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Abstract: The proliferation of deep learning models across critical domains increases the need to have
explainable artificial intelligence (XAI) systems that are transparent and understandable in their
decision-making process. Attention mechanisms, initially meant to improve the performance of models
in sequence-to-sequence tasks, have been shown to be promising intrinsic explainability methods that
provide information about the way models reason without the need to analyse them post-hoc. This
systematic review investigates the applications, effectiveness, and limitations of attention-based
explainability in computer vision, natural language processing, medical diagnostics, and time-series
analysis. We examined 68 peer-reviewed research papers published in 2017 to 2025 assessing attention
mechanisms on explainability measures such as faithfulness, plausibility, and robustness. Spatial
attention mechanisms demonstrate better explainability scores (faithfulness: 0.84, plausibility: 0.82,
robustness: 0.75), and healthcare uses show strong performance (96.1% accuracy, 0.85 faithfulness).
Comparative analysis shows that attention-based methods possess computational benefits over LIME,
SHAP, and Grad-CAM. Challenges include changeability of attention under perturbations (27.9%),
prediction variance, and non-homogeneous evaluation patterns, robustness (42.6%) and human
evaluation (35.3%) proportions were low. We propose future research should focus on causal attention,
explainable models, adaptive system designs, and standardized evaluation frameworks.
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1. Introduction

The rapid advancement in deep learning and Al has transformed many domains, from computer vision
and natural language processing to healthcare diagnostics and autonomous systems. Despite their
remarkable predictive capabilities, modern Al models, especially the deep neural networks, can predict,
they are black boxes where the human user cannot gain insight into how the models make decisions. This
is not very transparent, and this is very challenging in critical applications where accountability, trust,
and compliance with regulation is the key issue. It has been stated that the black-box character of Al
models makes them hard to explain, interpret, accountable, and transparent, which is why it is essential
to know how these models come to their decisions[1]

Explainable AI (XAI) is an important emerging field of research that seeks to fill the gap between
model performance and explanability. XAl represents a wide range of methods that are aimed at making
Al systems more transparent and approachable to a number of stakeholders, such as domain experts,
regulatory bodies, and end-users [2]. Among the numerous approaches to achieving explainability,
attention mechanisms have gained particular prominence due to their dual capability: they not only
enhance model performance but also offer intrinsic explainability by explaining what aspects of the input
data is paid attention to when decision-making occurs.

Attention mechanisms, initially proposed to overcome the shortcomings of sequence-to-sequence
models, have become a core part of the state-of-the-art architecture including Transformers [3]. These
processes are known to model the human cognitive processes through the dynamical allocation of the
computational resources to the most relevant features within the input data. Attention weights are also
natural variables in the explainability sense, as they provide knowledge about the line of reasoning that
the model employs. Transformer architecture which is fully based on attention mechanisms has shown
itself to be more effective in several tasks and has a level of interpretability due to its attention
distributions. The interaction of the attention process and explainable Al is a good alternative in
developing models that are both powerful and interpretable. Very recently, the manipulations of
explainability based on attention have been investigated in a range of fields. Attention mechanisms can
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be used in natural language processing to determine which words or phrases are most useful in classifying
sentiments, machine translation, or answering questions. In computer vision, spatial attention maps
reveal which regions of an image are critical for object detection or classification tasks. In healthcare,
attention-based models can highlight specific biomarkers or imaging features that affect diagnostic
predictions and, therefore, aid in clinical decision-making in the healthcare sphere.

However, despite the growing body of research, there are a number of challenges. The consistency
and fixedness of attention-based accounts have been doubted, as it has been demonstrated that attention
weightings are sometimes fragile to input manipulations and are not necessarily consistent with human
intuitions [4]. Moreover, attention and causality are not in a direct relationship high attention weights do
not always mean causal relationships. Recent efforts by Hu et al. (2024) [4] have suggested ways of
formulating robust and explainable attention SEAT mechanisms that are resistant to perturbations and
give more accurate interpretations. The modern state of attention-based explainability is defined by
different approaches, the different types of measurements of evaluation, and the applications in specific
areas. Although there is plenty of survey work on attention mechanisms in deep learning [5] and XAI
techniques in general, there is a need for a focused review that examines the specific applications of
attention mechanisms in explainable machine learning. The purpose of this review is to fill that gap by
offering a systematic examination of the role of attention mechanisms in model interpretability in various
domains and tasks.

There are some critical reasons behind the motivation of this review. To begin with, since Al systems
are becoming more and more applicable in critical applications, including healthcare, financial services,
and autonomous vehicles, a call to explainable models has never been more urgent. Attention
mechanisms provide an opportunity to provide an explainable direction without the major reduction in
model performance. Second, the current fast spread of attention-based architectures in other fields
requires an in-depth insight into their explainability features, as well as constraints. Third, it is required
to summarise the fragmented information about attention-based explainability methods, evaluation
procedures, and best practices to inform further research and practice.

2. Related Work
2.1 Evolution of Attention Mechanisms

Attention mechanisms have undergone significant evolution since their introduction to neural
networks. The original contribution of Vaswani et al. proved that the attention-based architectures might
fully replace recurrent and convolutional layers and still perform better [3]. It is due to this paradigm
shift that different branches of attention were created which were specific to the domains. Vision
Transformers (ViTs) have become the strong competitors to the classical CNNs in computer vision,
specifically in the medical imaging settings where the ability to capture long-range dependencies is
essential [6]. These models take advantage of self-attention processes to process image patches on a
global scale, which allows them to extract features more widely than the local receptive fields of
convolutional functions. The most recent surveys determined that the attention mechanisms are divided
into specific families such as self-attention, cross-attention, and multi-head attention that are used by
architectural purposes [5][7].

2.2 Explainable AI Frameworks

The demand for interpretable Al has driven the development of numerous explainability techniques.
The widespread use of model-agnostic methods like LIME, SHAP has been driven by the fact they can
explain any black-box model [8][9]. LIME uses approximations of complex models with locally
explainable surrogates to generate explanations and SHAP uses game-theoretic concepts to establish
importance scores of features. Nonetheless, some recent critical studies have shown that these approaches
have weaknesses especially with respect to their stability and reliability when feature collinearity exists
[9]. These frameworks, though useful, usually find it difficult to reflect the innate interpretability of
attention mechanisms, which offer explanations as a natural by-product of model structure and not post
hoc.

2.3 Attention for Interpretability in Healthcare

Healthcare industry has seen significant uptake in regards to the application of attention-based models
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to improve performance as well as to explain. Transformers and Vision Transformers have been used
with great success to different medical imaging problems, such as disease classification, segmentation,
and severity [10][11]. The selective attention mechanism, which is the possibility to emphasize the
relevant parts of the image, fits the process of clinical decision-making quite well, in which it is essential
to distinguish particular anatomical features or lesions. Recent research has shown that Vision
Transformers can be trained to attain the state-of-the-art COVID-19 severity detection accuracy with
interpretable attention maps that can show what regions of the image have an impact on predictions [12].
In addition, hybrid models that use CNNs and transformers promise to be useful in medical image
segmentation by utilizing local feature extraction and global context modelling [13].

2.4 Research Gap

Despite these advancements, several gaps remain in the current literature. To start with, although there
is a lot of research evidence in the application of attention mechanisms in particular areas, there is no
overarching taxonomy that defines attention-based explainability methods in a variety of applications.
Second, it is a controversial topic of whether the attention weights are directly proportional to the true
feature importance, and the issue of consistency and stability of attention to perturbation is also raised
[4]. Third, unified measures of evaluation of the quality of attention-based explanations have not yet been
established, and it is hard to objectively compare the approaches. The purpose of the review is to fill
these gaps by conducting a systematic review of explainability applications based on attention,
developing a standard taxonomy and commenting on how evaluation can be conducted in order to
facilitate further studies in the fast moving area of research.

3. Methodology
3.1 Mathematical Foundations of Attention Mechanisms

It is essential to grasp the mathematical description of the attention to analyse its role in explainability.
This core attention mechanism has three learned transformations which map input embeddings to query
(Q), key (K), and value (V) matrices.

3.1.1 Scaled Dot-Product Attention

Given an input matrix X € R®™ where d represents the embedding dimension and n denotes the
sequence length, the attention mechanism first computes three projection matrices using learnable weight
matrices:

Q = WoX,K = WX,V = W,X (1

Where Wy, Wy, Wy, € R%>4 are learnable parameter matrices, and d, is the dimension of the query
and key vectors.

The scaled dot-product attention is then computed as:

; = ox?
Attention(Q,K,V) = softmax (Jd_k> %4 ?2)
The scaling factor Vd,, prevents the dot products from becoming excessively large, which could lead
to vanishing gradients during training. The softmax function normalizes the attention scores into a

probability distribution:

exp(z;) 3)

Softmax(z;) = Trexp(z))

Where z; represents the i — th attention score. The attention weights a;; between query position i
and key position j are computed as:

exp(qi'k')
A = — V)
ij — kk)
Zpex; i

k p(qlm

These weights indicate the relevance of position j to position i, forming the basis for attention-based
explainability.

“
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3.1.2 Multi-Head Attention

Multi-head attention extends the basic mechanism by computing attention in parallel across multiple
representation subspaces:

MultiHead(Q,K,V) = Concat(head,, ..., head,)W, 5)
Where each attention head is computed independently:
Head; = Attention(QW,°, KWK, VW) (6)

And W2, WX, WY € Rmoderxdi W, € R"&k*dmodel are projection matrices. The parameter h
represents the number of attention heads. Multi-head attention allows the model to jointly attend to
information from different representation subspaces, capturing diverse relationships within the data.

3.1.3 Self-Attention and Cross-Attention

In self-attention mechanisms, Q = K = V = X, enabling the model to capture intra-sequence
dependencies. This formulation is particularly valuable for explainability as it directly reveals which
input positions influence each other:

T
Self — Attention(X) = softmax (X\)/(d_kw> X @)

Cross-attention, conversely, uses different sources for queries and keys/values, commonly applied in
encoder-decoder architectures where Q comes from the decoder and K, V from the encoder.
3.2 Taxonomy of Attention Mechanisms for Explainability

We categorize attention mechanisms based on their structural properties and explainability
characteristics:

Spatial attention: emphasizes specific regions in images (e.g., grad-cam, attention maps in vision
transformers)

Temporal attention: highlights important time steps in sequential data (e.g., rnn-based attention)
Channel attention: focuses on feature channels in deep networks (e.g., senet, cbam)
Self-attention: captures relationships within a single input sequence (e.g., transformer encoders)

Cross-attention: models dependencies between different sequences (e.g., encoder-decoder attention.
3.3 Evaluation Metrics for Attention-Based Explainability

Quality of attention based explanations should be strictly gauged on quantitative measures. Our
review model will be a holistic assessment model premised on the latest XAl articles.

3.3.1 Faithfulness

Faithfulness measures how accurately attention weights reflect the model's actual decision-making
process. Given a model f, input x, and explanation function g (attention weights), faithfulness at point
x with subset S of features is defined as:

Faithfulness(x,S) = |f(x) — f(xs)| (8

Where xg represents the input with features in S removed or masked. Higher faithfulness indicates
that removing highly-attended features causes larger changes in model output.

3.3.2 Comprehensiveness

Comprehensiveness quantifies the sufficiency of highlighted features. It measures the decrease in
model confidence when top-k features identified by attention are removed:

Comprehensiveness = f(x) — f(x\ Ty) Q)

Where T}, represents the top-k features according to attention weights. Higher comprehensiveness
indicates that attended features are indeed crucial for predictions.
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3.3.3 Infidelity

Infidelity measures the correlation between perturbations in input features and changes in attention-
weighted outputs:

Infidelity(f,g,x) = E[(g(x)- I—(fx)— flx — 1)))2] (10)

Where [ represent a perturbation vector, and g(x) denotes attention weights. Lower infidelity
indicates more reliable explanations.

3.3.4 Sensitivity (Robustness)

Sensitivity evaluates the stability of attention explanations under small input perturbations:
2
Sensitivity = ||g(x) - glx + 5)|| an
Where ¢ is a small perturbation. Lower sensitivity indicates more robust and trustworthy explanations.

3.3.5 Monotonicity

Monotonicity assesses whether progressively removing features in order of decreasing attention
weight leads to monotonically decreasing model performance:

Monotonicity = X;max (O,f(x{sl.ﬂ}) - f(x{si})) (12)
Where S; represents the set of i most important features. Lower values indicate better monotonicity.
3.4 Review Methodology and Search Strategy
We conduct a systematic review in accordance with the PRISMA principles in order to be exhaustive.
reproducibility.
3.4.1 Search Strategy

We used a systematic search in various databases between January 2024 and October 2024. The query
search was a word search on attention processes (attention) and explainability multi-head attention,
transformer, self-attention, mechanism) concepts explainable Al, also referred to as interpretability
Transparency (explainable Al) or Attention (explainable Al) visualization).

3.4.2 Inclusion Criteria
= Papers published between 2017-2025 (post-Transformer era)
= Conference papers and peer-reviewed journal articles.
= Works directly on explainability based on attention.
= Studies explicitly addressing attention-based explainability
= Empirical evaluations with quantitative metrics
= Applications in NLP, computer vision, healthcare, or related domains
3.4.3 Exclusion Criteria
= Papers without empirical validation
= Studies focusing solely on model performance without explainability analysis
= Non-english publications
= Survey papers without novel contributions
3.4.4 Data Extraction Framework
For each selected paper, we extracted:
= Attention mechanism type (self, cross, spatial, etc.)
= Application domain and specific tasks

= Evaluation metrics employed
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= Quantitative results (accuracy, faithfulness scores, etc.)
= Limitations and future directions identified
3.4.5 Quality Assessment
Papers were assessed based on:
= Methodological rigor (experimental design, baseline comparisons)
= Clarity of explainability objectives
= Comprehensiveness of evaluation metrics
= Reproducibility (code availability, implementation details)

Such a systematic methodology will help to make our review as comprehensive as possible in terms
of covering the state-of-the-art in the field of the explanation of attention, as well as be highly
scientifically rigorous.

4. Results And Analysis
4.1 Literature Search Results

Our systematic search identified 1,247 papers from major databases (IEEE Xplore, ACM Digital
Library, arXiv, PubMed, and Scopus). Duplicates (n=312) were eliminated and inclusion/exclusion
criteria were used (title and abstract screening, n=789 excluded). 146 articles were fully evaluated on the
basis of the full-text review. In the end, the total number of papers was 68 which passed all requirements
and became included in this review. The spread between domains showed 28 computer vision papers
(41.2%), 22 natural language processing papers (32.4%), 13 healthcare applications (19.1) and 5 time-
series analysis papers (7.3%).
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Figure 1: Two-axis performance comparison of the both the accuracy percentages and the faithfulness
scores in four application areas

Figure 1 demonstrates the two-axis performance comparison of the both the accuracy percentages
and the faithfulness scores in four application areas. As the visualization shows, healthcare applications
show the best performance metrics (96.1% accuracy, 0.85 faithfulness) and then there was a close
successor, computer vision (94.3% accuracy, 0.82 faithfulness). The results of Natural language
processing showed some competitive scores (92.8% accuracy, 0.78 faithfulness) whereas time-series
analysis showed relatively poor scores (89.4% accuracy, 0.74 faithfulness). The correlation between the
scores of accuracy and faithfulness on domains used is high and this implies that the processes of
attention in healthcare are favored by clear clinical goals and strict domain-specific validation protocols.
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Table 1: Performance Comparison of Attention-Based Models Across Domains

Domain Model Type Accuracy (%) Faithfulness
Computer Vision Vision Transformer 94.3 0.82
NLP BERT 92.8 0.78
Healthcare Medical ViT 96.1 0.85
Time Series Temporal Attention 89.4 0.74

Table 1 complements Figure 1 by presenting the detailed performance comparison of attention-based
models across different domains. The applications in healthcare registered the greatest accuracy (96.1%)
and faithfulness scores (0.85), which is attributable to the presence of clear clinical goals and domain-
specific feature engineering.

4.2 Attention Mechanism Types and Applications

In analysis, we had found four major types of attention mechanisms that have been used in the
reviewed papers: self-attention (45 papers, 66.2%), cross-attention (12 papers, 17.6%), spatial attention
(8 papers, 11.8%), and temporal attention (3 papers, 4.4%). The use of self-attention mechanisms
prevailed because they are versatile and build into transformer architectures.
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Figure 2: Three major explainability measures using four types of attention mechanisms

Figure 2 shows a bar chart categorized into three major explainability measures (faithfulness,
plausibility, and robustness) using four types of attention mechanisms. Spatial attention proves to be the
highest in all metrics with the highest score in faithfulness (0.84), plausibility (0.82), and robustness
(0.75). Such high performance is due to the fact that spatial attention produces intuitively generated visual
heatmaps that concur well with the way human beings perceive things. Self-attention, the most commonly
used, is moderate robust (0.68) which means that the network is sensitive to perturbations in inputs.
Temporal attention performs the worst in all metrics and it indicates the difficulty in characterising
sequential dependencies and temporal relationships in data.

Table 2: Explainability Metrics Comparison across Attention Types

Attention Type Faithfulness Plausibility Robustness Studies (n)
Self-Attention 0.81 0.76 0.68 45
Cross-Attention 0.79 0.73 0.71 12
Spatial Attention 0.84 0.82 0.75 8
Temporal Attention 0.75 0.69 0.64 3

Table 2 provides the numerical data supporting Figure 2, which indicates that the spatial attention
mechanisms had the highest scores of explainability in all three measures. Self-attention demonstrated
moderate explainability scores with a robustness score of 0.68 which demonstrates that it is sensitive to
input perturbations.

4.3 Domain-Specific Findings

4.3.1 Computer Vision Applications

Computer vision applications include computer vision authentication, computer vision sign-in,
computer vision sign-out, and computer vision customer support systems (CSP). Computer vision In
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computer vision, attention mechanisms were applied in 28 studies in various tasks such as image
classification (14 studies), object detection (8 studies), and semantic segmentation (6 studies). Vision
Transformers (ViTs) were the most popular with 19 applications and attention-augmented CNNs were
second (9 studies). It was found that the use of spatial attention maps was especially useful in localization
of relevant image regions, where an average of 0.73 IoU with ground-truth annotations was obtained in
medical imaging tasks. Multi-head attention allowed visual patterns of various kinds to be captured, and
experiments have found 12-16 attention heads to be the best in balancing performance and interpretability.

4.3.2 Natural Language Processing

Among 22 NLP studies, transformer-based models (BERT, GPT, RoBERTa) accounted for 18
implementations. Applications spanned sentiment analysis (9 studies), question answering (7 studies),
and machine translation (6 studies). When visualization techniques are paid attention to, it was found
that models can always focus on linguistic features that are relevant to the task: sentiment-bearing words
in sentiment analysis, entity mentions in question answering, and syntactic structures in translation.
Nonetheless, 7 studies (31.8) said that there was attention instability, in which small perturbations to
input gave rise to a substantial redistribution of attention weights without influencing predictions.

4.3.3 Healthcare Diagnostics

Healthcare applications (13 studies) had the most clinical utility with attention maps showing
pathologically important regions in 89 percent of instances confirmed by expert radiologists. Medical
imaging involved COVID-19 (4 studies), cancer (5 studies) and lesion segmentation (4 studies).
Interestingly, attention-based explainability caused more clinical trust, and 8 studies carried out a user
survey where better confidence in Al-assisted diagnoses was reported. Multi-modal attention (image and
clinical data) in the form of integration increased its diagnostic accuracy by 4.2% compared to image-
only models.
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Figure 3: The adoption of the evaluation metrics among the 68 studies reviewed

Figure 3 displays a horizontal bar chart that indicates a great variation in the adoption of the evaluation
metrics among the 68 studies reviewed. The chart is color coded in terms of the adoption levels, green
(>60) adopted metrics are widely adopted, orange (40-60) moderately adopted metrics, and red (<40)
underutilized metrics. The most frequently used measure was faithfulness with 76.5% (52 studies)
reflects the research community with this measure. But only 42.6% of studies (29 studies) performed
robustness evaluation, and only 35.3% of studies (24 studies) performed human evaluation, as well as
they are critically important to real-life deployment. This lack of homogeneity makes it impossible to
objectively compare various approaches, and it is important to standardize evaluation protocols.

Table 3: Evaluation Metrics Adoption across Studies

Evaluation Metric Studies Using (n) Percentage (%)
Faithfulness 52 76.5
Plausibility 38 55.9

Robustness/Sensitivity 29 42.6
Human Evaluation 24 353
Infidelity 18 26.5
Monotonicity 11 16.2
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Table 3 complements Figure 3 by providing exact counts and percentages. The statistics show that
human evaluation was used only in 35.3% of the studies, although the plausibility is significant to
implement in the real world. There is a significant area of improvement in this gap between automated
measures and human judgment.

4.4 Comparative Analysis with Baseline Methods

We evaluated the explainability of attention-based methods versus classical post-hoc methods (LIME,
SHAP, Grad-CAM) on 31 studies that involved baseline comparisons. Attention mechanisms proved to
be more computationally efficient, taking between 0.02-0.15 seconds per explanation as opposed to 0.5-
3.2 seconds in LIME and 0.3-1.8 seconds in SHAP.

—@- Attantion
-~ LIME
=k~ SHAP
Computation Grad-CAM
Speed

0.8

- Faithfulness

Robustness

Figure 4: Attention vs. Baseline Explainability Methods (Radar Chart)

Figure 4 shows a radar chart of a comparison of attention mechanisms with three explainability
methods with baseline explainability (LIME, SHAP, Grad-CAM) in three normalized dimensions:
faithfulness, computation speed and robustness. Visualization uses a normalized scale with inversed
computation time (faster is better), which can be directly compared across metrics. Attention mechanisms
(blue) has a well-balanced profile with the highest score of 0.96 normalized at the speed of computation,
with a fair level of faithfulness (0.79) and robustness (0.71). SHAP (green) has the highest faithfulness
(0.81) but has a computational inefficiency (0.35 normalized speed). LIME (red) has a weak performance
in all the dimensions especially robustness (0.52). Grad-CAM (orange) has a moderate balance but is
slower than attention and has less faithfulness. This broad comparison highlights the virtue of attention
as a means of obtaining swift and consistent explanations that can be applied in real-time.

Table 4: Attention vs. Baseline Explainability Methods

Method Faithfulness Computation Time (s) Robustness
Attention 0.79 0.08 0.71
LIME 0.68 1.85 0.52
SHAP 0.81 1.24 0.64
Grad-CAM 0.77 0.42 0.69

Table 4 demonstrates that the explainability gained by attention is an attractive one. trade-off of
faithfulness, computational efficiency and robustness. Although SHAP has slightly more faithful (0.81
vs. 0.79), its attention is 15 times faster (0.08s vs. 1.24s) and greater (0.71 vs. 0.64) attention processes.

4.5 Challenges and Limitations Identified

4.5.1 Attention Dispersion

The weight is dispersed in 23 papers (33.8%) where the attention mechanisms are concerned.
uniformly through features, and not on features that are easily interpretable.
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4.5.2 Attention-Prediction Divergence

Seven studies (10.3%) indicated instances where models gave high attention to aspects, which
ablation studies revealed to be uninfluential in the end predictions. This divergence of attention-
prediction makes it unclear whether attention weights are actually indicators of making a decision or
simply the salient features.

4.5.3 Multi-head Interpretation

Fourteen studies (20.6%) identified the difficulty in integrating and understanding information across
multiple attention heads. Different heads often identify specific patterns, which still remains an open
problem how to identify their relative importance and join them into coherent explanations.

4.5.4 Domain Transfer

Eleven studies (16.2%) have found that attention patterns trained in one domain or data did not
transfer well to similar but different tasks, restricting the generalizability of the attention-based
explanations.

A dual-panel display of distribution of studies and frequency of challenges can be viewed in Figure
5. The pie chart in the left shows that computer vision is the most prevalent in the research with 41.2%
of research (28 papers), then NLP (32.4) with 22 papers, healthcare (19.1) with 13 papers and time-series
analysis (7.3) with 5 papers. The most challenging issues are measured in the right panel (bar chart):
attention dispersion is the most frequent at 33.8% (23 studies), instability is the next most frequent at
27.9% (19 studies), multi-head aggregation occurs at 20.6% (14 studies) and domain transfer at 16.2%
(11 studies), prediction divergence occurs at 10.3% (7 studies). This plot shows that the issues are
common throughout the sector, where the dispersion of attention and its instability are observed in more
than a quarter of all the studies read, which makes it necessary to develop attention mechanisms that are
stronger.

Distribution of Studies by Application Domain Frequency of Challenges Identified
(Total n=68) (Total n=68)

Time Series
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Figure 5: Distribution of Studies by Domain and Challenge Frequency

Table 5 summarizes the primary challenges and proposed solutions. The instability of attention was
observed in 27.9 per cent of studies which led to the design of SEAT mechanisms. Dispersions can be
solved by such solutions as sparse attention, which promotes distributions of attention.

Table 5: Summary of Challenges and Proposed Solutions

Challenge Studies Affected Proposed Solutions
Attention Dispersion 23 (33.8%) Attention regularization, sparse attention
Instability 19 (27.9%) SEAT mechanisms, ensemble attention
Multi-head Aggregation 14 (20.6%) Head importance weighting, pruning
Domain Transfer 11 (16.2%) Domain-adaptive attention, meta-learning
Prediction Divergence 7 (10.3%) Attention supervision, causal attention
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Figure 6: Research Publication Trend in Attention-Based Explainability (2017-2025)

Figure 6 illustrates that the temporal advances of research in attention-based explainability are
presented across 2017 to 2025 through a dual axis line chart. The solid blue line with circular marks
indicates the number of studies published in each time period and the dashed line in red with square
marks indicates the total number of studies. According to the data, the interest in research increased
exponentially after the introduction of the Transformer architecture in 2017. This rose to a point of 21
papers (2023-2024) published in winter 2025 after 8 papers (2017-2018) initially. The cumulative trend
line shows that the majority of the total papers reviewed (68 percent) were published after 2021, which
means that the topic of attention-based explainability is becoming a fast-growing research field over the
last three years. This movement can be attributed to the maturity of transformer architectures as well as
the growing need to have interpretable Al systems in all domains.

5. Conclusion

This is a systematic review that has thoroughly looked into the importance of the attention
mechanisms in explainable machine learning in various fields and applications. Based on the analysis of
68 peer-reviewed articles, we can see that the attention-based explainability is an interesting paradigm,
which balances the model performance, interpretability, and computational efficiency in the favourable
way. The natural interpretability of attention systems that offer explanations as natural succeedents to
model architecture, without necessarily being acquired via post-hoc analysis, has important benefits to
the application of Al systems in high-stakes applications that demand transparency and accountability.

The main conclusions of our review may be as follows. To start with, the spatial attention
mechanizations have better explainability measures than other forms of attention with faithfulness score
of 0.84, plausibility score of 0.82 and robustness score of 0.75. They are intuitive in visual heatmap
generation which is very appropriate to human perceptual processing and is therefore useful in computer
vision and medical imaging. Second, the performance indicators in healthcare applications were the
highest (96.1% accuracy, 0.85 faithfulness), which is due to clear clinical goals, domain-determined
attribute engineering, and strict testing on expert annotations. Third, attention-based explainability has
significant computational benefits over the classical post-hoc explainability frameworks, being 15-23
times faster to compute than LIME and SHAP and having equal or better faithfulness scores.

However, there are some major problems that need to be dealt with in order to develop the area. The
input perturbation instability of attention has been seen in about 28% of studies, casting doubt on the
reliability of the explanation in an adversarial or noisy environment. The argument of attention-prediction
divergence, high attention weight does not always correspond with the feature weight in the final
forecasts, raises a question as to whether attention is an actual causal reasoning or only identifies salient
features. Moreover, the diversity of the evaluation procedures, where 42.6% of the studies measured the
robustness and 35.3% involved human evaluation do not enable the objective comparison of various
methods and do not provide information about the applicability in the real world.

On the basis of these results, we suggest some of the directions of further research. To investigate
this, first, standardized evaluation protocols should be created that involve the use of faithfulness,
plausibility, robustness, and human evaluation to compare more rigorously the attention-based
explainability techniques. Second, the issue of attention-prediction divergence would be overcome by
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examining the causal mechanisms of attention that define verifiable causal relationships between
attended features and predictions. Third, limitations of individual techniques can be overcome by
investigating hybrid algorithms that intermix attention with complementary explainability strategies (e.g.
concept-based explanations, counterfactual analysis). Fourth, attention-based explanations should be
made more practical and generalizable, which should be achieved by domain-adaptive attention
mechanisms that can be transferred successfully across related tasks and datasets. The development of
attention systems into explainable Al systems is not merely a technical breakthrough, but a paradigm
shift in how Al systems are designed; as an interpretable property, as opposed to a design consideration.
The need to have clear and trusted models will keep increasing as Al systems continue taking over key
decisions in the areas of healthcare, finance, self-driving vehicles, and criminal justice. Attention
mechanisms that have both the potential to improve performance and interpretability can be taken as the
viable way to address this requirement. Healthcare domain can be used as an example of how
explainability based on attention can work out. Medical practitioners when presented, they note that they
are more confident in making Al-assisted diagnosis. This enhanced confidence is translated into
enhanced human-artificial intelligence collaboration, where clinicians can investigate model reasoning,
address. Similar benefits will be achieved in other spheres of great importance as the problems of the
stability of attention, multi-head. Although a great amount of progress has been made, so much more
remains to be done in respect of further. Future studies ought to be more focused on creating stronger,
more stable and causal attentional processes and setting up consistent assessment schemes that fully
address the quality of explanations. When such challenges are overcome, the field will be able to achieve
the full potential of explainability based on attention in developing Al systems that are not just powerful
but also transparent, trustworthy and in line with human values and needs of society.

Attention convergence and explainable Al is an essential milestone in the democratization of artificial
intelligence to the extent that it is accessible, understandable and accountable to various stakeholders.
The more we perfect these methods and add to them, the closer we get to a time when Al systems and
human intelligence are intelligibly and reliably enhanced to be a catalyst of innovation without
jeopardizing the trust required to be widely adopted.
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