introduce more hyperparameters and higher 
computational effort; Lee[20] et al. consider fog as a special image style and learn the feature invariance 
of fog by constructing a depth model and a fog filtering channel. However, this model relies on three 
types of inputs, clear weather (CW), synthetic fog (SF), and real fog (RF), in the same scene, which has 
high requirements on the input dataset. 

In order not to destroy the original information of the scene and not to impose additional constraints 
on the input data, an improved segmentation method combining image Levels adjustment based on fog 
concentration estimation and attention mechanism is proposed in this paper. 

2. Related Work 

Deep learning models have a certain learning ability in thin fog areas, but this learning ability needs 
to be enhanced in areas with heavy fog. Figure 1 shows the segmentation results of the basic 
DeeplabV3+ model in clear and foggy images. As shown in the rectangle area, the model can still 
perform segmentation with the same performance even though the image contains fog. However, in 
heavily foggy areas such as the circular area, the model struggles to learn the features of the region due 
to the thick fog. Therefore, this paper combines image processing algorithms to process the thick fog 
areas and feed them into the deep learning model for learning. 

 
Figure 1: DeeplabV3+ segmentation effect in foggy images and clear images 

2.1 Network Architecture 

 
Figure 2: General structure of the model 

This article is based on DeeplabV3+ and utilizes a structure consisting of the encoder and decoder. 
As shown in Figure 2, the encoder is composed of two parts: (1) a dual branch input module (DB Input) 
for foggy and hazy areas, which extracts the heavy fog features of the image and improved 
segmentation performance, and (2) a backbone module that employs the pre-trained Res101 structure to 
further learn and extract the fused information of the dual branch features. 

The decoder module has two input sources: the complex semantics learned by the Backbone 
module and the detailed contour information merged by the DB Input module. The information from 
both sources is learned through residual modules. 

2.2 Dual Branch Input 

To enhance the transferability of the processing procedure across various datasets and segmentation 
models, an adaptive processing approach is proposed, where the algorithm autonomously adjusts the 
input image in different foggy conditions. Moreover, the input module constructed in this paper can be 
easily transferred to different segmentation models with only minor adjustments to the number of input 
module channels. 
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2.2.1 Estimation of Fog Concentration  

Firstly, it is necessary to analyze the degree of haze in the input image. The atmospheric scattering 
model constructs a physical imaging theory that comprehensively considers the attenuation of incident 
light and atmospheric diffuse reflection based on the imaging principle, as shown below: 

 ( ) ( ) ( ) (1 ( ))I x J x t x A t x= + −  (1) 

 ( )( ) , ( ) [0,1]d xt x e t xβ−= ∈  (2) 

In the equation, I(x) and J(x) respectively represent the hazy image and clear image. A is the 
atmospheric light value that reflects the lighting conditions, and t(x) is the medium transmittance map, 
which is influenced by the attenuation coefficient β and the distance function d(x). The larger the t 
value is, the less the image is disturbed. The difference in transmittance values between the hazy and 
haze-free images can reflect the degree of haze in the image. After extensive observation, He et al. 
found that in haze-free images, there always exists a channel with a grayscale value approaching 0, 
Estimation of the transmittance can be obtained based on this theory. 

Figure 3 shows a comparison of transmittance between hazy and clear images. In the clear image, 
only the sky area has a transmittance approaching zero due to the distance function value being close to 
infinity. However, in the hazy scene, due to the presence of dense fog, the proportion of pixels with 
transmittance values approaching zero is increased. Therefore, selecting the proportion of 
low-transmittance pixels in the input image is used as an indicator of the hazy condition of the image. 
In this article, we select the proportion of pixels with transmittance values less than 0.1 as an estimate 
of the hazy condition. 

(d)(b) (c)(a)  
Figure 3: Comparison of transmittance between hazy and clear images. (a) clear image (b) f 

Transmittance of the clear image. (c) hazy image. (d) Transmittance of the hazy image 

2.2.2 Levels Adaptive Adjustment 

The essence of Levels adjustment is to perform gamma correction on the image, reducing the 
probability of high-gray pixels appearing while increasing the probability of low-gray pixels appearing 
during the adjustment process. At this time, reducing the loss of image information caused by heavy 
fog. The specific transformation process is as follows: 

 

1
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where Lin and Lout denote the input and output gray level. And m indicates the midtone, with the 
default value of 1. When the midtone is lowered, the highlight area information is enhanced to display, 
on the contrary, the shadow part display is enhanced. The update formula of m in Levels adjustment is: 

 256
1281 log ( )

m mL

m
L

= −  (4) 

where Lm is the grayscale value corresponding to m, and the initial value of Lm is 128. 

The percentage of pixels below 0.1 in the transmittance map is selected and recorded as λ. 
According to the experiment, pixels with a transmission rate lower than 0.1 often correspond to the sky 
or heavy fog areas in the images. Larger λ values result in a higher percentage of low transmittance 
pixels, implying that smaller m values are needed to recover the masked information. The sum of gray 
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value frequencies of the image is calculated from high to low, and when the cumulative gray value 
frequency breaks through the threshold value determined by λ, the Lm value in Equation (4) is updated, 
and the adjusted image is obtained according to the requested m value. 

Figure 4 shows the comparison of images before and after Algorithm 1 adjustment. The (a) and (c) 
parts in the figure are the overall images before and after processing by Algorithm 1, and the (b) and (d) 
parts are the corresponding local images. It can be seen from the figure that after adaptive color 
adjustment, the information in the foggy areas is restored, and the details and contours of objects 
hidden in the fog are displayed. By inputting the adjusted image into a deep learning model, it can help 
the model reduce the difficulty of obtaining feature information in foggy areas. 

Algorithm 1: Levels adaptive adjustment 

Begin: 
Input: Imgin 
Initialize: gray value frequency of RGB channels: FR = FG = FB = [0, 0, …,0]1×256. RGB channels 
value: CR, CG, GB, m=1. Input image size is h and w. Calculate the RGB mean value A of the first 
0.1% pixel points of the image grayscale value, and calculate the transmittance T. 
for L = 1 to 255 do 
Calculate the number of pixels whose CR, CG, and CB grayscale values are equal to L, noted as CRL, 
CGL CBL. Assign the CRL, CGL, CBL. values to the vector of FR , FG , FB with index L 
end for 
Fmean = (FR + FG +FB)/(3×H×W) 
λ = sum([T<0.1]) 
Threshold = sum(Fmean)×λ 
for k = 255 to 0 do  
if sum(Fmean[k:255])>Threshold do 
Update the m value according to Equation (4) 
end if 
end for 
Bring m into equation (3) to obtain the adjusted image Imgout 
Output: Imgout 
End 

(d)(b) (c)(a)  
Figure 4: Impact of image Levels adjustment algorithm. (a) original foggy image (b) original heavy fog 

area image (c) image after Levels adjustment (d) heavy fog area after Levels adjustment 

2.2.3 Input Structure 

A dual branch input module for processing dense and thin fog, as shown in Figure 5, is constructed, 
and the images before and after adjustment by Algorithm 1 are passed to the dense and thin fog 
learning branches of the module. Firstly, high-view information extraction is performed by a 7×7 
convolution, and then feature dimensionality reduction is achieved by using a pooling layer. The dense 
fog branch extracts multi-scale integrated information through Avg Pooling and Max Pooling, and the 
subsequent blocks are residual modules with a channel number of 64 to guide the model to learn 
residual information. 

A spatial domain attention mechanism, RCCA[21], is introduced at the end of the two branches. By 
establishing the correlation relationship among all pixels, RCCA guides the model to focus on more 
critical information in complex input features, and improve the ability of the model to extract 
contextual information. Experiments have shown that the number of RCCA iterations R affects the 
ability to extract contextual information. In this paper, based on experiments, R=2 is finally adopted. 

In the original DeeplabV3+ model, the concat step whether it is in the upsampling process or ASPP 
module, the channel integration is directly performed through 1×1 convolution, without more detailed 
processing. However, this article believes that features from different sources have different levels of 
importance. Therefore, after all the concat steps in the article, an SE Module[22] is introduced to help the 
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model learn the importance of different channels. 

As shown in Figure 6, the SE module consists of three parts: Squeeze, Excitation, and Reweight. It 
takes a feature vector X with size H×W and channel number C as input, compresses each 2D channel 
into a scalar that has a certain degree of the global receptive field, generates the weight for each feature 
channel through excitation operation, and applies 2 fully connected layers, one ReLU activation layer, 
and one sigmoid layer in this paper. Finally, the input layer is multiplied by the weight layer in a 
reweighting manner to recalibrate the weights of the input features. 

Dual Branch Input

Fog Density estimate

Image levels adaptive transformation

Concat7×7 Conv

Avg Pool

Max Pool

SE Module

Block×2

7×7 Conv Max Pool Block×2

RCCA

RCCA

Concat

 
Figure 5: Dual Branch Input 

 
Figure 6: SE module 

3. Training 

3.1 Datasets 

On the basis of the Cityscapes dataset, Foggy Cityscapes[23, 24]employs a simulated fog algorithm to 
synthesize high-quality foggy images. The dataset consists of two parts: weakly annotated and finely 
annotated images. For this experiment, we selected finely annotated images that contain three visibility 
versions, each with three constant attenuation coefficients. The attenuation coefficients are 0.005, 0.01, 
and 0.02, corresponding to visibility distances of 600, 300, and 150 meters, respectively. 

In order to test the segmentation performance of the model under different conditions, this paper 
simulates different concentrations of haze images on the basis of the Uavid[25] dataset using the fog 
simulation algorithm in equation (1) and (2). Figure 7 shows some examples of the generated images. 

Uavid is a remote sensing dataset of urban street scenes obtained by unmanned aerial vehicles at 4k 
resolution, Each image is used to generate three hazy images with different haze concentration 
parameters β=0.005, β=0.01, and β=0.02. 

 
Figure 7: Foggy Uavid training set 
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3.2 Experiment 

The experimental parameter settings in this article are shown in Table 1: 

Table 1: Hyperparameters 

Batch 
size 

Output 
stride 

Image 
size 

Weight 
decay 

Min 
learning 

rate 

Max 
learning 

rate 
Momentum Iteration 

12 8 769×769 1×10-4 0.00001 0.1 0.9 50000 

The experiment was conducted using the pytorch framework, with an NVIDIA A40 GPU, and a 
pre-trained Resnet101 was selected as the backbone. Image augmentation techniques such as random 
horizontal flipping and random Gaussian perturbation were used. Focal Loss was chosen as the loss 
function to address the class imbalance of the Foggy Cityscape and Foggy Uavid samples.  

The evaluation metrics used were mean intersection over union (mIOU): 
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where n denotes the number of categories, pij denotes the number of pixels which the true category 
is i and the predicted category is j. 

3.3 Contrast and Ablation Experiments 

Table 2: Comparison of segmentation accuracy of different models  

Algorithm Foggy Cityscapes mIOU /% Fogyy Uavid mIOU/% 
DeeplabV3+[9] 65.4 61.3 

DDRNet[26] 65.5 60.4 
MFANet[27] 66.8 61.4 

FISS GAN[28] 66.4 61.7 
Proposed algorithm 70.6 66.7 

To compare the segmentation accuracy of different models on the Foggy Cityscapes and Foggy 
Uavid datasets, DDRNet, FISS GAN, MFANet, and the basic DeeplabV3+ were selected for 
comparative experiments. Under the same experimental conditions, each model was trained on the 
training set of the dataset and the results were output on the validation set. As shown in Table 2, the 
proposed model achieved mIOU accuracies of 70.6% and 66.7% in Foggy Cityscapes and Foggy Uavid, 
respectively, which are 5.2% and 5.4% higher than the original model. Compared with DDRNet, FISS 
GAN, and MFANet, the proposed model has better segmentation performance. 

The model was trained under fog-free conditions with the same parameter settings to test the 
generalization performance of the model, and the comparison results are shown in the following table: 

Table 3: Comparison of different models in Cityscapes and Uavid segmentation accuracy 

Algorithm Cityscapes mIOU /% Uavid mIOU/% 
DeeplabV3[9] 79.1 68.0 
DDRNet[26] 79.5 63.0 
MFANet[27] 73.9 63.8 

FISS GAN[28] 75.8 64.2 
Proposed algorithm 79.9 68.2 

Table 3 shows the segmentation accuracy of the different models on the fog-free datasets Cityscapes 
and Uavid. Compared with the original model, the improved models both have some accuracy 
improvement, with increases of 0.8% and 0.2% respectively. It shows that the model with Dual Branch 
Input has a better improvement in the foggy scenes, and the introduction of dual-branch input does not 
reduce the performance of the model in clear haze-free scenes. 
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Table 4: Inference strategy on the Foggy Cityscapes and Foggy Uavid 

FDE LAA SE Module Foggy Cityscapes mIOU /% Foggy Uavid mIOU /% 
   65.4 61.3 
 √  68.7 63.4 
  √ 66.1 61.9 

√ √  70.2 65.5 
√ √ √ 70.6 66.7 

To further verify the practical effects of the input module and the attention mechanism module, 
ablation experiments were conducted. The results are shown in Table 4, where FDE denotes Fog 
Density Estimate, LAA denotes Levels adaptive adjustment, and LA denotes fixing the Levels 
adjustment to a certain determined value. It means in Algorithm (1), a fixed value of λ is taken. In the 
experiment, the mean values obtained from the training sets of the datasets were approximately 0.1. As 
can be seen from the table, the introduction of Levels adjustment helps the model improve 
segmentation accuracy significantly, and the adjustment based on fog density makes the segmentation 
effect even more pronounced. The addition of the channel domain attention also makes the model have 
partial effect improvement. 

(a) Input image (b) DeeplabV3+ (c) LA  (d) DB input (e) LA+DB input (f) label  
Figure 8: Comparison of segmentation results for DeeplabV3+ with different improvement methods 

Figure 8 shows the segmentation results of different improvement methods. As can be seen from the 
figure, the introduction of the DB Input allows the model to have finer segmentation in regions 
containing heavy fog such as the sky and the distant scenes. For example, in the first row of the image 
in Figure 8, the original model identifies the distant building as the sky due to dense fog, while the 
improved model accurately identified the building contours. Introducing the SE Attention helps the 
model perform better in local details such as people and traffic signs. The improved model constructed 
by combining the above two has a higher segmentation accuracy and obtains more accurate prediction 
results in the highlight areas and detailed contours of the image. 

4. Summary 

This paper proposes an improved DeeplabV3+ segmentation model that combines image Levels 
adaptive adjustment and attention mechanisms to address the problem of decreased segmentation 
accuracy in foggy scenes and insufficient segmentation details in dense fog areas. Firstly, the fog 
concentration of the image is estimated using the dark channel prior theory, and the image Levels is 
adjusted according to the estimated value to restore rich detail information in the heavily foggy areas. 
The Dual Branch Input module, which incorporates the spatial domain attention mechanism RCCA, is 
constructed to guide the model to enhance its attention and learning abilities in thin and dense obscure 
regions. The proposed model achieves more accurate segmentation and improves mIOU accuracy by 
5.2% and 5.4% respectively on the Foggy Cityscapes and Foggy Uavid datasets, demonstrating the 
effectiveness of the proposed method. In future work, the evaluation of the global fog concentration of 
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the image could be combined with lightweight neural networks, or lightweight deep learning networks 
could be used to recover fog details in foggy images, allowing the model to better extract image feature 
information in subsequent segmentation tasks. 
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