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with Delays 

Linhong Yao 

College of Sciences, North University of China, Taiyuan, Shanxi 030051, China 

ABSTRACT. This paper is concerned with the monotone traveling wave solutions 
for a diffusive Lotka-Volterra weak competitive system with delays. Using the 
method of upper-lower solutions, necessary and sufficient conditions are established 
for the existence and nonexistence of monotone traveling wave solutions connecting 
the trivial steady state with the coexistence steady state of weak competitive system. 
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1. Introduction 

In this paper, we consider monotone traveling waves of the following diffusive 
Lotka-Volterra competitive system with delays 

1 1 1 1 1 2

2 2 2 3 2 4

( , )[ ( , ) ( , )],
, 0

( , )[ ( , ) ( , )],
t xx

t xx

u d u u t x a b u t x c v t x
x R t

v d v v t x a b u t x c v t x
t t
t t

= + − − − −
∈ > = + − − − −

         (1.1) 

where ( 1,2,3,4)i it = are delays. In this paper, we assume 

[A] 1 1 1

2 2 2

b a c
b a c

> >  

With condition [A], the system (1.1) has a trivial equilibrium O, two semitrivial 
equilibria B and C, and positive equilibrium D as follows: 

2 1 2 1 1 2 1 2 2 1

2 1 1 2 2 1 1 2 2 1

(0,0), (0, ), ( ,0), ( , ) ( , ).x y
a a a c a c a b a bO B C D D D
c b c b c b c b c b

− −
=

− −
 

Lv and Wang [3] studied traveling waves of the delayed competitive 
reaction-diffusion system (1.1). But it is remarked that they only considered 
monotone traveling waves which connected the semi-trivial steady state B with C 
(strong competition). Monontone traveling waves of competitive system (1.1) will 
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become into a cooperative system by making a change of variable in this case. There 
are many papers which are concerned with the existence of traveling wavefronts of 
cooperative system. But coexistence of species are extensively observed in natural 
world, we will look for monotone traveling waves for system (1.1) which connected 
O and D (weak competition). In [2], Li, Lin and Ruan proposed some weak 
conditions (WQM) and (WQM*). By using cross-iteration, they reduced existence 
of traveling waves to existence of an admissible pair of upper and lower solutions. 
But they didn't get the monotonicity of traveling waves. As we all know, system (1.1) 
satisfies the condition (WQM*) under the assumption that 1 4,t t are sufficiently 
small. Fang and Wu [1] obtained a critical value for the existence of monotone 
traveling wave when 2 3t t= . However, for non-monotonic models it is not easy to 
construct a pair of appropriate upper-lower solutions for the application of 
Schauder’s fixed-point theorem. So we should mention the work [6,8] for 
non-monotonic system. Hence, we consider the necessary and sufficient conditions 
of monotone traveling waves for system (1.1) which connected O with D and the 
critical value of delay. 

Substituting ( ) ( ) ( , ), ( ) ( ) ( , )U U x ct u t x V V x ct v t xx x= − = = − =  into (1.1) 
and setting x ctx = − , we find that (1.1) has a pair of traveling wave solutions 
which connect O with D if and only if the following system 

1 1 1 1 1 1 2

2 2 2 2 3 2 4

[ , ]( ) ( ) ( ) ( ) ( )[ ( ) ( )] 0,
[ , ]( ) ( ) ( ) ( ) ( )[ ( ) ( )] 0,

L U V d U cU a U U bU c c V c
L U V d V cV a V V b U c c V c

x x x x x x t x t
x x x x x x t x t

′′ ′= + + − + + + =
 ′′ ′= + + − + + + =

    (1.2) 

has a pair of solutions ( ( ), ( ))U Vx x  on R, where 

1 2[ , ]( ) ( [ , ]( ), [ , ]( ))L U V L U V L U Vx x x= . 

2. Preliminaries 

For simplification, we assume 1 4 2 3, 2t t t t t= + = . 

Let  ( ) ( ) ,xU Dϕ x x= − ( ) ( ) yV Dy x x= − , Then the system (1.2) becomes 

 1 1 1 2

2 2 3 2

( ) ( ) [ ( )][ ( ) ( )],
( ) ( ) [ ( )][ ( ) ( )],

x

y

d c D b c c c
d c D b c c c
ϕ x ϕ x ϕ x ϕ x t y x t
y x y x y x ϕ x t y x t
′′ ′+ = + + + +

 ′′ ′+ = + + + +
     (2.1) 

The linearization of (2.1) about (0,0) yields 

1 1 1 2

2 2 3 2

( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ).

x x

y y

d c b D c c D c
d c b D c c D c
ϕ x ϕ x ϕ x t y x t
y x y x ϕ x t y x t
′′ ′+ = + + +

 ′′ ′+ = + + +
  

      (2.2) 

Then the characteristic equation of (2.2) about the point (0,0) is 
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2 2 2
1 1 2 2 2 1( , , ) ( )( ) 0c c c

x y x yc d c b D e d c c D e b c D D eλ t λ t λ tλ t λ λ λ λD = + − + − − =
   (2.3) 

A direct calculation will give the following result: 

Lemma 1. When assumption [A] is satisfied, the following statements hold true: 

(1) if 0t = , then 1 2 2 1lim ( , ,0) , (0, ,0) ( ) 0x yc c b c b c D D
λ

λ
→+∞

D = +∞ D = − > ; 

(2) for fixed 0λ > , then lim ( , , )c
t

λ t
→+∞

D = +∞  . 

Indeed, if 0t = , we have 
2 2

1 1 2 2 2 1( , ,0) ( )( ) ,x y x yc d c b D d c c D b c D Dλ λ λ λ λD = + − + − −

1 2 2 1lim ( , ,0) , (0, ,0) ( ) 0x yc c b c b c D D
λ

λ
→+∞

D = +∞ D = − > . 

Note that equation d 2 2
1 1 2 20( =0),x yd c b D or d c c Dλ λ λ λ+ − = + −  has two real 

roots: 1λ  and 2λ . And it is easy to see 1 0λ >  and 2 0λ < . Then we have 

1 2 1( , ,0) 0.x yc b c D DλD = − < Consequently, there exists 1 1(0, )λ λ∈ , such that 

1( , ,0) 0.cλD =  Now we can define { }1 1sup (0, ) ( , ,0) 0cλ λ λ λ
∗

= ∈ D = ,  then it 

follows that there exists 2 1 1( , )λ λ λ∗∈  such that 2( , ,0) 0cλD = .             
                  (2.4) 

From Lemma 1(2), for any fixed 2 0λ > , there existst large sufficiently such 

that 2( , , ) 0cλ tD >

 . Combining (2.4), there exist (0, )t t∗ ∈   such that 

2( , , ) 0cλ t ∗D = .  Therefore, 

{ }( ) sup 0 ( , , ) 0  has a positive root 0c ct t λ t λ∗ = > D = >                   
(2.5) 

is well defined. 

Lemma 2. Assume that [A] holds. If there exist 1 0x >  and decreasing functions 

1 2( , )z z  defined on { }1 0 0[0, ]( max )icx t t t+ = , which are 2C on 1[0, ]x , 

1 2 , 1 2( , )(0) ( ) , ( , )(0) 0x yz z D D z z′ ′= =  and satisfy 

1 2 1 1 2 2 1 2 1[ , ]( ) ( [ , ]( ), [ , ]( )) 0, [0, ],L z z L z z L z zx x x x x= ≥ ∈  

and     1 2 1 1 1 2 1[ , ]( ) ( ( ), ( )).T z z z c z cx x t x t≤ + +  

Then ( , )ϕ y  is an upper T-solution, where 
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1 1

1 1 1

( ), [0, ],
( )

( ), [ , ),
z
z
x x x

ϕ x
x x x

∈
=  ∈ +∞

and  2 1

2 1 1

( ), [0, ],
( )

( ), [ , ).
z
z

x x x
y x

x x x
∈

=  ∈ +∞
 

Proof.  In the case of 1[0, ]x x∈ , define   

1 1 2 2( , ) , ( , ) .H T H Tϕ y ϕ ϕ y y= − = −  

We can obtain that 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 1 1 1 1 1

( ) ( ) ( ) ( )
( )[ ( ) ( )] ( )( )

0

d H cH a H d T cT a T d z cz a z
z b z c c z c d z cz a z

x x x
x x t x t x
′′ ′ ′′ ′ ′′ ′+ + = + + − + +

′′ ′= + + + − + +
≤

 

2 2 2 2 2( ) ( ) ( ) 0,d H cH a Hx x x′′ ′+ + ≤   1 2 1 2(0) (0) 0, (0) (0) 0.H H H H′ ′= = = =  

then we can obtain that 

1 2 1( ) 0, ( ) 0, (0, ).H H for allx x x x≤ ≤ ∈  

If 1[ , )x x∈ +∞ , we have 

1 1 1 1 1 1 1( , )( ) ( , )( ) ( ) ( ) ( ),T T z c zϕ y x ϕ y x x t x ϕ x≤ ≤ + ≤ =  

2 2 1 2 1 2 1( , )( ) ( , )( ) ( ) ( ) ( ).T T z c zϕ y x ϕ y x x t x y x≤ ≤ + ≤ =  

It follows that ( , )ϕ y  is an upper T-solution. 

Lemma 3[9]  When n  is large enough and t t ∗> , there exists a 0m >  such 
that  1 0 1 0 2 1 0 0( ) ( ) ( ) ( ) n

x xb D c c D c d c mω x t ω x t ω x ω x x′′ ′+ + + − − ≥ , 

and   2 0 3 2 0 2 0 0( ) ( ) ( ) ( ) n
y yb D c c D c d c mω x t ω x t ω x ω x x′′ ′+ + + − − ≥ , 

where 0 ( ) nω x x= . 

Lemma 4[9]  Assume that [A] holds, the following statements are equivalent: 

(1)  The traveling wavefront of system (1.1) exists; 

(2)  ( , )x yD D is the unique nonincreasing upper T-solution when 0α = ; 

(3) There exists a pair of decreasing lower L-solutions defined on ( , )−∞ +∞ . 

3. Main Result 

Theorem1 Assume the system (1.1) satisfy [A]. Then for any 

{ }1 1 2 2max 2 , 2c a d a d≥ , there exists a critical ( ) (0, )ct t∗ ∗= ∈ +∞  such that if 

t t ∗≤ , system (1.1) has a monotone traveling wave solution; ift t ∗> , the system 
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(1.1) has no monotone traveling wave solution, where t ∗ is defined as (2.5). 

Proof.  (1) .t t ∗<  

Let λ  be a positive root of (2.4), then 1 2( ) ( , )W C C eλxx = is the solution of 
(2.2). For any ε , denote 

1 2( ) ( , ) ( , ) .x yX D D C C eλxx ε= −               
         (3.1) 

Then we have 

    
2

1 1 1 1 1 1 2 2 1 1

2
2 2 2 2 1 3 2 2 2 2

( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( )
x x x x y

y y y x y

d X cX b D X c c D X c b D c D D

d X cX b D X c c D X c c D b D D

x x x t x t

x x x t x t

′′ ′ + = + + + − +


′′ ′+ = + + + − +
  

      (3.2) 

Let us prove Theorem 1 by arguing contradiction. If system (1.1) has no 
monotone traveling wave solution, we can assume that there exists a nonincreasing 
upper T-solution ( ) ( , )x yX D Dx ≠ . Choose 0σ > , such that for small 
enough 0ε > , we have 

( ) ( , ) ( ) ( ).x yX D D W Xσ ε σ σ= − >     
        (3.3) 

Taking the limit on the both side of (3.1), it follows that lim ( ) .X
x

x
→+∞

= −∞  So 

( )X x  becomes negative for large x . Let { }1 2 3, ,c c cσ t t t> be the point where 

1( ) 0X σ = . 

Define { }( ) max ( ),0X Xx x= . In what follows, we will prove 
( ( )) ( ).T X Xx x≥  If 1[ , )x σ∈ +∞ , then we have that ( ) 0X x = , and hence 

T ( ( )) ( ).T X Xx x≥ . If 1[0, ),x σ∈  we have that ( ) ( )X Xx x= is 2C , therefore it 
is sufficient to prove that ( )X x  is a lower L-solution on the interval of 1[0, ),x σ∈ , 
namely, 

1 2[ ] 0, [ ] 0.L X L X≤ ≤  

If 1[0, ),cx σ t∈ −  we have 

1 1 1 1 1 2 2 1 1 1[ ] [ ( )][ ( )] [ ( )][ ( )] 0.x x y xL X D X c b D b X D X c c D c Xx t x x t x= − + − + + − + − + ≤

    If 1 1 2[ , ],c cx σ t σ t∈ − −  we have 1 2 2 2 2( ) 0, ( ) ( ),X c X c X cx t x t x t+ = + = +  
Since 2 1cx x t σ≤ + ≤ , we can get 1 1 1 2 2 2( ) ( ) 0, ( ) ( ) 0X X X c Xx σ x t σ≤ = + ≥ = . 
Then it follows that 
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1 1 1 1 2 2 1 1 2 2[ ] ( ( ) ) ( ( ) ) ( ) ( ) 0.x x x yL X b D X c D c D X c D c X X cx t x t x x t= + − + + − − + ≤  

If 1 2 1[ , ],cx σ t σ∈ −  we can obtain that 1 2 2( ) 0, ( ) 0,X c X cx t x t+ = + =  Since 

1 2( ) ( , ) ( , ) .x yX D D C C eλxx ε= − , then ( )X x  is decreasing function of x  and 

1 2 1( ) ( ( ), ( )) ( ) 0,X c X c X c Xx t x t x t σ+ = + + ≤ = . 

Hence we have 2
1 1 1 1 1 1 1 1[ ] ( ) ( ) ( ) 0.x x y x x yL X b D c D D a X D a b D c Dx≤ − + + ≤ − − =  

It follows that X  is the lower T-solution. From the definition of X , we have 
( ) ( )X Xσ σ> . This is a contradiction with Lemma 3. Therefore, the system (1.1) 

has a traveling wavefront with wave speed c  fort t ∗< . 

(2) .t t ∗=  

In the case where t t ∗= , we use a limiting argument. Choose a sequence 

(0, )jt t ∗∈   such that 2 3lim , 2j j j jj
t t t t t∗

→∞
= + = . According to the above 

arguments, there exists a traveling wavefront ( , , )j j jU V t  of (1.1) and for each j, 
we see from Helly’s theorem that there exists a subsequence of ( , )j jU V converging 

to monotonic functions ( , )U V  pointwise. Note that 

2 1

2 1

( ) ( )

1 1 2
1 2 1

( ) ( )

2 3 2
2 2 1

1( ) ( )[ ( ) ( )]d ,

1( ) ( )[ ( ) ( )]d .

s s

j x j j j j j

s s

j y j j j j j

e eU D U s bU s c c V s c s
d

e eV D V s b U s c c V s c s
d

λ x λ xx

µ x µ xx

x t t
λ λ

x t t
µ µ

− −

−∞

− −

−∞

 −
= + + + + −


− = + + + + −

∫

∫
 

Letting j →∞  and using Lebesgue’s dominated convergence theorem, it 
follows that ( , ) 0, ( , )( ) ( , )x yL U V U V D D= −∞ = . Furthermore, since ( , )U V  are 
decreasing, we have ( , )( ) (0, 0)U V +∞ = . Hence when t t ∗= , the system (1.1) 
has a traveling wavefront ( , )U V . 

(3) .t t ∗>  

In this case, we shall prove the nonexistence of traveling wavefronts for system 
(1.1) by using Lemma 4. We will construct a nonincreasing upper T-solution which 
is different from ( , )x yD D when 0α = . 

Let 1 2( ) ( ( ), ( ))=( , )n n
x yZ z z D Dx x x εx εx= − − , where ε is small sufficiently and 

n  is a large integer. In the following argument, we denote 0 ( ) nω x x=  and plan to 
estimate the 1 1 2 2 1 2[ ]( ) ( [ , ]( ), [ , ]( ))L Z L z z L z zx x x= . 

For any fixed 1 0x > , we can choose 0ε >  small enough such that 
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1[ ]( ) ( , ), [0, ]
2 2

n nm mL Z for allε x ε xx x x≥ ∈ ), 

Thus [ ]( )L Z x  can satisfy Lemma 2. Our next step is to choose 1 0x >  such that 

1 1[ ]( ) ( )T Z Z cx x t≤ + .Let 1 2( , ) [ ]( ) ( , ).n n
x y x yT D D T Z D Dεx εx x εω εω− − = = − −  

Then 1 2( , )ω ω  satisfies 

1 1 1 1 1

1 1 1 2 1 1 2
2 2

1 1 1 1 1 2

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ,

n n n n n n n
x x

n n n
x x

d c a
a b D c c D c b c c c

a b D c D b c c c

ω x ω x ω x

x x t x t εx x t εx x t

x ε x t ε x t

′′ ′+ +

= + + + + − + − +

≥ + + − + − +

 

and 
2 2

2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) .n n n
y yd c a a b D c D b c c cω x ω x ω x x ε x t ε x t′′ ′+ + ≥ + + − + − +

 

By a direct computation, it is easy to get 1 2 1 2( , )(0) (0,0), ( , )(0) (0,0)ω ω ω ω′ ′= = . 
Suppose that 1 2( , )ω ω  is a solution of the following problem       

  
2 2

1 1 1 1 1 1 1 1 1 1 2
2 2

2 2 2 2 2 2 2 2 2 3 2

1 2 1 2

( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) ,
( , )(0) (0,0), ( , )(0) (0,0).

n n n
x x

n n n
y y

d c a a b D c D b c c c

d c a a b D c D b c c c

ω x ω x ω x x ε x t ε x t

ω x ω x ω x x ε x t ε x t

ω ω ω ω

′′ ′ + + = + + − + − +


′′ ′+ + = + + − + − +
 ′ ′= =

    (3.4) 

It follows that 1 2 1 2( , ) ( , )ω ω ω ω≥ . In the following, we will consider the form 
of 1 2( , )ω ω . System (3.4) can be regarded as the perturbation of the following 
system  

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 2 1 2

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,
( , )(0) (0,0), ( , )(0) (0,0).

n
x x

n
y y

d c a a b D c D

d c a a b D c D

ω x ω x ω x x

ω x ω x ω x x

ω ω ω ω

′′ ′ + + = + +


′′ ′+ + = + +
 ′ ′= =

  

  

   

 

      (3.5) 

where ε  is a small parameter in the perturbation. By applying the theory of 
linear ordinary differential equations, we can obtain that the solution of (3.5) can be 
represented explicitly as a sum of a term coming from the general solution of the 
homogeneous equation and a particular solution. We can find that the form of the 
general solution is 1 2 1 2

1 2 1 2( , )C e C e C e C eλ x λ x µ x µ x+ + , where 2 1 2 10, 0λ λ µ µ≤ < ≤ < . 
It follows that this exponential function will decay to 0 as x → +∞ . On the other 
hand the particular solution has in the form of 
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2 2 21 1 1

1 2

( )( )
( ), ( ) .

nn
y yx x a b D c Da b D c D

lower order terms lower order terms
a a

xx + ++ +
+ +  

 
      (3.6) 

Therefore, we can choose 1 0x >  large enough that the solution of (3.6) satisfy 
that 

1 2 1 1 1 1( , )( ) (( ) , ( ) )n nm c cω ω x x t x t≥ + +  , 

where 1 < m1 < 2 2 21 1 1
1

1 2

1 min , y yx x a b D c Da b D c D
m

a a
+ + + +

< <  
 

. 

On the other hand, we can find that when 0ε → , the solution 1 2( , )ω ω  is 
convergent uniformly to the solution 1 2( , )ω ω   of (3.5) in 1[0, ]x . Hence we can 
choose suitable ε such that 1 2 1 1 1( , )( ) (( ) , ( ) )n nc cω ω x x t x t> + + . Therefore, we have 

1 2 1 1 1 1 2 1[ , ]( ) ( ( ) , ( ) ) [ , ]( ).n n
x yT z z D c D c z z cx ε x t ε x t x t≤ − + − + = +  

It follows that Lemma 2 is valid for 1 2( , )( ) ( , )n n
x yz z D Dx εx εx> − − . We get 

an upper T-solution ( , )ϕ y  which is different from ( , )x yD D  and nonincreasing. 

From Lemma 4, for any { }1 1 2 2max 2 , 2c a d a d≥ , there exists a critical 

( ) (0, )ct t∗ ∗= ∈ +∞  such that if t t ∗≤ , system (1.1) has a monotone traveling 
wave solution; ift t ∗> , the system (1.1) has no monotone traveling wave solution. 
The proof is completed. 
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