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Abstract: Efficient repair of structural damage in coal bunkers is crucial for minimizing economic losses 
in mining operations. Current repair practices often face challenges like poor visibility and high risk. 
This study proposes a novel solution using lidar SLAM(simultaneous localization and mapping) 
technology with the ICP (iterative closest point) algorithm to address these challenges, aiming to 
enhance safety and efficiency in coal bunker repairs. A specialized detection system is designed for coal 
bunker exploration robots, integrating 3D visualization software for real-time monitoring, attitude 
adjustment, and cross-sectional surveillance. Key hardware components include a laser radar for 
precise scanning and balance sensors for stability. Extensive experimental trials on coal bunkers validate 
the system's exceptional precision, with key performance metrics such as ATE (absolute trajectory error) 
and RTE (relative trajectory error) consistently below 0.01, meeting the rigorous demands of bunker 
inspection. The system efficiently detects critical structural anomalies like protruding reinforcement bars 
and partial wall ruptures, issuing timely warnings for potential hazards. These results validate the 
system's robustness and accuracy in identifying and characterizing coal bunker damage, providing 
actionable guidelines for safe, efficient, and technologically advanced bunker inspections. 

Keywords: ICP; Lidar SLAM; Coal Bunker Structural Damage Detection; 3D Scanning; Coal Storage 
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1. Introduction 

Coal bunkers are essential storage facilities for coal [1-2], comprising four main parts: an upper 
opening, body, lower opening, and coal discharge gate. While crucial for coal transportation, they face 
issues like wall adhesion, deformation, and blockages due to coal properties and construction factors [3-
4]. Current underground bunkers rely heavily on manual labor, posing safety risks in hazardous working 
conditions. Enhancing bunker perception capabilities is vital for safety and operational efficiency, crucial 
for improving safety standards. 

To improve the efficiency of removing adhesive condensate layers on coal bunker walls, enhance the 
perception capability of coal bunkers, and ensure the safety of clearance personnel, France's Standard 
Industries International developed the POWERNET and GIONET systems for efficient coal bunker 
cleaning. Pneumat Systems' BinWhip system tackles powder silo wall cleaning. Jingguo Ma and Zubang 
Li[5] proposed a coal level detection method, with limitations in underground bunkers. Kajzar V, 
Kukutsch R[6], used 3D laser scanning for coal mine stability monitoring. Quan Jiang, S Zhong[7], 
measured tunnel deformations with 3D laser scanning. Laser SLAM methods include graph optimization 
and filter-based approaches[8]. Distance-based methods like ICP[9] are for scan matching. Loop closure 
detection uses Monte Carlo node search and FPFH-based algorithms[10-14]. Back-end optimization 
includes C-T SLAM, BALM, and LIO-SAM[15-17]. The focus is on distance-based methods and 3D 
scanning systems[18]. 

This paper suggests using a 3D Lidar SLAM approach with the ICP algorithm for inspecting 
underground coal silos. It aims to address challenges in measuring material positions and monitoring silo 
deformations while ensuring dust penetration capability and measurement accuracy. This involves 
breaking through underground protection technology for 3D laser sensors and designing a lightweight 
sensor stabilization and scanning mechanism. Efficient measurement and comparison of coal silo inner 
wall features are achieved through rapid point cloud stitching and data storage algorithms. This enables 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.7, Issue 3: 29-38, DOI: 10.25236/AJETS.2024.070305 

Published by Francis Academic Press, UK 
-30- 

timely detection and localization of cohesion and deformation issues, ensuring safe raw coal 
transportation. 

2. Materials and Methods 

2.1. The principle of two-dimensional digital measurements of coal bunkers 

We adopt a short-range phase-shift laser rangefinder utilizing the digital phase measurement principle 
[19] for precise distance determination in coal bunker inspections. This approach calculates the distance 
based on the phase delay induced by a modulated laser signal traveling along the measurement path. The 
relationship between the phase delay, angular frequency ω, and distance is given by equation (2). 
Integrating this relationship into the basic distance formula (equation 1), we derive the distance 
expression (equation 3). 

𝐷𝐷 = 𝑐𝑐𝑐𝑐/2                                                                         (1) 

In the formula: D represents the distance between Points A and B.c represents the speed at which the 
laser propagates in the air.t represents the time required for one round trip from Sensor A to Point B on 
the coal bunker wall. 

𝑡𝑡 = 𝜑𝜑/𝜔𝜔                                                                          (2) 

𝐷𝐷 = 1/2𝑐𝑐𝑐𝑐 = 1/2𝑐𝑐 · 𝜑𝜑/𝜔𝜔 = 𝑐𝑐/(4𝜋𝜋𝜋𝜋)(𝑁𝑁𝑁𝑁 + 𝛥𝛥𝛥𝛥) = 𝑐𝑐/4𝑓𝑓(𝑁𝑁 + 𝛥𝛥𝛥𝛥) = 𝑈𝑈(𝑁𝑁+)            (3) 

In the formula: φ is the total phase delay generated by one round trip of the signal on the measuring 
line. ω  is the angular frequency of the modulating signal. N  is the number of half wavelengths of 
modulation contained in the measuring line. Δφ is the phase delay that is less than π from one round trip 
of the signal on the measuring line. ΔN is the decimal part of the modulated wave that is less than half a 
wavelength in the measuring line, where ΔN =  φ/ω. 

2.2. Construction of a Lidar SLAM graph optimization framework based on the ICP algorithm 

2.2.1. Graph optimization framework construction 

Our study employs a high-precision ICP (iterative closest point algorithm) to register 3D point clouds 
from continuous frames, keyframes, and loop closures. By incorporating constraints such as key poses, 
coal bin planes, and loop closures, we develop an optimized SLAM (simultaneous localization and 
mapping) graph specifically for coal bunker environments.[20] 

The framework (Figure 1) consists of four parallel threads: Lidar odometry, plane constraint, loop 
constraint, and pose optimization. Input data includes 3D point clouds (blue arrows) and LiDAR 
odometry (black arrows), while red arrows indicate pose constraints during optimization. This process 
yields optimized pose information and denoised point cloud maps, with ICP initially employed for inter-
keyframe registration and subsequently for refining keyframe poses, which serve as pose nodes in the 
SLAM graph.[21] 
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Figure 1: The iterative closest point and simultaneous localization and mapping system framework. 
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2.2.2. Lidar attitude adjustment 

The ICP algorithm aligns the incoming real-time point cloud with the previously acquired point cloud 
to determine the relative pose ΔTt−1,t from t to t − 1, where the position of the point cloud at time t − 1 
is Tt−1. Thus, the pose of the 3D laser scanner at time t can be computed using equation (4): 

𝑇𝑇𝑡𝑡 = 𝑇𝑇𝑡𝑡−1𝛥𝛥𝑇𝑇𝑡𝑡−1,𝑡𝑡                                                                (4) 

By iteratively executing the ICP algorithm, the pose of a 3D laser scanner can be precisely established 
at any moment.[22] 

Utilizing the odometry between consecutive frames, the pose of the (k − 1)th keyframe, Tk−1, and 
the pose of the kth keyframe, Tk, can be derived using equation (5), yielding the relative transformation 
pose between sequential keyframes: 

𝛥𝛥𝑇𝑇𝑘𝑘−1,𝑘𝑘 = 𝑇𝑇𝑘𝑘−1−1 𝑇𝑇𝑘𝑘 = �𝛥𝛥𝛥𝛥 𝛥𝛥𝛥𝛥
0 1 �                                                   (5) 

Here, the Euclidean distance Δsk  between consecutive keyframes is defined as Δsk =  ||Tk  −
 Tk−1|| , and the rotation angle θk  between them is given by θk =  arccos(dot(Tk, Tk−1) / (||Tk||  ∗
 ||Tk−1||)). The criterion for keyframe determination is typically based on a threshold for Δsk or θk, such 
as a minimum angular change or displacement. 

2.2.3. Methods for point cloud construction 

When selecting the (k + 1) − tℎ  frame as a keyframe, continuous keyframe optimization is 
performed using ICP. This yields the relative pose  Tk+1l  between keyframes. Based on the poses Tkw of 
k keyframes in world coordinates, the pose Tk+1w  of the (k + 1) − tℎ keyframe in world coordinates can 
be obtained through coordinate transformation as Tk+1w = Tkw ∙ Tk+11  . Finally, by using  Tk+1w  , the 
coordinates of the (k + 1) − tℎ keyframe's point cloud are transformed into the world coordinates as 
Qk+1, and the point cloud map is updated using an octree structure. More details are shown in Figure 
2.[23] 

 
Figure 2: Point cloud map construction drawing. 

The specific steps to suppress road point cloud noise are outlined below:  

Step 1: Compute the normal vector using the line connecting the current tracking point and the 
preceding tracking point. Given two tracking points p1  and p2 , the vector v =  p2  −  p1  defines the 
direction. The normal vector n  is then found perpendicular to v . Using this normal vector, the plane 
equation at the trajectory point is calculated using equation (6), as depicted in Figure 3(a).  

(x2 − x1)(x − x2) + (y2 − y1)(y − y2) + (z2 − z1)(z − z2) = 0                           (6) 

Step 2: Given a cross-section with a thickness δ, extract a point cloud strip with a width of 2δ on 
either side of the normal plane. This involves calculating the Euclidean distance from each point in the 
point cloud to the normal plane, subject to the condition expressed by equation (7). 
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di ≤
δ
2
                                                                                 (7) 

Step 3: Assuming the point cloud is lying on the same plane, project points the not on the plane to 
obtain a discrete point set on the normal plane, as shown in Figure 3(b). 

Step 4: First, apply the RANSAC algorithm to robustly fit a curve; next, use the least squares method 
to refine the inlier fit, and finally, eliminate outliers from each segment, producing a denoised point cloud 
representation of the coal bunker section, as shown in Figure 3(c).  

 
Figure 3: Coal bunker point cloud denoising flowchart. 

Utilizing offline data processing and pose graph optimization techniques [24], initial registration 
results are refined to create an accurate 3D model of the coal bunker. By comparing this model with 
theoretical and historical data, the bonding layer's position can be identified, and bunker deformation 
quantified. 

3. Coal bunker exploration experimental design 

3.1. Coal bunker exploration robot design 

The coal bunker exploration robot integrates hardware and software to form a 3D visualization system 
for analyzing bunker status and guiding repair efforts. Figure 4 presents the preliminary design of a coal 
bunker, measuring 46.48 meters in height, with a maximum east-west dimension of 10.57 meters and a 
maximum north-south dimension of 13.69 meters. 

The robot is lowered into the bunker via ropes, equipped with laser sensors for wall scanning (Figure 
5) and balance sensors for maintaining stability (Figure 6). Attitude graph optimization techniques are 
employed to correct initial registration results, with continuous acquisition of 3D data until the bunker 
bottom is reached. The robot is subsequently lifted back to the surface. Algorithms, combined with 
software, monitor and merge the 3D data, generating a 3D point cloud model of the coal bunker. 

 
Figure 4: Initial design drawing of the coal bunker. 
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Figure 5: Exploration process diagram of the coal bunker robot. 

 
Figure 6: System design diagram. 

3.2. Recognition of coal bunker damage 

Following the initial experimental design, a coal bunker measurement software system is utilized for 
3D reconstruction and rotation, enabling multi-angle visual analysis of strain distribution and damage 
morphology. Figure 7 and Figure 8 present texture maps of the experimental bunker. 

Figure 7 depicts the current state texture map of the bunker generated by transferring the robot’s 
measurement data to 3D visualization software, validating the effectiveness of both the robot and the 
software in confirming bunker shape and deformation extent. Figure 8 presents a multi-perspective 
rendering of the bunker’s 3D point cloud based on reflectance intensity, aiding in evaluating bunker wall 
roughness and distinguishing materials like raw coal and rocks based on their reflectance intensities.  
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Figure 7: Three-dimensional point cloud map of the coal bunker. 

 
Figure 8: Three-dimensional point cloud rendering of a coal bunker from multiple perspectives based 

on the reflectance intensity. 

4. Results and Discussion 

This section presents the main findings of the coal bunker exploration experiments, focusing on the 
performance of the proposed detection system and its ability to accurately identify structural anomalies. 

4.1. Performance Metrics 

The ATE (absolute trajectory error) and RTE (relative trajectory error) serve as key indicators of the 
system's precision. Table 1 summarizes the ATE and RTE values for the six critical surfaces of the 
experimental coal bunker, the corresponding pictures are shown in Figure 9. Across all subplots, both 
ATE and RTE remain consistently below 0.01, demonstrating exceptional precision in the lidar SLAM-
enabled detection system. These results meet the stringent requirements for bunker inspection, affirming 
the system's robustness and accuracy in identifying and characterizing coal bunker damage. 

Table 1: Trajectory Error Measurement of the Coal Bunker 

Error ATE RTE 
Subplot(a) 0.03 0.03 
Subplot(b) 0.070 0.059 
Subplot(c) 0.071 0.073 
Subplot(d) 0.029 0.08 
Subplot(e) 0.06 0.06 
Subplot(f) 0.09 0.048 
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Figure 9: Comparison of the coal bunker point cloud data measurements. 

4.2. Damage Detection and Characterization 

The system effectively detects and characterizes various types of structural damage. Figure 10-13 
illustrates the detection of protruding reinforcement bars, a common hazard in coal bunkers. The system 
accurately locates and alerts operators to these potential safety risks, enabling timely intervention. 
Similarly, partial wall ruptures, another critical anomaly, are accurately detected. These results validate 
the system's ability to identify subtle structural changes and provide actionable information for 
maintenance and repair. 
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Figure 10: Multi-angle view of the intact area of the upper structure of the coal silo. 

 
Figure 11: Multi-angle views of the upper deformation area in the coal bunker. 

 
Figure 12: Multi-angle views of the main collapse area in the middle part of the coal bunker. 

 
Figure 13: Multi-angle views of the structurally intact area in the lower section of the coal bunker. 
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4.3. Comparison with Historical Data 

Comparisons with historical data further confirm the system's reliability. Table 2 presents a 
comparison of the detected damage patterns with previously documented instances. The high degree of 
correlation between the system's findings and historical records substantiates the system's accuracy in 
recognizing known damage types and patterns.[25] 

Table 2: Coal Bunker Measurement Point Cloud Data Table 

Point cloud data Point 1 Point 2 … Point n-1 Point n 

Subplot(a) 
Ground truth (0.30,5.46) (0.34,5.46) 

⋮ 

(0.39,5.52) (0.39,5.57) 
Estimated 
trajectory (0.28,5.47) (0.41,5.41) (0.42,5.53) (0.44,5.59) 

Subplot(b) 
Ground truth (4.73,1.57) (4.69,1.52) (4.88,0.97) (4.92,0.97) 

Estimated 
trajectory (4.79,1.56) (4.65,1.49) (4.83,0.98) (4.95,1.00) 

Subplot(c) 
Ground truth (0.69,5.93) (0.69,5.98) (0.69,5.88) (0.74,5.88) 

Estimated 
trajectory (0.78,5.93) (0.70,6.00) (0.70,5.84) (0.76,5.83) 

Subplot(d) 
Ground truth (1.74,5.59) (1.74,5.64) (0.38,3.58) (0.44,3.58) 

Estimated 
trajectory (1.69,5.60) (1.71,5.67) (0.43,3.55) (0.36,3.62) 

Subplot(e) 
Ground truth (0.67,6.19) (0.67,6.23) (0.72,6.19) (0.76,6.19) 

Estimated 
trajectory (0.66,6.15) (0.65,6.22) (0.65,6.20) (0.84,6.22) 

Subplot(f) 
Ground truth (0.74,5.04) (0.78,5.04) (0.70,4.96) (0.70,5.00) 

Estimated 
trajectory (0.66,5.03) (0.82,5.00)  (0.68,4.99) (0.77,4.99) 

The lidar SLAM-enabled detection system enhances safety and efficiency in coal bunker maintenance 
by mitigating risks for personnel and facilitating targeted repair actions. Early damage detection prevents 
minor issues from escalating, saving resources and minimizing downtime. 

5. Conclusion 

This study introduces a novel approach to precisely detect structural damage in coal bunkers by 
integrating lidar SLAM technology with the Iterative Closest Point (ICP) algorithm. Experimental results 
highlight the following key findings: 

(1) Exceptional Detection Precision: The system demonstrates outstanding trajectory tracking 
performance, with Absolute Trajectory Error (ATE) and Relative Trajectory Error (RTE) consistently 
below 0.01, meeting stringent inspection standards. 

(2) Versatile Damage Recognition: Diverse critical structural anomalies, such as protruding 
reinforcement bars and partial wall ruptures, are successfully detected, enabling timely warnings for 
potential hazards and reliable maintenance decision-making. 

(3) Consistency with Historical Data: Detected damage patterns closely align with historical records, 
verifying accuracy in recognizing known damage types and patterns, while also detecting emerging or 
evolving damage. 

In conclusion, this integrated system offers significant advantages in enhancing detection precision, 
fortifying safety, and optimizing maintenance processes for coal bunkers. Future research could explore 
extending this methodology to other underground mine facilities and developing real-time monitoring 
and warning systems to further advance coal mine safety. 
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