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Abstract: In this paper, we study a class of Schrödinger equations including multiple different periodic 
potentials, this type of equation has a strong physical background and has become a hot topic in current 
research, especially its widespread application in the theory of Bose-Einstein condensates. Under some 
appropriate assumptions, we prove the existence of ground state solutions using the variational methods 
and the concentration compactness principle. Additionally, defining the equation on an unbounded 
domain and excluding semi-trivial solutions are relatively difficult parts. In the proofs we apply the 
variant of the Mountain Pass Theorem where it is considered the Gerami condition instead of the Palais-
Smale condition. 
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1. Introduction 

This paper deals with the existence of ground state solutions to the following Schrödinger equation 
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where 3≤N , )2,1()(),( =ixbxa ii are positive periodic functions in the variable x , 0>λ is a 
coupling constant. These systems of equations are widely used in various branches of physical problems, 
such as nonlinear optics, materials science, Bose-Einstein condensates theory and so on. In particular, 
when =λ   

0, Eq. (1) gives back to two general Schrödinger equations. In the past several years, many authors[1-
6] have studied the linear coupled Schrödinger equation 
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here )(, 1 NHvu R∈ , )(),( vguf are nonlinear continuous functions. Under certain conditions, they 
proved the existence of a series of nontrivial solutions for Eq. (2). Furthermore, it is not difficult to see 
that Eq. (1) is more complex than Eq. (2) due to the different forms of coupling terms. More precisely, 
Eq. (2) does not have semi-trivial solutions )0,(u and ),0( v , while Eq. (1) requires more precise analysis 
techniques to exclude semi-trivial solutions.  

Motivated by the works mentioned above, especially by [3,6], the purpose of this paper is to study 
the Eq. (1) involving multiple different periodic potentials. More specifically, based on the variational 
methods, we follow the Mountain Pass Theorem of the Gerami condition instead of the Palais-Smale 
condition, the Nehari manifold method and the concentration compactness principle to prove the 
existence of the ground state solutions for Eq. (1). In order to obtain the main results, we assume that 

)(),( xbxa ii andλ satisfying the following conditions: 

)1(V  )(),()(),( NN
ii LCxbxa RRR



∞∈ are 1-periodic in each of Nxxx ,,, 21  ; 

)2(V  there exist constants 0, >ii ba such that iiii bxbaxa ≥≥ )(,)( for all Nx R∈ ; 
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)3(V  there exists constant 0ˆ >ib such that )(supˆ xbb i
x

i
NR∈

= and coupling constant 0>λ . 

Now we provide a detailed presentation of our main results. 

Theorem 1 Suppose that )3(V)1(V − hold. Then there exists 0ˆ >λ such that λλ ˆ> , Eq. (1) has at 
least one ground state solution ),( vu . 

2. Preliminaries and Functional Setting 

In this section, we introduce some notations and establish the variational setting of Eq. (1) for use in 
the entire paper. 

p|| ⋅ is the usual norm of the space )( NpL R for all ∞≤≤ p1 , }|:|{:)( rxyyxB N
r <−∈= R for 

any 0>r and Nx R∈ , o(1) denotes any quantity which tends to zero when ∞→n . Moreover, if we 
take a subsequence of the sequence )},{( nn vu , we shall denote it again as )},{( nn vu . Recalling that 

the definition of the Hilbert space )(1 NH R endowed with the standard scalar product and norm 
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Let the working space 

}||:||)({)( 211 ∞<∈= T
NN

T uHuH RR  

be equipped with the norm ∫ +∇=
NT

xuTuu
R

d)|||(||||| 222 , where )(: xaT i= . Moreover, define the 

norm of the space )()( 1
)(

1
)( 21

N
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N
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2
)( )||||||(||||),(||
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and *E is the dual space of E . We infer from )3(V)1(V − that the norms )(|||| xai
⋅ and |||| ⋅ are equivalent. 

In the meantime )(1
)(

N
xai

H R is continuously embedded into )( NpL R for all ]2,2[ *∈p , where ∞=*2  

if 2,1=N , and 62* = if 3=N .  

As a consequence, the functional ),(1 RECJ ∈ given by 
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is well defined. Thus, we deduce from the critical point theory that every nontrivial critical point of
J  

is a solution of Eq. (1). Furthermore, the Nehari manifold corresponding to J is defined by 

}0),(),,(:)}0,0{(\),{( =′∈= vuvuJEvuN  

and 

),(inf:
),(

vuJc
vu N∈

= . 

3. Proof of Theorem 1 

In this section, we give the proof of Theorem 1. Before that, we need to some useful lemmas. 
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Lemma 1 Suppose that )3(V)1(V − are satisfied. Then  

1) for any )}0,0{(\),( Evuz ∈= , there is a unique 0>zt such that N∈ztz ; 

2) )()( tzJzJ ≥ for all N∈= ),( vuz and 0≥t .  

Proof (1) For each )}0,0{(\),( Evuz ∈= and 0≥t , we define )()( tzJt =φ , using 0)( =′ tφ  
leads to N∈tz , which implies that 

∫ ++=
N

xvuvxbuxbtvu
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By )3(V)1(V − , we have 0)0( =φ , 0)( >tφ for 0>t small and 0)( <tφ for t large, due to the 

right end of (3) strictly monotone increasing. Then, )(max
0

t
t

φ
≥

is achieved at a unique 0>zt so that

=′ )( ztφ 0 and N∈ztz .   

(2) For all N∈= ),( vuz and 0≥t , one sees that 
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Then (2) holds.  

Lemma 2 (Mountain Pass Geometry, see[7]) Suppose that )3(V)1(V − are satisfied. It is easy to 
verify that the functional J satisfies the following conditions: 

1) there exist positive constants ρτ, such that τ≥),( vuJ provided with ρ=||),(|| vu ; 

2) there exists Eee ∈),( 21 with ρ>||),(|| 21 ee such that 0),( 21 <eeJ .  

Define  

),(maxinf
0)}0,0\{(),(1 tvtuJc

tEvu ≥∈
= ,  ))((supinf

10
2 tJc

tΓ
γ

γ ≤≤∈
= , 

where  

}0))1((),0,0()0(:)],1,0([{ ≤=∈= γγγ JECΓ . 

Consequently, by Lemmas 1 and 2, similar to the proof in [8], one can check that 021 >== ccc
and there exists a Gerami sequence Evu nn ⊂)},{( at the level c such that  

cvuJ nn →),(   and  0||),(||)||),(||1( * →′+ EnnEnn vuJvu .          (4) 

Lemma 3 Suppose that )3(V)1(V − are satisfied. Then the following results hold: 

1) any Gerami sequence Evu nn ⊂)},{( satisfying (4) is bounded; 

2) if ),( vu is a ground state solution of Eq. (1), then there exists a constant 0ˆ >λ such that 0, ≠vu
for any λλ ˆ> .  

Proof  (1) For any Gerami sequence )},{( nn vu satisfying (4) in E , we have 
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2||),(||
4
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4
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which implies that )},{( nn vu is bounded in E ; 

(2) Following the idea of the proof [9,10], it is easy to see that 
Nxuxbuxau R∈=+∆− ,)()( 3

11                     (5) 

and  
Nxvxbvxav R∈=+∆− ,)()( 3

22                     (6) 

have at least ground state solutions 1u and 1v respectively in )(1 NH R . Thus, in order to prove (ii) in 
Lemma 3, we need to verify the following inequality 

)},0(),0,(min{ 11 vJuJc < .                          (7) 

According to the discussion method in Lemma 3.3 of [3], one can get that  
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on a set )}0,0(),(,0,:),{(: ≠≥= tststsΛ . We noticed that 1u and 1v are ground state solutions 
of (5) and (6) respectively, thus one has 
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Furthermore, it is not difficult to obtain 
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To prove that (7) holds, it is necessary to prove that ),( tsw does not take the minimum on the lines
0=s or 0=t of Λ . Thus, for all 0,,,, >TSRQP , we can easily verify that the necessary and 

sufficient condition for binary function  
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not to take a minimum is .0,0 >−>− QRPSPTQS Then from 0>− PTQS that  
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Therefore, by (8) and (9), we have 

∫
∫

∫
∫ =>

N

N

N

N

xvu

xuxb

xvuv

xvxbu

xa

xa

R

R

R

R

d||||

d||)(

d||||||||

d||)(||||
2

1
2

1

4
11

2
1

2
1

2
)(1

4
12

2
)(1

2

1λ  

∫
∫≥

N

N

xvu

xub

R

R

d||||

d||
2

1
2

1

4
11

. 

Similarly, it follows from 0>−QRPS and (8) that 
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Finally, we define 













=
∫
∫

∫
∫

N

N

N

N

xvu

xvb

xvu

xub

R

R

R

R

d||||

d||
,

d||||

d||
max:ˆ

2
1

2
1

4
12

2
1

2
1

4
11

λ , 

then (7) holds when λλ ˆ> .     

We are Now Ready to Prove Theorem 1 From (i) in Lemma 3, there exists bounded Gerami 
sequence Evu nn ⊂)},{( satisfying (4). If  

0d)|||(|supsuplim
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it follows from the Lions’ concentration compactness principle [11] that ,0|||| →+ p
pn

p
pn vu    

for all )2,2( *∈p . 

Then one has 
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)1(o= . 

This is a contradiction. Thus 0>ξ .  

Passing to a subsequence if necessary, there exists N
nk Ζ∈ such that 
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Set ))(),(())(),(( nnnnnn kxvkxuxvxu ++= . We have 
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Combining )1(V ,(4) and the translation invariance of J andN , we obtain that 

cvuJ nn →),(   and  0||),(||)||),(||1( * →′+ EnnEnn vuJvu .           (11) 

If necessary, take another subsequence, we assume that there exists Evu ∈),( such that ),( nn vu  

),(weakly vu→ in E , ),( nn vu ),( vu→ in )( Np
locL R ))2,2[( *∈∀ p and

),())(),(( vuxvxu nn → a.e. on NR . It follows from (10) that )0,0(),( ≠vu . Using a standard 

analysis, one has 0),( =′ vuJ , N∈),( vu and cvuJ ≥),( . Furthermore, by (11) and Fatou’s 
lemma, we can see that 
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Then we have cvuJ =),( . Recalling that the (ii) of Lemma 3, there exists a constant 0ˆ >λ such 

that 0, ≠vu for λλ ˆ> , thus we conclude that ),( vu is a ground state solution. 

4. Conclusions 

Based on the variational methods and the critical point theory, this paper proved the existence of 
ground state solutions for a class of two-component coupled Schrödinger equations with multiple 
different periodic potentials. In order to find the ground state solutions, we adopted a series of clever 
analytical techniques to overcome the difficulties of exclude semi-trivial solutions and lack of 
compactness.  
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