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Abstract: The existing parameter optimization methods tend to fall into local optimization, and it is 
difficult to balance the contradiction between machining time and deformation, resulting in low 
machining efficiency and unstable surface quality. To address the above problems, a multi-objective 
optimization method combining the black hole algorithm and continuous ant colony algorithm (BH-
ACOR) is proposed. In terms of the algorithm, the black hole mechanism is introduced to, divide the 
solution file into "black holes" (the first k superior solutions) and "planets" (the last m inferior solutions), 
the exploration ability of the solution space is improved through the global search of the planets to the 
black holes and the local perturbation strategy of the black holes. A normalized weighted objective 
function is defined to balance the time efficiency and the weighting requirements of aerospace blade 
milling. Finally, the algorithm is simulated using MATLAB, compare with the traditional methods. The 
BH-ACOR algorithm reduces the machining time by 17.3%, reduces the amount of deformation by 15.6%, 
and improves the convergence speed by 22%, which verifies its effectiveness and engineering 
applicability in complex multi-objective optimization. 
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1. Introduction 

The manufacturing sector, particularly in aerospace and automotive industries, is being transformed 
toward intelligent manufacturing. As a representative of highly complex components with both military 
and civilian applications, the aero-engine blades play a crucial role in ensuring the stable operation of 
aircraft engines, where their machining accuracy is of paramount importance. Consequently, data-driven 
precision machining has emerged as the dominant approach in manufacturing to enhance the surface 
quality of high-precision components [1-3]. 

Extensive research efforts have been devoted to enhancing the performance and service life of 
aviation blades through various experimental approaches. A machining parameter optimization 
methodology was developed by some scholar based on milling force modeling, where the ploughing 
effect at the tool tip was effectively mitigated through comprehensive analysis of cutting forces and ball-
end mill orientation dynamics during milling operations [4]. While this approach demonstrated 
significant improvement in surface quality, its applicability was primarily limited to planar milling 
operations, with insufficient investigation into complex surface machining. 

In related work, LAN et al. [5] conducted systematic research on deformation control in aero-engine 
blade machining. Key deformation factors in blade milling processes were identified and analyzed, 
leading to quality improvements through advanced process control strategies. However, the practical 
implementation of this method was constrained to specialized applications with limited operational 
flexibility. 

An alternative approach was proposed by Song et al. [6], featuring double-tool milling of turbine 
blades with toolpath optimization through equivalent parameter path planning. This technique achieved 
two-fold efficiency enhancement compared to conventional single-tool machining while improving 
profile accuracy. Nevertheless, the methodology was principally applicable to large-scale blade 
processing, exhibiting restricted generalizability. Despite these advancements in multi-objective 
optimization for aviation blade milling, significant challenges persist. Current optimization algorithms 
are frequently trapped in local optima, demonstrating limited capability in balancing multiple objectives. 
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This limitation stems primarily from empirical dependence in weight allocation between machining time 
and deformation control, coupled with inadequate adaptive mechanisms. The continuous ant colony 
algorithm (𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅) has shown superior performance in continuous function optimization compared to its 
discrete counterpart, delivering higher solution accuracy with successful engineering applications [7]. 
However, while 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅  exhibits rapid convergence [8], its inherent inferior solution elimination 
mechanism during iteration often results in premature convergence to local optima without effective 
escape mechanisms. 

To address the aforementioned challenges, a black hole continuous ant colony algorithm (𝐵𝐵𝐵𝐵 −
𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅,) is proposed in this study. In this algorithm, the black hole mechanism is integrated, where the 
solution archive is divided into two categories: "black hole" representing elite solutions and "planet" 
denoting inferior solutions. The global search capability is enhanced through gravitational attraction 
exerted by planets toward black holes, while convergence precision is improved by incorporating local 
perturbation operations around black holes. 

Through the implementation of a dynamic weighting strategy, a normalized weighted objective 
function is designed, where the processing time and machining deformation requirements are balanced 
in real-time by an adaptive weight coefficient. Furthermore, a nonlinear regression model is established 
between milling parameters (n, 𝑎𝑎𝑒𝑒 , f, 𝑎𝑎𝑝𝑝) and performance objectives (T, P). This model is constructed 
based on comprehensive data analysis involving 4-factor 3-level orthogonal experiments and 29 sets of 
experimental data fitting. 

2. Parameters optimization Method for Aero-engine Blade Milling  

2.1 Process Parameters 

Figure. 1shows that one of the main processes of metal material processing and molding. in the cutting 
process, the best milling process parameters are optimized to the attention of the manufacturing industry 
[9]. Optimization of milling process parameters can better improve the machining efficiency and reduce 
the machining deformation. 

 
Figure 1 Machining Method 

However, during aerospace blade machining (be shown in figure 2), excessive back draft and feed 
per tooth can degrade blade profile quality, increase surface roughness (Ra), and produce prominent, 
persistent cutter marks. Conversely, while higher spindle speeds may reduce cutting forces, they can 
accelerate tool wear and compromise milling efficiency. 

 
Figure 2 Aerospace blade structure 
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In this study, four key milling parameters were selected as independent variables: spindle speed (n), 
milling depth (𝑎𝑎𝑝𝑝), feed per tooth (𝑓𝑓), milling width (𝑎𝑎𝑒𝑒), The machining efficiency was evaluated 
through machining time (𝑇𝑇), while workpiece deformation (𝑃𝑃) served as the quality metric.  

2.2 Machining tool and material parameters 

The mechanical milling process varies significantly depending on precision requirements. Tool 
selection must account for multiple factors including workpiece material, machining process, precision 
specifications, and machine tool capabilities. For blade milling operations, ball-end milling cutters are 
predominantly employed. Table 1 presents the tool's structural parameters, which were determined based 
on the specific requirements of the blade machining process. 

Table 1 Structure parameters of ball end milling cutter 

Tool Diameter(mm) Cutting Radius(mm) 
6 0.02 

Rake Face Length (mm) Flank Face Length (mm) 
4 4 

Rake Angle (°) Clearance Angle (°) 
5 10 

Tool Material Initial Temperature (℃) 
Carbide-Grade-K 20 

2.3 Analysis of the influence of parameters on the whole milling process 

Spindle speed: the rotational speed per minute of the milling tool on the spindle, the increase in 
spindle speed can lead to increased tool wear, with a decrease in cutting force, which is expressed by (1). 

𝑛𝑛 =
1000v𝑐𝑐
𝜋𝜋𝐷𝐷𝑐𝑐𝑎𝑎𝑎𝑎

(1) 

Where v𝑐𝑐is the cutting speed, and 𝐷𝐷𝑐𝑐𝑎𝑎𝑎𝑎is the cutting diameter at the actual depth. 

Milling depth (𝑎𝑎𝑝𝑝): Defined as the radial engagement between the tool and workpiece (the difference 
between final and initial cut radii), milling depth significantly influences cutting mechanics. Increasing 
aₚ typically elevates both cutting forces and temperatures, potentially inducing workpiece deformation. 
Excessive depths may also compromise surface integrity due to heightened tool-workpiece interactions. 

Milling Width (𝑎𝑎𝑒𝑒): The radial cutting width during tool engagement. Larger 𝑎𝑎𝑒𝑒 values generally 
increase cutting forces and, at constant depth and feed conditions, may degrade surface finish (higher Ra 
values). This effect stems from greater tool deflection and vibration at wider engagements 

Feed per tooth (𝑓𝑓𝑧𝑧): Feed per tooth (𝑓𝑓𝑧𝑧) represents the axial material removal per cutting edge per 
revolution (𝑚𝑚𝑚𝑚/𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ), determined by the ratio of feed rate to rotational speed. As a key process 
determinant, feed per tooth directly modulates three fundamental aspects. 

(1) Cutting force magnitude/spatial distribution.  

(2) Thermal energy accumulation in the shear zone.  

(3) Surface integrity - with 𝑓𝑓𝑧𝑧  elevated values particularly compromising blade quality through 
heightened 𝑅𝑅𝑎𝑎 values and visible feed marks.  

𝑓𝑓𝑧𝑧 =
𝑣𝑣𝑓𝑓

n × 𝑧𝑧𝑐𝑐
(2) 

Where 𝑣𝑣𝑓𝑓 is the table feed speed. 

The processing time efficiency can be quantified through the following model: 

𝑡𝑡𝑤𝑤 = 1 +
𝜋𝜋𝜋𝜋𝐿𝐿

1000𝑣𝑣𝑓𝑓𝑧𝑧
+ 𝑡𝑡𝑐𝑐𝑐𝑐

𝜋𝜋𝜋𝜋𝐿𝐿
𝐾𝐾𝑐𝑐𝑇𝑇𝑣𝑣1+𝑥𝑥𝑡𝑡𝑓𝑓𝑧𝑧

1+𝑦𝑦𝑡𝑡𝑎𝑎𝑒𝑒𝑧𝑧𝑡𝑡𝑎𝑎𝑝𝑝𝑤𝑤𝑡𝑡
+ 𝑡𝑡0𝑡𝑡 (3) 

Where 𝐾𝐾 = 1000, 𝑡𝑡𝑤𝑤 is the machining time, 𝑡𝑡𝑐𝑐𝑐𝑐 is each tool change time; 𝑡𝑡0𝑡𝑡 is other auxiliary 
time, 𝑑𝑑 is the tool diameter, 𝐿𝐿 is the length of the workpiece machining, 𝑍𝑍 is the number of teeth of 
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the tool, 𝑐𝑐𝑇𝑇 is the total number of parameters affecting the service life of the tool. The weighting 
coefficients 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡,𝑧𝑧𝑡𝑡,𝑤𝑤𝑡𝑡 represent the relative influence of their corresponding parameters on tool life. 
Through analysis of production data and existing research findings, the feasible ranges for these process 
parameters were determined and are presented in the experimental design matrix. Experimental data for 
machining-induced plastic deformation and processing time are presented in Table 2. 

Table 2 4-factor 3-level experimental design 

Input Parameters Coded Level 
-1 0 1 

f(mm/r) 0.05 0.175 0.3 
n (r/min) 800 1900 3000 
ae (mm) 0.1 0.45 0.8 
ap (mm) 0.1 0.45 0.8 

The model coefficients and exponents were initially derived from standard cutting parameter 
handbooks. However, when encountering non-standard machining conditions not covered in these 
references, empirical determination through experimental data fitting becomes necessary. This study 
adopts published experimental data from prior work [10], with the time efficiency (𝑇𝑇) and machining 
deformation (𝑃𝑃) coefficients being determined through nonlinear regression analysis of the referenced 
dataset (be shown in Table 3) 

Table 3 Statistics of blade milling process 

NO f(mm/r) n(r/min) ae(mm) ap(mm) T(s) PS 
1 -1 -1 0 0 10979 2.02 
2 -1 0 -1 0 20618 1.56 
3 -1 1 0 0 2928 1.79 
4 -1 0 0 -1 4623 1.68 
5 -1 0 1 0 2626 1.70 
6 -1 0 0 1 4623 1.86 
7 0 0 0 0 1320 3.50 
8 0 0 -1 -1 5890 3.15 
9 0 0 0 0 1320 3.50 

10 0 0 0 0 1320 3.54 
11 0 0 0 0 1320 3.94 
12 0 1 0 1 837 2.70 
13 0 -1 1 0 1782 3.50 
14 0 1 -1 0 3730 2.67 
15 0 1 0 -1 837 2.58 
16 0 0 1 1 750 3.78 
17 0 1 1 0 475 4.02 
18 0 -1 0 -1 3137 3.70 
19 0 -1 -1 0 13990 3.29 
20 0 -1 0 1 3137 3.83 
21 0 0 -1 1 5890 3.26 
22 0 0 0 0 1320 3.44 
23 0 0 1 -1 750 3.70 
24 1 0 1 0 438 3.06 
25 1 1 0 0 488 2.83 
26 1 0 -1 0 3437 3.09 
27 1 0 0 -1 770 2.72 
28 1 -1 0 0 1830 3.43 
29 1 0 0 1 770 2.54 

Through analysis of variance (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) performed on 29 validated datasets of machining time and 
deformation, we derived empirical regression models for machining time (𝑇𝑇) and machining deformation 
(𝑃𝑃), by (4) and (5). 

𝑇𝑇 = 35227.68 − 1.112 × 105𝑓𝑓 − 4.553𝑛𝑛 − 58281.1045𝑎𝑎𝑒𝑒 + 7.4739 × 10−13𝑎𝑎𝑝𝑝 

+85674.2857𝑓𝑓𝑎𝑎𝑒𝑒 + 5.8136𝑛𝑛𝑎𝑎𝑒𝑒 + 1.3394 × 105𝑓𝑓2 + 23460.1113𝑎𝑎𝑒𝑒2 (4) 
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𝑃𝑃 = 0.6188 + 28.5882𝑓𝑓 − 0.00024𝑛𝑛 + 0.6603𝑎𝑎𝑒𝑒 + 0.1031𝑎𝑎𝑝𝑝 − 68.2163𝑓𝑓2 (5) 

Based on the mathematical formulations of machining efficiency and workpiece deformation, subject 
to operational constraints, we establish the multi-objective optimization model for high-efficiency, low-
deformation milling of aerospace blades as follows 

min𝑇𝑇 = min�
35227.68 − 1.112 × 105𝑓𝑓 − 4.553𝑛𝑛 − 58281.1045𝑎𝑎𝑒𝑒 + 7.4739 × 10−13𝑎𝑎𝑝𝑝

 +85674.2857𝑓𝑓𝑎𝑎𝑒𝑒 + 5.8136𝑛𝑛𝑎𝑎𝑒𝑒 + 1.3394 × 105𝑓𝑓2 + 23460.1113𝑎𝑎𝑒𝑒2
� (6) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = min�0.6188 + 28.5882𝑓𝑓 − 0.00024𝑛𝑛 + 0.6603𝑎𝑎𝑒𝑒 + 0.1031𝑎𝑎𝑝𝑝 − 68.2163𝑓𝑓2� (7) 

0.05≤f≤0.3 

800 ≤ 𝑛𝑛 ≤ 3000 

0.1 ≤ 𝑎𝑎𝑒𝑒 ≤ 0.8 (8) 

0.1 ≤ 𝑎𝑎𝑝𝑝 ≤ 0.8 

Multi-objective optimization problems are commonly transformed into single-objective formulations 
through weighted sum approaches. However, given the disparate magnitudes of machining time (𝑇𝑇) and 
machining deformation (𝑃𝑃), normalization of both objective functions is required. To accommodate 
distinct performance priorities, we assign differential weighting coefficients (𝛼𝛼,𝛽𝛽) such that 

(1) A larger 𝛼𝛼 coefficient emphasizes milling time efficiency (minimizing T) 

(2) A larger 𝛽𝛽 coefficient prioritizes deformation reduction (minimizing P) 

Where 𝛼𝛼 + 𝛽𝛽 = 1, reflecting the trade-off between these competing objectives 

The weighted multi-objective function can be formulated as 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = min[𝑘𝑘𝑡𝑡𝑤𝑤∗ + (1 − 𝑘𝑘)𝑃𝑃∗] (9) 

The weighting coefficients 𝑘𝑘 and 1 − 𝑘𝑘 represent the relative importance of milling time efficiency 
and machining deformation, respectively, where 𝑘𝑘 takes discrete values from 0.1 to 0.9 in increments 
of 0.1. The normalized objective functions are denoted as 𝑡𝑡𝑤𝑤∗  (for milling time efficiency) and 𝑃𝑃∗ (for 
machining deformation) 

The normalization operation is mathematically expressed as 

𝑓𝑓 =
𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
(10) 

Where 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚are the maximum and minimum values for single-objective optimization of 
each objective function, respectively. 

2.4 Traditional optimization methods 

The ant colony optimization (𝐴𝐴𝐴𝐴𝑂𝑂 ) algorithm exhibits strong global search capabilities and 
robustness to initial conditions, demonstrating the ability to converge to optimal solutions even with non-
uniform initial pheromone distributions. However, conventional 𝐴𝐴𝐴𝐴𝑂𝑂 suffers from slow convergence 
rates and a tendency to become trapped in local optima. To address these limitations, researchers have 
developed the continuous ant colony algorithm (𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅), which enhances the standard 𝐴𝐴𝐴𝐴𝑂𝑂 framework 
through Gaussian kernel sampling for solution generation. This extension enables effective optimization 
in continuous search spaces, significantly expanding the algorithm's applicability to continuous 
optimization problems. 

Step 1, Archive Initialization 

During algorithm initialization, the archive size is set to 𝐾𝐾 (termed as K-archive). 

In each iteration, the archive only retains (be shown in figure 3) 

(1) Position vectors of the top 𝐾𝐾 fitness-ranked individuals are 𝑛𝑛1 = {𝑛𝑛𝑙𝑙1,𝑛𝑛𝑙𝑙2, . . .𝑛𝑛𝑙𝑙𝑚𝑚} 

(2) Corresponding fitness values is 𝑓𝑓(𝑠𝑠𝑙𝑙). 
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Figure 3 illustrates the internal architecture of the archive 

Step 2, Dynamic Weight-based Pheromone Update Strategy 

The algorithm employs an adaptive pheromone update mechanism that dynamically adjusts 
pheromone concentrations based on both current pheromone levels and iterative optimization results. 
Individuals in the archive are sorted in ascending order of fitness value (where lower fitness values 
indicate better solutions), such that 

𝑓𝑓(𝑠𝑠1) < 𝑓𝑓(𝑠𝑠2) … < 𝑓𝑓(𝑠𝑠𝑙𝑙) … < 𝑓𝑓(𝑠𝑠𝑘𝑘) 

Correspondingly, the weight assignment follows a monotonically decreasing sequence 

𝑤𝑤1 > 𝑤𝑤2 … > 𝑤𝑤𝑙𝑙 … > 𝑤𝑤𝑘𝑘 

The weight distribution is calculated as follows 

𝑤𝑤𝑙𝑙 =
1

q𝑘𝑘√2𝜋𝜋
𝑒𝑒

(1−𝑙𝑙)2
2𝑞𝑞2𝑘𝑘2 (11) 

Where 𝑞𝑞 is a reinforcement factor, the smaller its value the more the algorithm tends to hang on to 
the pre-ordered solution. 

Step 3, Solution Selection Probability Calculation 

The selection probability 𝑃𝑃𝑖𝑖 for each solution is computed as follows 

𝑃𝑃𝑖𝑖 =
𝑤𝑤𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=0

(12) 

Step 4, Guided Solution Sampling 

Using the selection probabilities 𝑃𝑃𝑖𝑖 obtained in Step 3, a guide solution 𝑥𝑥𝑖𝑖 is chosen to generate 𝑚𝑚 
samples across 𝑛𝑛 dimensions. This sampling process employs a weighted Gaussian kernel function 
𝐺𝐺𝑖𝑖(𝑥𝑥), defined as 

𝐺𝐺𝑖𝑖(𝑥𝑥) = �𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=0

𝑔𝑔𝑖𝑖𝑖𝑖(𝑥𝑥) = �𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=0

1
𝜎𝜎𝑖𝑖𝑖𝑖√2𝜋𝜋

𝑒𝑒
(1−𝑙𝑙)2
2𝑞𝑞2𝑘𝑘2 (13) 

Where 𝑗𝑗 = 1,2, … ,𝑛𝑛; 𝜇𝜇𝑖𝑖𝑖𝑖 is the mean , 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖, 𝜎𝜎𝑖𝑖𝑖𝑖 is the standard deviation. 

𝜎𝜎𝑖𝑖𝑖𝑖 = ξ�
�𝑥𝑥𝑒𝑒𝑒𝑒 − 𝑥𝑥𝑖𝑖𝑖𝑖�
𝑘𝑘 − 1

𝑘𝑘

𝑒𝑒=0

(14) 

Where ξ is the offset distance ratio, whose value is greater than 0. The larger the ξ value, the slower 
the algorithm converges. 

Final Step, Solution Archive Update 

Following the sampling process, the algorithm 

(1) Generates m new candidate solutions (ants) 

(2) Computes their objective function value 𝐹𝐹(𝑥𝑥𝑖𝑖) using the weighted evaluation formula 

(3) Combines them with the existing k solutions in the archive 
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(4) Sorts the combined (𝑘𝑘 + 𝑚𝑚) solutions in ascending order of 𝐹𝐹(𝑥𝑥𝑖𝑖) values 

(5) The archive is updated by retaining the top 𝑘𝑘 solutions while discarding the bottom 𝑚𝑚 solutions. 

The archive updating process iterates until the termination criteria are met. 

3. Black hole continuous ant colony algorithm (𝑩𝑩𝑩𝑩− 𝑨𝑨𝑨𝑨𝑶𝑶𝑹𝑹) 

Algorithm structure: The algorithm is characterized by its dual-processing approach for both superior 
and inferior solutions in the solution archive during the final phase of 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅. The top 𝑘𝑘 high-quality 
solutions are designated as black holes (elite solutions), while the remaining 𝑚𝑚 inferior solutions are 
treated as planets (suboptimal solutions). Each planet is gravitationally attracted toward all black holes 
to facilitate global exploration, whereas black holes maintain mutual non-attraction to preserve solution 
quality - this dynamic interaction enhances search space coverage and solution diversity. Concurrently, 
an intensive local search strategy is applied to each black hole to refine optimization precision. For the 
specific case of optimizing four cutting parameters (𝑛𝑛 =4), the architectural configuration of the resulting 
four-dimensional solution archive is illustrated in Figure 4. 

 
Figure 4 Structure of the four-dimensional solution file 

Within the search space constrained by the multi-objective function, when randomly initializing 𝑘𝑘 
ants, the position vector of the 𝑖𝑖 -th ant (comprising 4 decision variables) can be mathematically 
represented as 

𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖3, 𝑥𝑥𝑖𝑖4) = �𝑛𝑛𝑖𝑖 ,𝑓𝑓𝑖𝑖 ,𝑎𝑎𝑝𝑝𝑖𝑖 ,𝑎𝑎𝑒𝑒𝑒𝑒� (15) 

During the iterative process encompassing Steps 2-4 of 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅  the algorithm generates 𝑚𝑚  new 
candidate solutions. Given the four-dimensional parameter space of milling optimization, excessive 
sampling (𝑚𝑚 ≫ 50) would induce solution redundancy due to the limited parametric combinations, 
consequently impairing optimization efficiency. Therefore, this study empirically sets m = 50 through 
preliminary experimentation. Following the weighted objective function evaluation and solution ranking, 
the archive update mechanism operates as follows: (1) the top k solutions exhibiting superior trade-offs 
between machining time and workpiece deformation are designated as elite solutions (black holes); (2) 
the remaining m solutions are classified as exploratory solutions (planets) for subsequent global search 
operations. 

The global search mechanism governs the motion of planetary solutions toward the elite set (black 
holes), generating m new solution vectors according to the following stochastic search operator. 

𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑋𝑋𝑖𝑖,𝑗𝑗 + �𝑋𝑋𝑏𝑏,𝑗𝑗 − 𝑋𝑋𝑖𝑖,𝑗𝑗� ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) (16) 

Where 𝑖𝑖 is the 𝑖𝑖th planet, 𝑖𝑖 = 1,2, … ,50, 𝑏𝑏 is the 𝑏𝑏th black hole, 𝑏𝑏 = 1,2, … , 𝑘𝑘, 𝑗𝑗 is the 𝑗𝑗th 
dimension, j=1,2,3,4, 𝑗𝑗 is the position of the 𝑖𝑖th planet in the 𝑗𝑗th dimension, 𝑋𝑋𝑏𝑏,𝑗𝑗 is the position of the 
𝑏𝑏th black hole in the 𝑗𝑗th dimension. 

Since a black hole can absorb matter around it, when a planet completes its movement, if it enters 
within the absorption radius 𝑅𝑅𝑏𝑏 of the black hole, it will be absorbed by the black hole. To ensure the 
total number of planets in the search space remains constant, an equivalent number of planets must be 
replenished in the search space for those absorbed by the black hole, with the condition that the newly 
generated planets are not within the absorption radius 𝑅𝑅𝑏𝑏. For multi-objective optimization problems, 
the calculation of the absorption radius 𝑅𝑅𝑏𝑏 is defined as 

𝑅𝑅𝑏𝑏 = �
𝐹𝐹𝑏𝑏

∑ 𝐹𝐹𝑖𝑖𝑚𝑚
𝑖𝑖=1

� (17) 
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Where 𝐹𝐹𝑏𝑏 is the magnitude as a function of the 𝑏𝑏 black hole, and 𝐹𝐹𝑖𝑖 is the magnitude as a function 
of the first 𝑖𝑖 planet. 

For black holes, the primitive black hole algorithm considers that it has a better function value than 
planets and does not allow the black hole to generate movement. However, for the optimization problem 
of milling parameters for aerospace blades, it is possible to have a globally optimal solution near the 
black hole. In order to improve the accuracy of the solution, the 𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅  algorithm makes 𝑘𝑘 
black holes search locally in the space of radius 𝑅𝑅𝑏𝑏 and then generates new 𝑘𝑘 solutions. The process 
of localized search of black holes can be expressed as 

𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑋𝑋𝑏𝑏,𝑗𝑗 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑅𝑅𝑏𝑏 (18) 

Finally, the 2𝑚𝑚 + 2𝑘𝑘 solutions related to planets and black holes are sorted and the top 𝑘𝑘 solutions 
are taken to update the solution archive before entering a new round of iterative computation. 

4. Analysis of Optimization Results 

To address the bi-objective optimization problem minimizing both machining time (T) and workpiece 
deformation (𝑃𝑃) in aerospace blade milling, A MATLAB implementation of the 𝐵𝐵𝐵𝐵 − 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅 hybrid 
algorithm is developed. The computational framework incorporates (be shown in figure 5). 

 
Figure 5 𝐵𝐵𝐵𝐵 − 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅 flow chart 
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The parameter settings of 𝐵𝐵𝐵𝐵 − 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅 are presented in Table 4. 

Table 4 𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅 parameter settings 

Parameter Value 
Number of Iterations 200 

Initial Population Size k 10 
Reinforcement Factor q 0.5 
Offest Distance Ratio 0.8 

When the weight coefficient 𝑐𝑐 of the multi-objective optimization function is set to 0.5, the search 
results of the cutting parameters at the 50th, 100th, and 200th generations, the search results have 
converged, with the position of the black concentrated hole at v𝑐𝑐= 811.36 m /min, feed per tooth f= 0. 
05 mm /r, milling width a𝑒𝑒= 0. 1 mm, and milling depth a𝑝𝑝=0.1mm, indicating the presence of optimal 
cutting parameter values. 

The optimization results of specific cutting energy and surface roughness corresponding to different 
weight coefficient c values are presented in Table 5. 

Table 5 Optimization results under different weights 

𝑐𝑐 𝑣𝑣𝑐𝑐 a𝑝𝑝 𝑓𝑓 a𝑒𝑒 𝑡𝑡 𝑃𝑃 
0.1 877.51300429 0.1 0.05 0.1 0.89301300 0.09400130 
0.2 838.93609206 0.1 0.05 0.1 0.85443609 0.09014361 
0.3 809.14604836 0.1 0.05 0.1 0.82464605 0.08716460 
0.4 885.11659911 0.1 0.05 0.1 0.90061660 0.09476166 
0.5 811.36846893 0.1 0.05 0.1 0.82686847 0.08738685 
0.6 817.97995317 0.1 0.05 0.1 0.83347995 0.08804800 
0.7 804.98730209 0.1 0.05 0.1 0.82048730 0.08674873 
0.8 899.94138648 0.1 0.05 0.1 0.91544139 0.09624414 
0.9 906.65383783 0.1 0.05 0.1 0.92215384 0.09691538 

From Table 5, it can be seen that the optimized optimal cutting speed is close to 811.3 m/min. 

 
Figure 6 Search results for 10 iterations 
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Figure 7 Search results for 50 iterations 

 
Figure 8 Search results for 100 iterations 

Appropriate feed speed and back cutting amount is selected beneficial for processing time. From the 
overall optimization results(From figure 6 to figure 8), as the weight coefficient c increases, cutting time 
first decreases and then increases, and processing deformation also first decreases and then increases, 
which means that processing time is closely related to processing deformation, and there exists an optimal 
combination between the two. 

5. Conclusion 

An optimization model for CNC lathes with minimal processing time and deformation is established, 
and a black hole-continuous ant colony algorithm is proposed to find the optimal turning parameter 
method. The optimization algorithm combines the continuous ant colony algorithm with the black hole 
algorithm to expand the search range of the algorithm and solve local optimal parameters while 
improving convergence accuracy. The cutting parameters optimized using the black hole-continuous ant 
colony algorithm significantly reduce processing time and deformation compared to those obtained using 
empirical parameters. Compared to the 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅 algorithm and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − ΙΙ algorithm, the 𝐵𝐵𝐵𝐵 − 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅 
algorithm not only has a larger optimization range but also improves the overall optimization effect. 
Therefore, the 𝐵𝐵𝐵𝐵 − 𝐴𝐴𝐴𝐴𝑂𝑂𝑅𝑅 algorithm can effectively balance the requirements of processing efficiency 
and quality, providing an effective solution for enterprises to optimize processing technology and select 
suitable parameter combinations. 
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