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Abstract: Every three-dimensional object can be computed by a two-dimensional plane with the help of 

integration. Inspired by Crofton formulas and the Cavalieri's Principle, this work derives a general 

method for the surface area of a polygonal in three-dimensional space. In fact, the surface area of a 

three-dimensional object can be subdivided into a finite number of small rectangle. This research 

represents the area of a rectangle by the number of the intersection point between the rectangle and the 

line passing through the rectangle in all directions. Next, this research computes the proportionality 

constant D of integration. Eventually, this research extends the result to a boarder discussion on the 

application of the obtained result to a smooth surface in ℝ3. Within the process of integration , the 

volume of a four-dimensional object in TS2 is calculated. This research jumps out from the conventional 

representation of the surface area using the one-dimension integral geometry. The reader will realize 

another technique of representing the surface area with the integration of the number of intersection 

points in a sub-divided parallelograms. Moreover, not only does the research extent the concept of 

Cavalieri's principle to a three-dimensional application, but also the solution incites a possible way 

using the intersection point to explore the volume or the surface area of an object in a higher dimension 

world. 
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1. Introduction 

1.1 Background 

Calculus is an essential section in the field of mathematics, because it allows us to use different 

solutions for many types of mathematical problems. In basic calculus courses, we have learned using 

integral to compute the surface area, specifically the area between a curve and coordinate axes, within a 

plane. The formula that we typically use to calculate the area A, assuming that f(x) is a continuous 

function of x while a and b are constant, is: 

𝐴(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

(1) 

Yet, as we live in a 3-dimensional world, we cannot always depend on 1-dimensional formula. There 

are numerous ways to calculate the surface area of a solid in ℝ3 using multivariable calculus, but none 

of them which uses the number of intersection points of the surface with cubes has been proved to enable 

the calculation of solid. Inspired by the Crofton Theorem in Planar Geometry, we derive a new method 

to compute the area of a surface in ℝ3. Belonging to the area of Integral Geometry, the new method is 

associated with a seemingly irrelevant number of intersection points of the surface with cubes. Thus, it 

is our task in this paper to prove the surprising method which has no relation with standard multivariable 

calculus formulas. 

1.2 Problem Restatement 

To find the formula involving the number of intersection points that allows us to compute the area of 

any surface in ℝ3, we are required to: 
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 Derive a formula related to the number of intersection points from the inspiration of Crofton 

Theorem; 

 Find a constant that makes the formula applicable; 

 Generalize the formula to smooth surface in ℝ3. 

2. Proof 

2.1 Defining Surface R and Solid WR 

2.1.1 Visualization of the Space of All Lines in ℝ3 

An origin-passing oriented line ℓ can represent every oriented line that does not pass through the 

origin, that is parallel to ℓ, and a vector v, that perpendicularly intersects and connects the line (that 

passes through the origin) and the line ℓ (that does not pass through the origin) at A and B. As the space 

of oriented lines that pass through the origin can be represented by a unit sphere 𝑆2 in ℝ3, vector v can 

be shifted along the oriented and origin passing line to a point where it becomes the tangent of the sphere 

𝑆2. 

 

Figure 1. Representation of An Oriented Line 

At point A, vector v is not the only possible tangent of the sphere 𝑆2. Every tangent vector of the 

sphere 𝑆2 that starts at point A represents a unique oriented line (the vector with magnitude zero is the 

oriented line that passes through the origin). All these vectors can be represented using a plane that is 

tangent the sphere 𝑆2 at point A, and this also represents the space of oriented lines in a specific direction. 

 

Figure 2. Representation of A Group of Oriented Lines 

In addition, point A is only one of the points on the unit sphere. There will be a tangent plane 

generated in every single point on the sphere to include the space of all oriented lines. This is the tangent 

bundle of the sphere, which is 
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𝑇𝑆2 ∈ ℝ3 

 

Figure 3. Representation of All Oriented Lines of ℝ3 [1] 

2.1.2 Defining the Volume of a Solid in 𝑻𝑺𝟐 

In this project, the aim is to try to derive an integral formula for the area of a surface in ℝ3 by counting 

the number of all oriented lines. the formula below can express the integral: 

𝐼(𝑅) = ∫ #(ℓ ∩ 𝑅)

ℓ∈ℒ=𝑇𝑆2

(2) 

where R is the polygonal surface, and ℒ is the space of all oriented lines (also the tangent bundle of 

the sphere 𝑆2). 

 

Figure 4. The Surface of Integration 

For a rectangle ABCD (shown on graph), an oriented line either has one, zero, or infinite intersection 

with it. While one and zero intersection are easy to visualize, lines that have infinite intersections with 

ABCD means it cuts the rectangle horizontally at a segment. As a point has no length, a segment in any 

length means infinite intersection points. However, the set of all lines that have infinite intersection points 

has measure zero in the space of all oriented lines in ℝ𝟑. This means these lines can be disregarded when 

finding the formula of the integral of the surface. Thus, 

∫ 𝐷 ∙ #(ℓ ∩ 𝑅) =

ℓ∈ℒ=𝑇𝑆2

∫ 𝐷 ∙ #(1)

ℓ∈ℒ=𝑇𝑆2

(3) 

As the surface to integrated is in ℝ𝟑, the result of the integral will give us the volume of a 4-

dimensional solid 𝑊𝑅. 

2.1.3 Visualization of 𝑾𝑹 ∈ 𝑻𝑺𝟐 

As 𝑇𝑆2 is a 4-dimensional manifold, it represents the space of all lines in ℝ3. By this, the volume of 

Solid WR in 𝑇𝑆2 is defined as the space of all lines that intersects at the surface R with exactly one point, 

which is the junction between the solid and 𝑇𝑆2. By measuring Solid W's intersection with a specific 

tangent plane, the Cavalieri's principle can be used in order to integrate over the space of all tangent 

planes and derive the volume. The reason behind this is that a point on 𝑇𝑆2 (which represents an oriented 

line in ℝ𝟑) can either intersect W once or none. 
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Figure 5. Defining the Volume of the Solid 

Because of this by counting all the points that are contained by the solid 𝑊𝑅,  which are oriented lines 

that intersect the surface in ℝ𝟑 once, one can derive the volume of the solid 𝑊𝑅, and the formula for the 

volume (I(R)) of the solid is 

𝐼(𝑅) = ∫ 𝐴𝑟𝑒𝑎 (𝑊𝑅 ∩ 𝑇𝑝1𝑆
2)

ℓ∈𝑇𝑆2

(4) 

where 𝑇𝑝1 is a specific tangent plane chosen. In addition, there is a proportional constant D, which 

links I(R) and area of the surface R by 

𝐼(𝑅) = 𝐷 ∙ 𝐴𝑟𝑒𝑎(𝑅) (5) 

The value of D is revealed by later steps. 

2.2 Translation and Rotation Invariance of Surface 

2.2.1 Translation Invariance 

Provided that R is a rectangle in ℝ2Recall Equation 2: 

𝐼(𝑅) = ∫ # 𝑜𝑓 (ℓ ∩ 𝑅)

ℓ∈ℒ

 

To elaborate, the number of(ℓ ∩ 𝑅) can only be zero, one, and infinite (coincidence). 

Given that a line in ℝ3 indicates a point in tangent bundle TS2 of S2 and WR denotes a solid belonging 

to ℒ = 𝑇𝑆
2
, I(R) represents the volume of WR consisting of all lines such that # 𝑜𝑓 (ℓ ∩ 𝑅) = 1, and 

thereby I(R) equal to the integration for the area of cross-section where WR intersects the tangent plane. 

𝐼(𝑅) = 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑊𝑅) = ∫ 𝐴𝑟𝑒𝑎 (𝑊𝑅 ∩ 𝑇𝑆2)

ℓ∈𝑆2

(6) 

Only the lines of one intersection with the rectangle are counted since the part of the domain where 

the function is zero does not influence the value of the integral while the integration of infinity is 

meaningless, and the set of all lines that intersect R in infinitely many points has measure zero in the 

space of all lines. 

Suppose R is translated by a vector 𝑟
0

⃗⃗  ⃗
, naming the new rectangle as 𝑅 + 𝑟

0
⃗⃗  ⃗

. Expectedly, all lines that 

have one intersection point with the new rectangle will translate 𝑟
0

⃗⃗  ⃗
 with respect to the corresponding 

lines as well, thus WR translated as 𝑊
𝑅+𝑟0

⃗⃗⃗⃗ . As the solid is translated by 𝑟
0

⃗⃗  ⃗
, the cross-section – 

intersections between the solid and the tangent plane – is translated by the projection of 𝑟
0

⃗⃗  ⃗
. Thus, the 

areas for the cross-sections of the two solids by the subsets corresponding to the tangent plane at each 

point P in S2 are the same. 



The Frontiers of Society, Science and Technology 

ISSN 2616-7433 Vol. 3, Issue 1: 155-163, DOI: 10.25236/FSST.2021.030125 

Published by Francis Academic Press, UK 

-159- 

∫ 𝐴𝑟𝑒𝑎 (𝑊𝑅 ∩ 𝑇𝑃𝑆
2)

ℓ∈𝑆2

= ∫ 𝐴𝑟𝑒𝑎 (𝑊𝑅+𝑟0⃗⃗⃗⃗ ∩ 𝑇𝑃𝑆
2)

ℓ∈𝑆2

(7) 

According to Cavalieri's Principle (illustrated by the below diagram), which elucidates that solids 

with equal heights and identical cross-sectional areas at each height have the same volume, 

 

Figure 6. Illustration of Cavalieri's Principle [2] 

we can conclude the following: 

𝑉𝑜𝑙𝑢𝑚𝑒 (𝑊𝑅) = 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑊𝑅+𝑟0⃗⃗⃗⃗ ) (8) 

Hence, 

𝐼(𝑅) = 𝐼(𝑅 + 𝑟0⃗⃗⃗  ) (9) 

2.2.2 Rotation Invariance 

In proving 

𝐼(𝑅) = 𝐼[𝑟(𝑙, 𝜑)𝑅], 𝑟 ∈ [0, 𝜋] × [0,2𝜋] 
r refers to the rotation angle of rectangle R in three-dimensional space, and l is the axis of rotation 

while 𝜑 is the value of rotation angle r. 

As mentioned above in Equation 2, the definition of I(R) is  

𝐼(𝑅) = ∫ # (ℓ ∩  𝑅)

 ℓ 𝜖 ℒ

 

Rotate rectangle R by some angle r around an axis of rotation l. Each rectangle's intersection point 

will correspondingly rotate by the same angle r. Compare the intersection of the initial point and the 

rotated point according to the Cavalieri's Principle, the integral of all of the intersections after rotation is 

equal to the integral before rotation. Therefore, Equation 10 can be concluded: 

∫ 𝐴𝑟𝑒𝑎 (𝑊
𝑅
∩ 𝑇𝑣𝑆

2
)

𝑣 ∈ 𝑆2

= ∫ 𝐴𝑟𝑒𝑎 (𝑊
𝑟𝑅

∩ 𝑇[𝑟𝑣]𝑆
2
)

𝑣 ∈ 𝑆2

(10) 

which is 

𝐼(𝑅) = 𝐼[𝑟(𝑙, 𝜑)𝑅] (11) 

2.3 Proportionality Constant 

2.3.1 Existence of a Constant 

Define 𝑅
𝑥,𝑦

 as the rectangle R rescaled by a factor x in x-direction, y in y-direction from the unit 

square 𝑅
1,1

. For example, if 𝑥 = 2 and 𝑦 =3, 𝑅
2,3

 means rectangle R rescaled by 2 units in x-direction, 

3 in y-direction. According to step 2, the definition of the 𝑅
2,3

 is a small rectangle 𝑅
1,1

 translate 2 units 

in x- direction, 3 units in y-direction. As the picture shows, small rectangle r(R1,1) translate to r'. The 

integral of r is equal to r', and the I(R2,3)=2×3I(R1,1). Hence, 

𝐼(𝑅𝑥,𝑦) = 𝑥𝑦𝐼(𝑅) (12) 
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Figure 7. The Transition of r to r' 

Define 
p1

q1
 ,

p2

q2
 as two rational numbers. Hence, 

I (R
p1
q1

,
q1
q2) =

p1

q1
×

p2

q2
I(R) (13) 

If 
p

q
 (p is an integral) is a rational number, it's arranged on the number axis at a distance of 

1

n
. As n 

increases, the spacing 
1

n
 can get infinitely smaller (as the result that there will always be another rational 

number between any two chosen rational numbers), so ℚ × ℚ is dense in ℝ × ℝ. 

In conclusion, Equation 12 is true for all real numbers. Thus, 

𝐼(𝑅𝑥,𝑦) = 𝑥𝑦𝐼(𝑅), x,y ∈ ℝ 

As the picture shows, define point D as the right upper corner (x,y). 

 

Figure 8. Defining Point D 

Hence, I(R)=f(x,y) where f(x,y) is a continuous function which has two variables, and there exists a 

constant D such that 

𝐼(𝑅) = 𝐷 × 𝐴𝑟𝑒𝑎(𝑅)  

2.3.2 The Value of the Constant 

The surface is separated into curvilinear parallelograms and approximated parallelograms whose area 

can add up to approximate the whole surface. To compute the proportionality constant D, we can find a 

special situation where the surface is a unit disk centered at the origin of the coordinate system. The 

constant for this special situation can be applied to any general situation because the surface can not 

affect the constant. The radius of the disk is 1 because it's a unit disk. N is a unit vector that starts from 

the origin, which is the center of the circle. The angle between xy plane and z axis is 𝜑
1
; the angle 

between y-axis and x-axis is 𝜑
2
. An eclipse can be obtained by projecting the unit disk to the tangent 
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plane that is orthogonal to N and passes through the endpoint of N. All lines that are parallel to N and 

pass through the unit disk will pass through the eclipse on the tangent plane. Let the lengths of the two 

half axis of the eclipse be a and b. 

𝐴𝑟𝑒𝑎 (𝑑𝑖𝑠𝑘) = 𝑟2 (14) 

𝑟 = 1 (15) 

𝐼(𝑅) = 𝐷 × 𝐴𝑟𝑒𝑎(𝑑𝑖𝑠𝑘) 

𝐼(𝑅) = ∬ 𝑠𝑖𝑛𝜑
1
𝐴𝑟𝑒𝑎 (𝑒𝑙𝑙𝑖𝑝𝑠𝑒)𝑑𝜑

1
𝑑𝜑

2

2 

0 0

(16) 

𝐴𝑟𝑒𝑎(𝑒𝑙𝑙𝑖𝑝𝑠𝑒) = 𝑎𝑏 (17) 

𝜑
1
[0, ] (𝜑

1
= − 𝜑

1
, 𝑤ℎ𝑒𝑛𝜑

1
>


2
) , 𝜑

2
[0,2) (18) 

 

Figure 9. Geometric Computation of Axis a 

With the simple geometric analysis shown in the graph below, we can get that 

𝑎 = 𝑐𝑜𝑠𝜑
1

(19) 

While a is changing with 𝜑
1
, b doesn't change and always remains the same value, 

𝑏 = 1 (20) 

Above all, constant D can be computed with Equation 21, where 

𝐷 =
∬ 𝑠𝑖𝑛𝜑

1
𝐴𝑟𝑒𝑎(𝑒𝑙𝑙𝑖𝑝𝑠𝑒)𝑑𝜑

1
𝑑𝜑

2

2 

0 0

𝐴𝑟𝑒𝑎(𝑑𝑖𝑠𝑘)
(21) 

= ∬ 𝑠𝑖𝑛𝜑
1
𝑐𝑜𝑠𝜑

1
 𝑑𝜑

1
𝑑𝜑

2

2 

0 0

 

= 2 ∬ 𝑠𝑖𝑛𝜑
1
𝑐𝑜𝑠𝜑

1
 𝑑𝜑

1
𝑑𝜑

2

2 

2

0 0

 

  = 2∫ (
1

2
(𝑠𝑖𝑛𝜑

1
)2)

2

0

𝑑𝜑
2
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    = ∫ 1

2

0

𝑑𝜑
2
 

 = 2 

2.4 Generalization of Results to Smooth Surface 

A smooth surface means that each point of the surface has its unique tangent plane. A surface in ℝ3 

can be described with x = x (s, t), y = y (s, t), z = z (s, t), while two parameters, s and t are numbers in ℝ. 

Therefore, φ (s, t) = (x (s, t), y (s, t), z (s, t)) is the differentiable map from D, the domain in ℝ2, into ℝ3, 

which is how the smooth surface is defined. The formula of the mapping is φ: D → ℝ3. 

Adding on to it, fixing one parameter can generate a curve on the surface. s and t can be used to 

represent coordinates. Say s is fixed, then t would vary, so the formula of it is φ (s0, t). Similarly, φ (s, t0) 

means fixing t and vary s. Δs and Δt are the multiples, respectively for the curve which fixed s and the 

curve fixed t. Take Δs as an example. It refers to the distance between two curves, which both fixed s. 

Therefore, because Δt works similarly, this is how the grid curves are formed. It is also like the 

construction of the longitudes and latitudes of the globe, and the sphere is just a very typical smooth 

surface that lives in ℝ3. 

 

Figure 10. Grid Curves on Sphere [3] 

Grid curves can subdivide a smooth surface into curvilinear parallelograms. Each curvilinear 

parallelogram is close to the corresponding parallelogram constructed of straight sides. A parallelogram 

with straight sides has Δs × the velocity vector of the s grid curve and Δt × the velocity vector of the t 

grid curve as its two sides. The following graph is an example of the velocity vectors of a sphere. 

 

Figure 11. Velocity Vectors of Grid Curves [3] 

Every point N on a smooth surface can have two corresponding vectors. These two vectors can form 

a true parallelogram which is not stick on the surface. However, grid curves can form curvilinear 

parallelograms, which can be significantly close to parallelograms with straight sides. The formula of the 

curvilinear parallelogram is 𝜙[(𝑠
0
, 𝑠

0
+ ∆𝑠) × (𝑡

0
, 𝑡

0
+ ∆𝑡)]. 

Using the idea of the Riemann Sum, the smaller Δs and Δt are, the closer the true parallelograms and 

N 
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curvilinear parallelograms can be. Therefore, the area of smooth surface equals the limit of the sum of 

the area of true parallelograms as the number of parallelograms goes to infinity by definition. This is the 

formula: 

∬#(⅀ ∩  ℓ)

ℓ ∈ ℒ

= ∬#(S ∩  ℓ)

ℓ ∈ ℒ

= 2𝜋 × 𝐴𝑟𝑒𝑎(𝑆) (22) 

where ⅀  represents the sum of the area of true parallelograms, S represents the actual surface area 

the work is dealing with, and 2π is the constant D, which is obtained through computation previously. 

Previous steps inspired by Crofton Theorem in ℝ3 deal with rectangles. However, using the scissors 

congruence parallelograms with straight sides can be subdivided into a finite number of triangles and 

then reassemble to rectangles. The following diagram shows the principle of scissors congruence. 

 

Figure 12. Principle of Scissors Congruence [4] 

3. Conclusion 

Inspired by Crofton formulas and the Cavalieri's Principle, the work above derives a general formula 

which has the proportionality constant D = 2π obtained through the calculation for the surface area of a 

polygonal in 3-dimensional space. Furthermore, by constructing the grid curves and using scissor 

congruence, the result can be generalized to smooth surfaces for broader application and discussion using 

Equation 22:  

∬#(⅀ ∩  ℓ)

ℓ ∈ ℒ

= ∬#(S ∩  ℓ)

ℓ ∈ ℒ

= 2𝜋 × 𝐴𝑟𝑒𝑎(𝑆)  

This method relies on the number of intersection points to integrate surface area in 3D space, which 

is the highlight of this work as this creative concept differs from conventional representations. 

Additionally, steps of proof and ideas mentioned in this work suggest possible thoughts to attain formulas 

for curve length in 3D and surface in higher dimensions. Though the constant D = 2π is particularly for 

the 3-dimensional situation, higher dimensions can employ similar procedures to calculate the specific 

proportional value. 

References 

[1] blakenator123. (2019) Tangent Bundle Over the Sphere. 

https://www.youtube.com/watch?v=lF_jSElv7ms. 

[2] MBF Bioscience. Branched Structure Analysis: Neuron Summary. 

https://www.mbfbioscience.com/help/nx11/Content/Analyses/ Branched%20Structure/neuronSumm.htm. 

[3] 123RF. Globe 3D Model of the Earth or of the Planet, Model of the Celestial. 

https://www.123rf.com/photo_83143596_stock-vector-globe-3d-model-of-the-earth-or-of-the-planet-

model-of-the-celestial-sphere-with-coordinate-grid-vect.html 

[4] Mathematics Stack Exchange. (1969) Area of Parallelogram = Area of Square. Shear Transform. 

https://math.stackexchange.com/questions/3302853/area-of-parallelogram-area-of-square-shear-

transform 


