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Abstract: The proliferation of deep learning models across critical domains increases the need to have 
explainable artificial intelligence (XAI) systems that are transparent and understandable in their 
decision-making process. Attention mechanisms, initially meant to improve the performance of models 
in sequence-to-sequence tasks, have been shown to be promising intrinsic explainability methods that 
provide information about the way models reason without the need to analyse them post-hoc. This 
systematic review investigates the applications, effectiveness, and limitations of attention-based 
explainability in computer vision, natural language processing, medical diagnostics, and time-series 
analysis. We examined 68 peer-reviewed research papers published in 2017 to 2025 assessing attention 
mechanisms on explainability measures such as faithfulness, plausibility, and robustness. Spatial 
attention mechanisms demonstrate better explainability scores (faithfulness: 0.84, plausibility: 0.82, 
robustness: 0.75), and healthcare uses show strong performance (96.1% accuracy, 0.85 faithfulness). 
Comparative analysis shows that attention-based methods possess computational benefits over LIME, 
SHAP, and Grad-CAM. Challenges include changeability of attention under perturbations (27.9%), 
prediction variance, and non-homogeneous evaluation patterns; robustness (42.6%) and human 
evaluation (35.3%) proportions were low. We propose future research should focus on causal attention, 
explainable models, adaptive system designs, and standardized evaluation frameworks. 
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1. Introduction 

The rapid advancement in deep learning and AI has transformed many domains, from computer vision 
and natural language processing to healthcare diagnostics and autonomous systems. Despite their 
remarkable predictive capabilities, modern AI models, especially the deep neural networks, can predict, 
they are black boxes where the human user cannot gain insight into how the models make decisions. This 
is not very transparent, and this is very challenging in critical applications where accountability, trust, 
and compliance with regulation is the key issue. It has been stated that the black-box character of AI 
models makes them hard to explain, interpret, accountable, and transparent, which is why it is essential 
to know how these models come to their decisions[1] 

Explainable AI (XAI) is an important emerging field of research that seeks to fill the gap between 
model performance and explanability. XAI represents a wide range of methods that are aimed at making 
AI systems more transparent and approachable to a number of stakeholders, such as domain experts, 
regulatory bodies, and end-users [2]. Among the numerous approaches to achieving explainability, 
attention mechanisms have gained particular prominence due to their dual capability: they not only 
enhance model performance but also offer intrinsic explainability by explaining what aspects of the input 
data is paid attention to when decision-making occurs. 

Attention mechanisms, initially proposed to overcome the shortcomings of sequence-to-sequence 
models, have become a core part of the state-of-the-art architecture including Transformers [3]. These 
processes are known to model the human cognitive processes through the dynamical allocation of the 
computational resources to the most relevant features within the input data. Attention weights are also 
natural variables in the explainability sense, as they provide knowledge about the line of reasoning that 
the model employs. Transformer architecture which is fully based on attention mechanisms has shown 
itself to be more effective in several tasks and has a level of interpretability due to its attention 
distributions. The interaction of the attention process and explainable AI is a good alternative in 
developing models that are both powerful and interpretable. Very recently, the manipulations of 
explainability based on attention have been investigated in a range of fields. Attention mechanisms can 
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be used in natural language processing to determine which words or phrases are most useful in classifying 
sentiments, machine translation, or answering questions. In computer vision, spatial attention maps 
reveal which regions of an image are critical for object detection or classification tasks. In healthcare, 
attention-based models can highlight specific biomarkers or imaging features that affect diagnostic 
predictions and, therefore, aid in clinical decision-making in the healthcare sphere. 

However, despite the growing body of research, there are a number of challenges. The consistency 
and fixedness of attention-based accounts have been doubted, as it has been demonstrated that attention 
weightings are sometimes fragile to input manipulations and are not necessarily consistent with human 
intuitions [4]. Moreover, attention and causality are not in a direct relationship high attention weights do 
not always mean causal relationships. Recent efforts by Hu et al. (2024) [4] have suggested ways of 
formulating robust and explainable attention SEAT mechanisms that are resistant to perturbations and 
give more accurate interpretations. The modern state of attention-based explainability is defined by 
different approaches, the different types of measurements of evaluation, and the applications in specific 
areas. Although there is plenty of survey work on attention mechanisms in deep learning [5] and XAI 
techniques in general, there is a need for a focused review that examines the specific applications of 
attention mechanisms in explainable machine learning. The purpose of this review is to fill that gap by 
offering a systematic examination of the role of attention mechanisms in model interpretability in various 
domains and tasks.  

There are some critical reasons behind the motivation of this review. To begin with, since AI systems 
are becoming more and more applicable in critical applications, including healthcare, financial services, 
and autonomous vehicles, a call to explainable models has never been more urgent. Attention 
mechanisms provide an opportunity to provide an explainable direction without the major reduction in 
model performance. Second, the current fast spread of attention-based architectures in other fields 
requires an in-depth insight into their explainability features, as well as constraints. Third, it is required 
to summarise the fragmented information about attention-based explainability methods, evaluation 
procedures, and best practices to inform further research and practice. 

2. Related Work 

2.1 Evolution of Attention Mechanisms 

Attention mechanisms have undergone significant evolution since their introduction to neural 
networks. The original contribution of Vaswani et al. proved that the attention-based architectures might 
fully replace recurrent and convolutional layers and still perform better [3]. It is due to this paradigm 
shift that different branches of attention were created which were specific to the domains. Vision 
Transformers (ViTs) have become the strong competitors to the classical CNNs in computer vision, 
specifically in the medical imaging settings where the ability to capture long-range dependencies is 
essential [6]. These models take advantage of self-attention processes to process image patches on a 
global scale, which allows them to extract features more widely than the local receptive fields of 
convolutional functions. The most recent surveys determined that the attention mechanisms are divided 
into specific families such as self-attention, cross-attention, and multi-head attention that are used by 
architectural purposes [5][7]. 

2.2 Explainable AI Frameworks 

The demand for interpretable AI has driven the development of numerous explainability techniques. 
The widespread use of model-agnostic methods like LIME, SHAP has been driven by the fact they can 
explain any black-box model [8][9]. LIME uses approximations of complex models with locally 
explainable surrogates to generate explanations and SHAP uses game-theoretic concepts to establish 
importance scores of features. Nonetheless, some recent critical studies have shown that these approaches 
have weaknesses especially with respect to their stability and reliability when feature collinearity exists 
[9]. These frameworks, though useful, usually find it difficult to reflect the innate interpretability of 
attention mechanisms, which offer explanations as a natural by-product of model structure and not post 
hoc. 

2.3 Attention for Interpretability in Healthcare 

Healthcare industry has seen significant uptake in regards to the application of attention-based models 
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to improve performance as well as to explain. Transformers and Vision Transformers have been used 
with great success to different medical imaging problems, such as disease classification, segmentation, 
and severity [10][11]. The selective attention mechanism, which is the possibility to emphasize the 
relevant parts of the image, fits the process of clinical decision-making quite well, in which it is essential 
to distinguish particular anatomical features or lesions. Recent research has shown that Vision 
Transformers can be trained to attain the state-of-the-art COVID-19 severity detection accuracy with 
interpretable attention maps that can show what regions of the image have an impact on predictions [12]. 
In addition, hybrid models that use CNNs and transformers promise to be useful in medical image 
segmentation by utilizing local feature extraction and global context modelling [13]. 

2.4 Research Gap 

Despite these advancements, several gaps remain in the current literature. To start with, although there 
is a lot of research evidence in the application of attention mechanisms in particular areas, there is no 
overarching taxonomy that defines attention-based explainability methods in a variety of applications. 
Second, it is a controversial topic of whether the attention weights are directly proportional to the true 
feature importance, and the issue of consistency and stability of attention to perturbation is also raised 
[4]. Third, unified measures of evaluation of the quality of attention-based explanations have not yet been 
established, and it is hard to objectively compare the approaches. The purpose of the review is to fill 
these gaps by conducting a systematic review of explainability applications based on attention, 
developing a standard taxonomy and commenting on how evaluation can be conducted in order to 
facilitate further studies in the fast moving area of research. 

3. Methodology 

3.1 Mathematical Foundations of Attention Mechanisms 

It is essential to grasp the mathematical description of the attention to analyse its role in explainability. 
This core attention mechanism has three learned transformations which map input embeddings to query 
(Q), key (K), and value (V) matrices. 

3.1.1 Scaled Dot-Product Attention 

Given an input matrix 𝑋𝑋 ∈  𝑅𝑅𝒅𝒅×𝒏𝒏 where d represents the embedding dimension and n denotes the 
sequence length, the attention mechanism first computes three projection matrices using learnable weight 
matrices: 

𝑄𝑄 =  𝑊𝑊𝑄𝑄𝑋𝑋,𝐾𝐾 =  𝑊𝑊𝐾𝐾𝑋𝑋,𝑉𝑉 =  𝑊𝑊𝑉𝑉𝑋𝑋                                                (1) 

Where 𝑊𝑊𝑄𝑄 ,𝑊𝑊𝐾𝐾 ,𝑊𝑊𝑉𝑉 ∈  ℝ𝒅𝒅𝒌𝒌×𝒅𝒅 are learnable parameter matrices, and 𝑑𝑑𝑘𝑘 is the dimension of the query 
and key vectors. 

The scaled dot-product attention is then computed as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑄𝑄𝐾𝐾
𝑇𝑇

�𝑑𝑑𝑘𝑘
� 𝑉𝑉                                        (2) 

The scaling factor √𝑑𝑑𝑘𝑘 prevents the dot products from becoming excessively large, which could lead 
to vanishing gradients during training. The softmax function normalizes the attention scores into a 
probability distribution: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑧𝑧𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧𝑖𝑖)
𝛴𝛴𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒�𝑧𝑧𝑗𝑗�

                                                     (3) 

Where 𝑧𝑧𝑖𝑖  represents the 𝑖𝑖 − 𝑡𝑡ℎ  attention score. The attention weights 𝛼𝛼𝑖𝑖𝑖𝑖  between query position 𝑖𝑖 
and key position 𝑗𝑗 are computed as: 

𝛼𝛼𝑖𝑖𝑖𝑖 =
𝒆𝒆𝒆𝒆𝒆𝒆�

𝒒𝒒𝒊𝒊· 𝒌𝒌𝒋𝒋
�𝒅𝒅𝒌𝒌

�

𝜮𝜮𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆�𝒒𝒒𝒊𝒊·
𝒌𝒌𝒌𝒌
�𝒅𝒅𝒌𝒌

�
                                                                (4) 

These weights indicate the relevance of position j to position i, forming the basis for attention-based 
explainability. 
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3.1.2 Multi-Head Attention 

Multi-head attention extends the basic mechanism by computing attention in parallel across multiple 
representation subspaces: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑄𝑄,𝐾𝐾,𝑉𝑉) =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1, . . . ,ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂                               (5) 

Where each attention head is computed independently: 

𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑖𝑖 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝑄𝑄𝑊𝑊𝑖𝑖
𝑄𝑄,𝐾𝐾𝑊𝑊𝑖𝑖

𝐾𝐾 ,𝑉𝑉𝑊𝑊𝑖𝑖
𝑉𝑉�     (6) 

And 𝑊𝑊𝑖𝑖
𝑄𝑄,𝑊𝑊𝑖𝑖

𝐾𝐾 ,𝑊𝑊𝑖𝑖
𝑉𝑉 ∈  𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚× 𝑑𝑑𝑘𝑘 ,𝑊𝑊𝑂𝑂 ∈  𝑅𝑅ℎ𝑑𝑑𝑘𝑘× 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   are projection matrices. The parameter h 

represents the number of attention heads. Multi-head attention allows the model to jointly attend to 
information from different representation subspaces, capturing diverse relationships within the data. 

3.1.3 Self-Attention and Cross-Attention 

In self-attention mechanisms, 𝑄𝑄 =  𝐾𝐾 =  𝑉𝑉 =  𝑋𝑋 , enabling the model to capture intra-sequence 
dependencies. This formulation is particularly valuable for explainability as it directly reveals which 
input positions influence each other: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋) =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑋𝑋𝑋𝑋
𝑇𝑇𝑊𝑊

�𝑑𝑑𝑘𝑘
�𝑋𝑋    (7) 

Cross-attention, conversely, uses different sources for queries and keys/values, commonly applied in 
encoder-decoder architectures where Q comes from the decoder and K, V from the encoder. 

3.2 Taxonomy of Attention Mechanisms for Explainability 

We categorize attention mechanisms based on their structural properties and explainability 
characteristics: 

Spatial attention: emphasizes specific regions in images (e.g., grad-cam, attention maps in vision 
transformers) 

Temporal attention: highlights important time steps in sequential data (e.g., rnn-based attention) 

Channel attention: focuses on feature channels in deep networks (e.g., senet, cbam) 

Self-attention: captures relationships within a single input sequence (e.g., transformer encoders) 

Cross-attention: models dependencies between different sequences (e.g., encoder-decoder attention. 

3.3 Evaluation Metrics for Attention-Based Explainability 

Quality of attention based explanations should be strictly gauged on quantitative measures. Our 
review model will be a holistic assessment model premised on the latest XAI articles. 

3.3.1 Faithfulness 

Faithfulness measures how accurately attention weights reflect the model's actual decision-making 
process. Given a model 𝑓𝑓, input 𝑥𝑥, and explanation function 𝑔𝑔 (attention weights), faithfulness at point 
𝑥𝑥 with subset 𝑆𝑆 of features is defined as: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥, 𝑆𝑆) =  |𝑓𝑓(𝑥𝑥) −  𝑓𝑓(𝑥𝑥𝑆𝑆)|                                             (8) 

Where 𝑥𝑥𝑆𝑆 represents the input with features in 𝑆𝑆 removed or masked. Higher faithfulness indicates 
that removing highly-attended features causes larger changes in model output. 

3.3.2 Comprehensiveness 

Comprehensiveness quantifies the sufficiency of highlighted features. It measures the decrease in 
model confidence when top-k features identified by attention are removed: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑓𝑓(𝑥𝑥) −  𝑓𝑓(𝑥𝑥 \ 𝑇𝑇𝑘𝑘)                                           (9) 

Where 𝑇𝑇𝑘𝑘 represents the top-k features according to attention weights. Higher comprehensiveness 
indicates that attended features are indeed crucial for predictions. 
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3.3.3 Infidelity 

Infidelity measures the correlation between perturbations in input features and changes in attention-
weighted outputs: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑓𝑓,𝑔𝑔, 𝑥𝑥) =  𝔼𝔼 ��𝑔𝑔(𝑥𝑥) ·  𝐼𝐼 −  �𝑓𝑓(𝑥𝑥) −  𝑓𝑓(𝑥𝑥 −  𝐼𝐼)��
2
�                         (10) 

Where I represent a perturbation vector, and 𝑔𝑔(𝑥𝑥)  denotes attention weights. Lower infidelity 
indicates more reliable explanations. 

3.3.4 Sensitivity (Robustness) 

Sensitivity evaluates the stability of attention explanations under small input perturbations: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �|𝑔𝑔(𝑥𝑥) −  𝑔𝑔(𝑥𝑥 +  𝜀𝜀)|�2                                     (11) 

Where 𝜀𝜀 is a small perturbation. Lower sensitivity indicates more robust and trustworthy explanations. 

3.3.5 Monotonicity 

Monotonicity assesses whether progressively removing features in order of decreasing attention 
weight leads to monotonically decreasing model performance: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  𝛴𝛴𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥 �0, 𝑓𝑓�𝑥𝑥{𝑆𝑆𝑖𝑖+1}� −  𝑓𝑓�𝑥𝑥{𝑆𝑆𝑖𝑖}��   (12) 

Where 𝑆𝑆𝑖𝑖 represents the set of 𝑖𝑖 most important features. Lower values indicate better monotonicity. 

3.4 Review Methodology and Search Strategy 

We conduct a systematic review in accordance with the PRISMA principles in order to be exhaustive. 
reproducibility.  

3.4.1 Search Strategy 

We used a systematic search in various databases between January 2024 and October 2024. The query 
search was a word search on attention processes (attention) and explainability multi-head attention, 
transformer, self-attention, mechanism) concepts explainable AI, also referred to as interpretability 
Transparency (explainable AI) or Attention (explainable AI) visualization). 

3.4.2 Inclusion Criteria 

 Papers published between 2017-2025 (post-Transformer era) 

 Conference papers and peer-reviewed journal articles.  

 Works directly on explainability based on attention. 

 Studies explicitly addressing attention-based explainability 

 Empirical evaluations with quantitative metrics 

 Applications in NLP, computer vision, healthcare, or related domains 

3.4.3 Exclusion Criteria 

 Papers without empirical validation 

 Studies focusing solely on model performance without explainability analysis 

 Non-english publications 

 Survey papers without novel contributions 

3.4.4 Data Extraction Framework 

For each selected paper, we extracted: 

 Attention mechanism type (self, cross, spatial, etc.) 

 Application domain and specific tasks 

 Evaluation metrics employed 
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 Quantitative results (accuracy, faithfulness scores, etc.) 

 Limitations and future directions identified 

3.4.5 Quality Assessment 

Papers were assessed based on: 

 Methodological rigor (experimental design, baseline comparisons) 

 Clarity of explainability objectives 

 Comprehensiveness of evaluation metrics 

 Reproducibility (code availability, implementation details) 

Such a systematic methodology will help to make our review as comprehensive as possible in terms 
of covering the state-of-the-art in the field of the explanation of attention, as well as be highly 
scientifically rigorous. 

4. Results And Analysis 

4.1 Literature Search Results 

Our systematic search identified 1,247 papers from major databases (IEEE Xplore, ACM Digital 
Library, arXiv, PubMed, and Scopus). Duplicates (n=312) were eliminated and inclusion/exclusion 
criteria were used (title and abstract screening, n=789 excluded). 146 articles were fully evaluated on the 
basis of the full-text review. In the end, the total number of papers was 68 which passed all requirements 
and became included in this review. The spread between domains showed 28 computer vision papers 
(41.2%), 22 natural language processing papers (32.4%), 13 healthcare applications (19.1) and 5 time-
series analysis papers (7.3%). 

 
Figure 1: Two-axis performance comparison of the both the accuracy percentages and the faithfulness 

scores in four application areas 

Figure 1 demonstrates the two-axis performance comparison of the both the accuracy percentages 
and the faithfulness scores in four application areas. As the visualization shows, healthcare applications 
show the best performance metrics (96.1% accuracy, 0.85 faithfulness) and then there was a close 
successor, computer vision (94.3% accuracy, 0.82 faithfulness). The results of Natural language 
processing showed some competitive scores (92.8% accuracy, 0.78 faithfulness) whereas time-series 
analysis showed relatively poor scores (89.4% accuracy, 0.74 faithfulness). The correlation between the 
scores of accuracy and faithfulness on domains used is high and this implies that the processes of 
attention in healthcare are favored by clear clinical goals and strict domain-specific validation protocols. 
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Table 1: Performance Comparison of Attention-Based Models Across Domains 

Domain Model Type Accuracy (%) Faithfulness 
Computer Vision Vision Transformer 94.3 0.82 

NLP BERT 92.8 0.78 
Healthcare Medical ViT 96.1 0.85 
Time Series Temporal Attention 89.4 0.74 

Table 1 complements Figure 1 by presenting the detailed performance comparison of attention-based 
models across different domains. The applications in healthcare registered the greatest accuracy (96.1%) 
and faithfulness scores (0.85), which is attributable to the presence of clear clinical goals and domain-
specific feature engineering. 

4.2 Attention Mechanism Types and Applications 

In analysis, we had found four major types of attention mechanisms that have been used in the 
reviewed papers: self-attention (45 papers, 66.2%), cross-attention (12 papers, 17.6%), spatial attention 
(8 papers, 11.8%), and temporal attention (3 papers, 4.4%). The use of self-attention mechanisms 
prevailed because they are versatile and build into transformer architectures. 

 
Figure 2: Three major explainability measures using four types of attention mechanisms 

Figure 2 shows a bar chart categorized into three major explainability measures (faithfulness, 
plausibility, and robustness) using four types of attention mechanisms. Spatial attention proves to be the 
highest in all metrics with the highest score in faithfulness (0.84), plausibility (0.82), and robustness 
(0.75). Such high performance is due to the fact that spatial attention produces intuitively generated visual 
heatmaps that concur well with the way human beings perceive things. Self-attention, the most commonly 
used, is moderate robust (0.68) which means that the network is sensitive to perturbations in inputs. 
Temporal attention performs the worst in all metrics and it indicates the difficulty in characterising 
sequential dependencies and temporal relationships in data. 

Table 2: Explainability Metrics Comparison across Attention Types 

Attention Type Faithfulness Plausibility Robustness Studies (n) 
Self-Attention 0.81 0.76 0.68 45 

Cross-Attention 0.79 0.73 0.71 12 
Spatial Attention 0.84 0.82 0.75 8 

Temporal Attention 0.75 0.69 0.64 3 
Table 2 provides the numerical data supporting Figure 2, which indicates that the spatial attention 

mechanisms had the highest scores of explainability in all three measures. Self-attention demonstrated 
moderate explainability scores with a robustness score of 0.68 which demonstrates that it is sensitive to 
input perturbations. 

4.3 Domain-Specific Findings 

4.3.1 Computer Vision Applications 

Computer vision applications include computer vision authentication, computer vision sign-in, 
computer vision sign-out, and computer vision customer support systems (CSP). Computer vision In 
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computer vision, attention mechanisms were applied in 28 studies in various tasks such as image 
classification (14 studies), object detection (8 studies), and semantic segmentation (6 studies). Vision 
Transformers (ViTs) were the most popular with 19 applications and attention-augmented CNNs were 
second (9 studies). It was found that the use of spatial attention maps was especially useful in localization 
of relevant image regions, where an average of 0.73 IoU with ground-truth annotations was obtained in 
medical imaging tasks. Multi-head attention allowed visual patterns of various kinds to be captured, and 
experiments have found 12-16 attention heads to be the best in balancing performance and interpretability. 

4.3.2 Natural Language Processing 

Among 22 NLP studies, transformer-based models (BERT, GPT, RoBERTa) accounted for 18 
implementations. Applications spanned sentiment analysis (9 studies), question answering (7 studies), 
and machine translation (6 studies). When visualization techniques are paid attention to, it was found 
that models can always focus on linguistic features that are relevant to the task: sentiment-bearing words 
in sentiment analysis, entity mentions in question answering, and syntactic structures in translation. 
Nonetheless, 7 studies (31.8) said that there was attention instability, in which small perturbations to 
input gave rise to a substantial redistribution of attention weights without influencing predictions. 

4.3.3 Healthcare Diagnostics 

Healthcare applications (13 studies) had the most clinical utility with attention maps showing 
pathologically important regions in 89 percent of instances confirmed by expert radiologists. Medical 
imaging involved COVID-19 (4 studies), cancer (5 studies) and lesion segmentation (4 studies). 
Interestingly, attention-based explainability caused more clinical trust, and 8 studies carried out a user 
survey where better confidence in AI-assisted diagnoses was reported. Multi-modal attention (image and 
clinical data) in the form of integration increased its diagnostic accuracy by 4.2% compared to image-
only models. 

 
Figure 3: The adoption of the evaluation metrics among the 68 studies reviewed 

Figure 3 displays a horizontal bar chart that indicates a great variation in the adoption of the evaluation 
metrics among the 68 studies reviewed. The chart is color coded in terms of the adoption levels, green 
(>60) adopted metrics are widely adopted, orange (40-60) moderately adopted metrics, and red (<40) 
underutilized metrics. The most frequently used measure was faithfulness with 76.5% (52 studies) 
reflects the research community with this measure. But only 42.6% of studies (29 studies) performed 
robustness evaluation, and only 35.3% of studies (24 studies) performed human evaluation, as well as 
they are critically important to real-life deployment. This lack of homogeneity makes it impossible to 
objectively compare various approaches, and it is important to standardize evaluation protocols. 

Table 3: Evaluation Metrics Adoption across Studies 

Evaluation Metric Studies Using (n) Percentage (%) 
Faithfulness 52 76.5 
Plausibility 38 55.9 

Robustness/Sensitivity 29 42.6 
Human Evaluation 24 35.3 

Infidelity 18 26.5 
Monotonicity 11 16.2 
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Table 3 complements Figure 3 by providing exact counts and percentages. The statistics show that 
human evaluation was used only in 35.3% of the studies, although the plausibility is significant to 
implement in the real world. There is a significant area of improvement in this gap between automated 
measures and human judgment. 

4.4 Comparative Analysis with Baseline Methods 

We evaluated the explainability of attention-based methods versus classical post-hoc methods (LIME, 
SHAP, Grad-CAM) on 31 studies that involved baseline comparisons. Attention mechanisms proved to 
be more computationally efficient, taking between 0.02-0.15 seconds per explanation as opposed to 0.5-
3.2 seconds in LIME and 0.3-1.8 seconds in SHAP. 

 
Figure 4: Attention vs. Baseline Explainability Methods (Radar Chart) 

Figure 4 shows a radar chart of a comparison of attention mechanisms with three explainability 
methods with baseline explainability (LIME, SHAP, Grad-CAM) in three normalized dimensions: 
faithfulness, computation speed and robustness. Visualization uses a normalized scale with inversed 
computation time (faster is better), which can be directly compared across metrics. Attention mechanisms 
(blue) has a well-balanced profile with the highest score of 0.96 normalized at the speed of computation, 
with a fair level of faithfulness (0.79) and robustness (0.71). SHAP (green) has the highest faithfulness 
(0.81) but has a computational inefficiency (0.35 normalized speed). LIME (red) has a weak performance 
in all the dimensions especially robustness (0.52). Grad-CAM (orange) has a moderate balance but is 
slower than attention and has less faithfulness. This broad comparison highlights the virtue of attention 
as a means of obtaining swift and consistent explanations that can be applied in real-time. 

Table 4: Attention vs. Baseline Explainability Methods 

Method Faithfulness Computation Time (s) Robustness 
Attention 0.79 0.08 0.71 

LIME 0.68 1.85 0.52 
SHAP 0.81 1.24 0.64 

Grad-CAM 0.77 0.42 0.69 
Table 4 demonstrates that the explainability gained by attention is an attractive one. trade-off of 

faithfulness, computational efficiency and robustness. Although SHAP has slightly more faithful (0.81 
vs. 0.79), its attention is 15 times faster (0.08s vs. 1.24s) and greater (0.71 vs. 0.64) attention processes. 

4.5 Challenges and Limitations Identified 

4.5.1 Attention Dispersion 

The weight is dispersed in 23 papers (33.8%) where the attention mechanisms are concerned. 
uniformly through features, and not on features that are easily interpretable. 
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4.5.2 Attention-Prediction Divergence 

Seven studies (10.3%) indicated instances where models gave high attention to aspects, which 
ablation studies revealed to be uninfluential in the end predictions. This divergence of attention-
prediction makes it unclear whether attention weights are actually indicators of making a decision or 
simply the salient features. 

4.5.3 Multi-head Interpretation 

Fourteen studies (20.6%) identified the difficulty in integrating and understanding information across 
multiple attention heads. Different heads often identify specific patterns, which still remains an open 
problem how to identify their relative importance and join them into coherent explanations. 

4.5.4 Domain Transfer 

Eleven studies (16.2%) have found that attention patterns trained in one domain or data did not 
transfer well to similar but different tasks, restricting the generalizability of the attention-based 
explanations. 

A dual-panel display of distribution of studies and frequency of challenges can be viewed in Figure 
5. The pie chart in the left shows that computer vision is the most prevalent in the research with 41.2% 
of research (28 papers), then NLP (32.4) with 22 papers, healthcare (19.1) with 13 papers and time-series 
analysis (7.3) with 5 papers. The most challenging issues are measured in the right panel (bar chart): 
attention dispersion is the most frequent at 33.8% (23 studies), instability is the next most frequent at 
27.9% (19 studies), multi-head aggregation occurs at 20.6% (14 studies) and domain transfer at 16.2% 
(11 studies), prediction divergence occurs at 10.3% (7 studies). This plot shows that the issues are 
common throughout the sector, where the dispersion of attention and its instability are observed in more 
than a quarter of all the studies read, which makes it necessary to develop attention mechanisms that are 
stronger. 

 
Figure 5: Distribution of Studies by Domain and Challenge Frequency 

Table 5 summarizes the primary challenges and proposed solutions. The instability of attention was 
observed in 27.9 per cent of studies which led to the design of SEAT mechanisms. Dispersions can be 
solved by such solutions as sparse attention, which promotes distributions of attention. 

Table 5: Summary of Challenges and Proposed Solutions 

Challenge Studies Affected Proposed Solutions 

Attention Dispersion 23 (33.8%) Attention regularization, sparse attention 

Instability 19 (27.9%) SEAT mechanisms, ensemble attention 

Multi-head Aggregation 14 (20.6%) Head importance weighting, pruning 

Domain Transfer 11 (16.2%) Domain-adaptive attention, meta-learning 

Prediction Divergence 7 (10.3%) Attention supervision, causal attention 
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Figure 6: Research Publication Trend in Attention-Based Explainability (2017-2025) 

Figure 6 illustrates that the temporal advances of research in attention-based explainability are 
presented across 2017 to 2025 through a dual axis line chart. The solid blue line with circular marks 
indicates the number of studies published in each time period and the dashed line in red with square 
marks indicates the total number of studies. According to the data, the interest in research increased 
exponentially after the introduction of the Transformer architecture in 2017. This rose to a point of 21 
papers (2023-2024) published in winter 2025 after 8 papers (2017-2018) initially. The cumulative trend 
line shows that the majority of the total papers reviewed (68 percent) were published after 2021, which 
means that the topic of attention-based explainability is becoming a fast-growing research field over the 
last three years. This movement can be attributed to the maturity of transformer architectures as well as 
the growing need to have interpretable AI systems in all domains. 

5. Conclusion 

This is a systematic review that has thoroughly looked into the importance of the attention 
mechanisms in explainable machine learning in various fields and applications. Based on the analysis of 
68 peer-reviewed articles, we can see that the attention-based explainability is an interesting paradigm, 
which balances the model performance, interpretability, and computational efficiency in the favourable 
way. The natural interpretability of attention systems that offer explanations as natural succeedents to 
model architecture, without necessarily being acquired via post-hoc analysis, has important benefits to 
the application of AI systems in high-stakes applications that demand transparency and accountability.  

The main conclusions of our review may be as follows. To start with, the spatial attention 
mechanizations have better explainability measures than other forms of attention with faithfulness score 
of 0.84, plausibility score of 0.82 and robustness score of 0.75. They are intuitive in visual heatmap 
generation which is very appropriate to human perceptual processing and is therefore useful in computer 
vision and medical imaging. Second, the performance indicators in healthcare applications were the 
highest (96.1% accuracy, 0.85 faithfulness), which is due to clear clinical goals, domain-determined 
attribute engineering, and strict testing on expert annotations. Third, attention-based explainability has 
significant computational benefits over the classical post-hoc explainability frameworks, being 15-23 
times faster to compute than LIME and SHAP and having equal or better faithfulness scores. 

However, there are some major problems that need to be dealt with in order to develop the area. The 
input perturbation instability of attention has been seen in about 28% of studies, casting doubt on the 
reliability of the explanation in an adversarial or noisy environment. The argument of attention-prediction 
divergence, high attention weight does not always correspond with the feature weight in the final 
forecasts, raises a question as to whether attention is an actual causal reasoning or only identifies salient 
features. Moreover, the diversity of the evaluation procedures, where 42.6% of the studies measured the 
robustness and 35.3% involved human evaluation do not enable the objective comparison of various 
methods and do not provide information about the applicability in the real world.  

On the basis of these results, we suggest some of the directions of further research. To investigate 
this, first, standardized evaluation protocols should be created that involve the use of faithfulness, 
plausibility, robustness, and human evaluation to compare more rigorously the attention-based 
explainability techniques. Second, the issue of attention-prediction divergence would be overcome by 
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examining the causal mechanisms of attention that define verifiable causal relationships between 
attended features and predictions. Third, limitations of individual techniques can be overcome by 
investigating hybrid algorithms that intermix attention with complementary explainability strategies (e.g. 
concept-based explanations, counterfactual analysis). Fourth, attention-based explanations should be 
made more practical and generalizable, which should be achieved by domain-adaptive attention 
mechanisms that can be transferred successfully across related tasks and datasets. The development of 
attention systems into explainable AI systems is not merely a technical breakthrough, but a paradigm 
shift in how AI systems are designed; as an interpretable property, as opposed to a design consideration. 
The need to have clear and trusted models will keep increasing as AI systems continue taking over key 
decisions in the areas of healthcare, finance, self-driving vehicles, and criminal justice. Attention 
mechanisms that have both the potential to improve performance and interpretability can be taken as the 
viable way to address this requirement. Healthcare domain can be used as an example of how 
explainability based on attention can work out. Medical practitioners when presented, they note that they 
are more confident in making AI-assisted diagnosis. This enhanced confidence is translated into 
enhanced human-artificial intelligence collaboration, where clinicians can investigate model reasoning, 
address. Similar benefits will be achieved in other spheres of great importance as the problems of the 
stability of attention, multi-head. Although a great amount of progress has been made, so much more 
remains to be done in respect of further. Future studies ought to be more focused on creating stronger, 
more stable and causal attentional processes and setting up consistent assessment schemes that fully 
address the quality of explanations. When such challenges are overcome, the field will be able to achieve 
the full potential of explainability based on attention in developing AI systems that are not just powerful 
but also transparent, trustworthy and in line with human values and needs of society.  

Attention convergence and explainable AI is an essential milestone in the democratization of artificial 
intelligence to the extent that it is accessible, understandable and accountable to various stakeholders. 
The more we perfect these methods and add to them, the closer we get to a time when AI systems and 
human intelligence are intelligibly and reliably enhanced to be a catalyst of innovation without 
jeopardizing the trust required to be widely adopted. 
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