

# The Relationship between Sleep Disorders and Inflammatory Bowel Disease Activity and the Progress in Treatment

Li Liuyi<sup>1</sup>, Tan Xiaoping<sup>1,2,3,\*</sup>

<sup>1</sup>Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, China

<sup>2</sup>Digestive Disease Research Institution, Yangtze University, Jingzhou, China

<sup>3</sup>Clinical Medical College, Yangtze University, Jingzhou, China

**Abstract:** Inflammatory bowel disease (IBD) is a chronic, nonspecific inflammatory condition of the intestines. Its varying degrees of symptoms significantly impact patients' quality of life. Sleep disorders are prevalent among IBD patients. This review will explore the relationship between sleep disorders and inflammatory bowel disease by examining assessment tools for sleep disorders, mechanisms influencing disease activity, and current treatment advances.

**Keywords:** Inflammatory Bowel Disease, Sleep Disorders, Treatment

## 1. Introduction

Inflammatory bowel disease (IBD) is a chronic and nonspecific intestinal inflammation encompassing two main forms: Crohn's disease and ulcerative colitis. Affected individuals commonly experience persistent or recurrent symptoms like abdominal pain, altered bowel habits with blood or mucus, and tenesmus. The variability and persistence of these symptoms markedly diminish patients' quality of life. Sleep disturbances are prevalent among IBD patients, with over half reporting poor sleep quality<sup>[1]</sup>. This review assesses how sleep disruptions correlate with IBD activity, with the goal of deepening clinical knowledge and fostering interventions that improve patient quality of life.

## 2. Sleep Disorders in IBD Patients

The causes of sleep disorders in patients with inflammatory bowel disease (IBD) remain poorly understood<sup>[2]</sup>. While IBD sleep research has examined individual-level factors affecting sleep health (e.g., age), information on social determinants contributing to sleep health is lacking<sup>[3]</sup>. Sleep apnea, insomnia, restless legs syndrome, and nightmares are among the sleep disorders frequently associated with IBD. Research evaluating these conditions, in conjunction with mood disturbances and health-related quality of life (HRQoL), indicates that interventions targeting sleep apnea and insomnia can lead to meaningful improvements in overall well-being<sup>[4]</sup>.

Research has observed that in individuals with IBD, poorer sleep metrics, lower life quality, and higher levels of depression and anxiety correlate with disease flares, whereas these associations appear unrelated to dietary patterns<sup>[5,6]</sup>. Patients exhibiting active symptoms of inflammatory bowel disease (IBD) demonstrate a higher propensity for experiencing impaired sleep and clinical insomnia. Interestingly, while specific IBD-related nocturnal disturbances, such as awakenings caused by bowel urgency, do not show a strong link to overall sleep quality ratings, they are significantly associated with greater severity of insomnia symptoms<sup>[7]</sup>. IBD patients exhibit distinct sleep patterns compared to healthy individuals, characterized by increased sleep fragmentation<sup>[8]</sup>. Patients who have objective confirmation of active IBD exhibit alterations in sleep architecture, including a reduction in Stage 2 and overall NREM sleep duration, resulting in decreased total sleep time. They also demonstrate prolonged sleep onset latency, which contributes to lower sleep efficiency. Furthermore, higher depression scores in these individuals are correlated with both the extended latency and the shortened Stage 2 sleep, underscoring a link between mood, sleep disturbances, and objectively measured disease activity<sup>[9]</sup>.

Currently, commonly used assessment tools for patients with inflammatory bowel disease (IBD) and sleep disorders are primarily questionnaires, including the Pittsburgh Sleep Quality Index (PSQI), Athens

Insomnia Scale (AIS), Epworth Sleepiness Scale (ESS), and Insomnia Severity Index (ISI).

### **3. Mechanisms of Sleep Disorders Contributing to Disease Activity**

Circadian disruption in rest-activity patterns was linked to a more severe progression of inflammatory bowel disease (IBD), along with heightened gut permeability, raised fecal calprotectin levels, increased pro-inflammatory cytokine activity, and altered gut microbiota composition<sup>[10]</sup>.

#### **3.1 Circadian Rhythm Alterations**

The suprachiasmatic nucleus (SCN) in the hypothalamus, together with peripheral clock genes present in somatic cells, serves as the central regulator of circadian rhythms. These rhythms are instrumental in modulating a wide array of physiological processes, including immune function, gut barrier integrity, microbial community structure in the intestine, and the translocation of bacterial components. Core circadian genes involved in this process include the circadian rhythm output genes CLOCK and BMAL1, as well as the transcription repressor genes PER1, PER2, CRY1, and CRY2. Research indicates that sleep disruption leads to weight loss and increased risk of inflammation. In active IBD patients, mRNA levels of circadian genes Bmal1, Cry1, Cry2, and Rev-erba were significantly reduced in inflamed tissue compared to non-inflamed tissue<sup>[11]</sup>. A prospective cohort study demonstrated a positive correlation between short sleep duration and daytime napping with IBD risk<sup>[12]</sup>. Poor sleep quality increases abdominal pain and fatigue scores the following day<sup>[13]</sup>. The gut microbial metabolite urinary stonein A (UA) has been shown to counteract inflammation-induced dysregulation of circadian clock genes (BMAL1, PER2) and tight junction components (OCLN, TJP1, CLDN1). Specifically, UA modulates the rhythmicity of BMAL1 and PER2 in intestinal epithelial cells by engaging the Nrf2-SIRT1 signaling axis. Within the DSS-induced colitis model, the intervention yielded positive outcomes in key measures: fecal IgA levels were elevated; expression of tight junction genes (Clnd1 and Clnd4) was enhanced; and the circadian oscillations of Bmal1 and Per2 were ameliorated. Thus, UA has the potential to treat sleep-related disorders such as IBD by improving the intestinal barrier and restoring disrupted circadian rhythms in the SCN<sup>[14]</sup>.

#### **3.2 Gut Microbiota**

Disruption of circadian genes affects the composition of the gut microbiota, potentially leading to dysbiosis. Gut biopsies and peripheral blood mononuclear cells (PBMCs) from IBD patients show reduced expression of nearly all circadian genes, including MAL1, CLOCK, CRY1, CRY2, PER1, and PER2, with this decline being more pronounced in UC than in CD. These genes exhibit bidirectional interactions with inflammation and dysbiosis, both of which play critical roles in the pathogenesis and progression of IBD. Patients with active ulcerative colitis exhibit a marked deficiency in fecal and colonic butyrate, a condition linked to the dysbiotic state characterized by the depletion of butyrate-producing bacterial populations such as *Faecalibacterium prausnitzii* and *Ruminococcus longum*. In a murine model, sleep fragmentation was found to worsen the severity of DSS-induced colitis relative to undisturbed sleep, as evidenced by increased weight loss, colon shortening, and disease activity indices. The pathological changes in SF mice were characterized by a collective deterioration across multiple systems: a drop in key tight junction proteins (claudin-1, occludin), upregulation of pro-inflammatory cytokines (CRP, IFN- $\gamma$ , IL-6), reduced concentrations of melatonin and adiponectin, downregulated VPAC1/VPAC2 receptor expression, and a decline in the diversity of intestinal bacteria. While sleep disturbance was shown not to influence tight junction protein expression in the intestines of healthy mice, electroacupuncture (EA) application in a colitis model effectively reduced disease severity and provided protection against the loss of epithelial barrier proteins and VIP receptor function, particularly for the VPAC2 subtype. However, it did affect vasoactive intestinal peptide receptors and gut microbiota diversity—opposite to what was observed in inflamed mice<sup>[15]</sup>. A crossover randomized controlled trial evaluated the impact of a fortified dairy product on sleep, stress, and gut microbiota. The findings indicated that consumption of the product, which contained protein, galacto-oligosaccharides, vitamins, and minerals, did not yield a significant improvement in sleep quality among participants with sleep disturbances. However, it stimulated *Bifidobacterium* growth by reducing salivary cortisol levels, which may contribute to improved sleep<sup>[16]</sup>. A randomized controlled trial provided evidence that probiotics, which are known to act on the gut-brain axis, can induce significant changes in brain morphology and resting-state function, in addition to causing a minor increase in BDNF levels.<sup>[17]</sup>

### **3.3 Brain-Derived Neurotrophic Factor (BDNF)**

Studies point to a link between the gut microbiota and circadian biology, noting that germ-free conditions lead to suppressed rhythmic gene expression in the brain, liver, and gut. This connection highlights the functional significance of the gut-brain axis, through which signaling molecules like BDNF and proBDNF are known to govern brain-gut interactions and may thereby influence psychological health. A randomized controlled trial examining how anti-TNF therapy affects BDNF and the gut-brain axis in IBD stratified participants by disease activity and type (UC/CD). The evaluated metrics included questionnaire-derived data on sleep parameters and depression, as well as biomarkers measured from collected blood samples. Compared to healthy controls, patients with inflammatory bowel disease (IBD) demonstrated reduced BDNF mRNA expression alongside elevated levels of both proBDNF and mature BDNF protein. Notably, protein concentrations were higher in ulcerative colitis (UC) than in Crohn's disease (CD). Within the IBD cohort, BDNF protein levels showed a positive correlation with sleep efficiency. Furthermore, in patients achieving clinical remission, depression severity was positively associated with BDNF mRNA but inversely related to BDNF protein. Anti-TNF treatment was observed to upregulate BDNF mRNA, suggesting a potential disruption of the BDNF signaling pathway in IBD that may contribute to comorbid sleep and mood disturbances.<sup>[18]</sup>

Research indicates that individuals adhering to the Mediterranean or MIND dietary patterns experience significant enhancements in sleep quality and reductions in symptoms of depression and anxiety relative to control groups. This positive psychological and behavioral impact is further correlated with a substantial elevation in Brain-Derived Neurotrophic Factor (BDNF) levels.<sup>[19]</sup> Clinical observations indicate that the therapeutic effect of serial ketamine infusions on sleep parameters in patients with sleep disorders is positively correlated with an increase in serum BDNF, suggesting BDNF may be a relevant biomarker for treatment response.<sup>[20]</sup>

### **3.4 Hypothalamic-Pituitary-Adrenal Axis, 5-HT, Serotonin Transporter (SERT)**

Pro-inflammatory cytokines, notably TNF- $\alpha$  and IL-6, have been shown to suppress the expression of core circadian clock genes such as PER1, PER2, and CRY2. This mechanistic link is supported by clinical data: individuals with inflammatory bowel disease (IBD) who experience poor sleep present with significantly higher serum concentrations of IL-6, IL-17, and IL-23—a profile similarly observed during disease exacerbation. Consequently, the interplay between impaired sleep and a heightened pro-inflammatory state may indicate a greater vulnerability to severe intestinal inflammation in this patient population<sup>[21]</sup>.

### **3.5 Pro-inflammatory Factors**

Evidence suggests that inflammatory mediators like TNF- $\alpha$  and IL-6 contribute to the dysregulation of key clock genes (e.g., PER2, PER1, CRY2). Concurrently, clinical studies report that sleep disturbances in IBD are associated with elevated serum levels of IL-6, IL-17, and IL-23, which are notably upregulated during disease exacerbation. Assessing the connection between sleep quality and this specific inflammatory signature could provide insights into the susceptibility to aggressive inflammatory lesions among IBD patients with comorbid sleep disorders<sup>[22]</sup>.

## **4. Pharmacological Management**

### **4.1 Antidepressants**

Benzodiazepine use is more prevalent among IBD patients than in population controls. Strategies are needed to reduce benzodiazepine reliance in IBD patients and provide alternative management approaches for sleep disturbances and other symptomatic concerns<sup>[23]</sup>.

### **4.2 Sleep and Pain Medications**

Melatonin exerts protective effects in inflammatory bowel disease through multiple mechanisms, including reinforcement of the gut mucosal barrier, modulation of the gut microbial community toward an anti-inflammatory profile, immune regulation, and attenuation of inflammatory and oxidative stress. Consistent with these actions, preclinical studies using animal models of IBD have demonstrated that melatonin administration can ameliorate intestinal inflammation and promote ulcer healing. Preliminary

clinical investigations further indicate that, when used as an adjunctive treatment, melatonin may contribute to reduced disease activity in patients<sup>[24]</sup>. A clinical investigation found that administration of a melatonin-magnesium supplement delivered in a coffee pod format led to a modest yet significant enhancement in sleep quality among healthy participants experiencing sleep complaints. Despite this improvement, post-intervention scores on the Pittsburgh Sleep Quality Index (PSQI) remained within the range indicative of average overall sleep quality<sup>[25]</sup>.

Proactive pain management protocols do not worsen pain but significantly reduce opioid use among hospitalized IBD patients<sup>[26]</sup>. Several drug classes, including opioids, anxiolytics, and biologics, are linked to poor sleep in patients, with opioids posing a distinct risk. These associations highlight the value of minimizing exposure to such medications in IBD care where feasible.

#### **4.3 Butyrate**

Experimental evidence indicates that butyrate, which may act as a probiotic, can counteract IBD aggravation linked to sleep deprivation. Administration of sodium butyrate led to a marked reduction in calmodulin and an upregulation of CRY1 gene expression. Consequently, butyrate supplementation holds promise as a complementary therapy for active UC, potentially alleviating inflammation, normalizing circadian rhythms, and improving sleep and quality of life<sup>[27]</sup>.

### **5. Non-Pharmacological Treatments**

#### **5.1 Cognitive and Behavioral Therapies**

The Brief Behavioral Therapy for Sleep (BBTS-I) applied to IBD patients improved sleep disturbances in CD patients<sup>[28]</sup>. A prospective, multicenter, randomized controlled trial was conducted to evaluate the clinical efficacy and cost-effectiveness of integrating mindfulness-based cognitive therapy into standard care for inflammatory bowel disease patients, with a focus on its impact on psychological distress, sleep quality, fatigue levels, and overall quality of life<sup>[29]</sup>. Concurrently, routine care supplemented with continuous care interventions, skin and inhaled aromatherapy, diaphragmatic breathing, and cognitive behavioral therapy also enhanced sleep quality in IBD patients<sup>[30-32]</sup>.

Research indicates that cognitive behavioral therapy for insomnia (CBT-I), as the first-line recommended treatment for chronic insomnia disorder, may be particularly effective and important in managing insomnia and its associated pain and depression in individuals with inflammatory bowel disease<sup>[33]</sup>. A significant rise in serum BDNF was documented following acupuncture in insomnia-afflicted cancer survivors with low baseline BDNF, yet the therapeutic meaning of this effect remains to be fully elucidated. Clinical research indicates that integrating acupuncture with rTMS alongside standard escitalopram treatment produces greater improvements in cognitive function and sleep among individuals with depression than using the antidepressant alone or pairing it solely with rTMS. The underlying mechanism for this synergistic benefit could involve the upregulation of serum 5-HT and BDNF levels<sup>[34]</sup>.

#### **5.2 Exercise**

Serum BDNF levels are diminished in patients with major depressive disorder (MDD). Healthy adults exhibit elevated BDNF following exercise. Thus, exercise therapy may help improve sleep disturbances and depression in IBD patients<sup>[35]</sup>. Significantly elevated serum resistin levels and lower serum adiponectin and leptin levels are observed in IBD patients with poor sleep. During IBD flare-ups, patients exhibit markedly elevated serum resistin levels, markedly reduced serum leptin levels, and a trend toward decreased serum adiponectin levels<sup>[36]</sup>. The interaction between disrupted circadian rhythms and particular adipokine patterns might help identify individuals with IBD who are at a heightened risk for developing inflammatory intestinal lesions. Treating sleep disorders, managing weight, and modifying dietary habits could emerge as novel therapeutic targets for IBD. Studies indicate that the prevalence of sleep quality impairment decreased after completing exercise programs<sup>[37]</sup>. A comprehensive study combining yoga with aromatherapy massage identified attitudes, subjective norms, and perceived behavioral control beliefs associated with yoga intervention and daily practice. Participants' depression and mental health scores improved<sup>[38]</sup>. Dance therapy demonstrates therapeutic potential for addressing the fatigue-sleep disturbance-depression symptom cluster and improving overall well-being in Chinese breast cancer patients receiving adjuvant chemotherapy<sup>[39]</sup>. For patients with post-stroke depression, a

combined intervention of Ba Duan Jin and rational emotive behavior therapy improves mood, sleep, neurological function, and quality of life, potentially by modulating key serum biomarkers including 5-HT, BDNF, and IL-6<sup>[40]</sup>.

### 5.3 Diet

Lifestyle interventions involving an anti-inflammatory diet and increased physical activity offer multifaceted benefits for UC patients, including relief from psychological distress and fatigue, better disease control, and improved sleep, social satisfaction, and overall quality of life<sup>[41]</sup>. Even at modest intake levels, alcohol consumption can have adverse effects on sleep health. Notably, it is associated with an elevated likelihood of snoring and can disrupt normal nocturnal sleep architecture<sup>[42]</sup>.

### 5.4 Fecal Microbiota Transplantation

Studies indicate that among 52 patients receiving washed microbiota transplantation (WMT), all 47 patients demonstrated significantly reduced PSQI scores one month post-treatment compared to baseline. Furthermore, baseline PSQI scores correlated with the change in PSQI scores from baseline to after WMT<sup>[43]</sup>.

### 5.5 Wearable Devices

Daily self-monitoring through wearable devices can track physical activity, heart rate, and sleep quality<sup>[44]</sup>. The well-established link between sleep problems and chronic pain, evident in disorders such as fibromyalgia, suggests that addressing symptoms prior to sleep could improve therapeutic outcomes. Home-based neuromodulation offers a promising strategy for controlling widespread chronic pain. One such method, alpha entrainment, utilizes 10 Hz stimulation administered via smartphone applications through visual flicker or auditory binaural beats to alleviate pain. Research in fibromyalgia patients indicates that pre-sleep alpha entrainment coupled with at-home EEG monitoring is a practicable approach, demonstrating preliminary benefits for both pain and sleep parameters with a favorable safety profile<sup>[45]</sup>.

## 6. Conclusion

This review delves into the relationship between sleep disorders and inflammatory bowel disease by examining assessment tools for sleep disorders, mechanisms influencing disease activity, and current treatment advances. It offers new perspectives for research on inflammatory bowel disease complications, aiming to advance interventions that improve patients' quality of life.

## References

- [1] GARCÍA CALVO E, DURÀ GIL M, VELAYOS JIMÉNEZ B, et al. Prevalence and factors associated with poor sleep quality in inflammatory bowel disease outpatients[J/OL]. *Revista Espanola De Enfermedades Digestivas*, 2021, 113(7): 512-518. DOI:10.17235/reed.2020.7202/2020.
- [2] SOCHAL M, MAŁECKA-PANAS E, GABRYELSKA A, et al. Determinants of Sleep Quality in Inflammatory Bowel Diseases[J/OL]. *Journal of Clinical Medicine*, 2020, 9(9): 2921. DOI: 10.3390/jcm9092921.
- [3] YOO L, TSAI C S, HEITKEMPER M, et al. Systematic review: Individual-level factors and social determinants of health impacting sleep health in individuals with inflammatory bowel disease[J/OL]. *Journal of Advanced Nursing*, 2023, 79(5): 1650-1663. DOI:10.1111/jan.15576.
- [4] SCOTT A J, FLOWERS O, ROWSE G. Do specific types of sleep disturbances represent risk factors for poorer health-related quality of life in inflammatory bowel disease? A longitudinal cohort study [J/OL]. *British Journal of Health Psychology*, 2021, 26(1): 90-108. DOI:10.1111/bjhp.12457.
- [5] HAO G, ZHU B, LI Y, et al. Sleep quality and disease activity in patients with inflammatory bowel disease: a systematic review and meta-analysis[J/OL]. *Sleep Medicine*, 2020, 75: 301-308. DOI:10.1016/j.sleep.2020.08.032.
- [6] XU J, CHEN X, MA K, et al. Correlation Between Sleep, Life, Mood, and Diet and Severity of Inflammatory Bowel Disease in China: A Retrospective Study[J/OL]. *Medical Science Monitor: International Medical Journal of Experimental and Clinical Research*, 2021, 27: e930511. DOI:10.12659/MSM.930511.

[7] SALWEN-DEREMER J K, SMITH M T, HASKELL H G, et al. Poor Sleep in Inflammatory Bowel Disease Is Reflective of Distinct Sleep Disorders[J/OL]. *Digestive Diseases and Sciences*, 2022, 67(7): 3096-3107. DOI:10.1007/s10620-021-07176-y.

[8] BEILMAN C, DITTRICH A, SCOTT H, et al. Polysomnography shows sleep fragmentation in patients with inactive inflammatory bowel disease[J/OL]. *Annals of Gastroenterology*, 2020, 33(6): 638-644. DOI:10.20524/aog.2020.0529.

[9] BARNES A, MUKHERJEE S, ANDREWS J M, et al. Active Inflammatory Bowel Disease Is Associated with Short Sleep Duration via Objective Measures[J/OL]. *Digestive Diseases and Sciences*, 2024, 69(8): 2937-2943. DOI:10.1007/s10620-024-08485-8.

[10] SWANSON G R, KOCHMAN N, AMIN J, et al. Disrupted Circadian Rest-Activity Cycles in Inflammatory Bowel Disease Are Associated With Aggressive Disease Phenotype, Subclinical Inflammation, and Dysbiosis[J/OL]. *Frontiers in Medicine*, 2021, 8: 770491. DOI:10.3389/fmed.2021.770491.

[11] WANG D, YIN H, WANG X, et al. Influence of sleep disruption on inflammatory bowel disease and changes in circadian rhythm genes[J/OL]. *Heliyon*, 2022, 8(10): e11229. DOI:10.1016/j.heliyon.2022.e11229.

[12] YUAN S, SUN Y, TAN X, et al. Sleep duration and daytime napping in relation to incident inflammatory bowel disease: a prospective cohort study[J/OL]. *Alimentary Pharmacology & Therapeutics*, 2023, 57(5): 475-485. DOI:10.1111/apt.17285.

[13] GUADAGNOLI L, HORRIGAN J, WALENTYNOWICZ M, et al. Sleep Quality Drives Next Day Pain and Fatigue in Adults With Inflammatory Bowel Disease: A Short Report[J/OL]. *Journal of Crohn's & Colitis*, 2024, 18(1): 171-174. DOI:10.1093/ecco-jcc/jjad128.

[14] DU Y, CHEN X, KAJIWARA S, et al. Effect of Urolithin A on the Improvement of Circadian Rhythm Dysregulation in Intestinal Barrier Induced by Inflammation[J/OL]. *Nutrients*, 2024, 16(14): 2263. DOI:10.3390/nu16142263.

[15] LIU G H, ZHUO X C, HUANG Y H, et al. Alterations in Gut Microbiota and Upregulations of VPAC2 and Intestinal Tight Junctions Correlate with Anti-Inflammatory Effects of Electroacupuncture in Colitis Mice with Sleep Fragmentation[J/OL]. *Biology*, 2022, 11(7): 962. DOI:10.3390/biology11070962.

[16] SCHAAFSMA A, MALLEE L, VAN DEN BELT M, et al. The Effect of A Whey-Protein and Galacto-Oligosaccharides Based Product on Parameters of Sleep Quality, Stress, and Gut Microbiota in Apparently Healthy Adults with Moderate Sleep Disturbances: A Randomized Controlled Cross-Over Study[J/OL]. *Nutrients*, 2021, 13(7): 2204. DOI:10.3390/nu13072204.

[17] RODE J, EDEBOL CARLMAN H M T, KÖNIG J, et al. Multi-Strain Probiotic Mixture Affects Brain Morphology and Resting State Brain Function in Healthy Subjects: An RCT[J/OL]. *Cells*, 2022, 11(18): 2922. DOI:10.3390/cells11182922.

[18] SOCHAL M, DITMER M, BINIENDA A, et al. Relation between Selected Sleep Parameters, Depression, Anti-Tumor Necrosis Factor Therapy, and the Brain-Derived Neurotrophic Factor Pathway in Inflammatory Bowel Disease[J/OL]. *Metabolites*, 2023, 13(3): 450. DOI:10.3390/metabo13030450.

[19] GOLMOHAMMADI M, ATTARI V E, SALIMI Y, et al. The effect of MIND diet on sleep status, mental health, and serum level of BDNF in overweight/obese diabetic women with insomnia: a randomized controlled trial[J/OL]. *Scientific Reports*, 2025, 15(1): 8237. DOI:10.1038/s41598-025-91389-y.

[20] WANG M, ZHANG B, ZHOU Y, et al. Sleep improvement is associated with the antidepressant efficacy of repeated-dose ketamine and serum BDNF levels: a post-hoc analysis[J/OL]. *Pharmacological reports: PR*, 2021, 73(2): 594-603. DOI:10.1007/s43440-020-00203-1.

[21] SOCHAL M, WITKOWSKA A, BINIENDA A, et al. The Effect of Serotonin Transmission on Depressive and Insomnia Symptoms in Inflammatory Bowel Diseases[J/OL]. *Journal of Clinical Medicine*, 2023, 12(19): 6353. DOI:10.3390/jcm12196353.

[22] SOBOLEWSKA-WŁODARCZYK A, WŁODARCZYK M, TALAR M, et al. The association of the quality of sleep with proinflammatory cytokine profile in inflammatory bowel disease patients[J/OL]. *Pharmacological reports: PR*, 2021, 73(6): 1660-1669. DOI:10.1007/s43440-021-00333-0.

[23] BERNSTEIN C N, FISK J D, WALLD R, et al. Use of Benzodiazepines and Z-Drugs in Inflammatory Bowel Disease[J/OL]. *The American Journal of Gastroenterology*, 2022, 117(12): 2046-2054. DOI:10.14309/ajg.00000000000001955.

[24] VAGHARI-TABARI M, MOEIN S, ALIPOURIAN A, et al. Melatonin and inflammatory bowel disease: From basic mechanisms to clinical application[J/OL]. *Biochimie*, 2023, 209: 20-36. DOI:10.1016/j.biochi.2022.12.007.

[25] CARLOS R M, MATIAS C N, CAVACA M L, et al. The effects of melatonin and magnesium in a novel supplement delivery system on sleep scores, body composition and metabolism in otherwise healthy individuals with sleep disturbances[J/OL]. *Chronobiology International*, 2024, 41(6): 817-828.

DOI:10.1080/07420528.2024.2353225.

[26] BERRY S K, TAKAKURA W, PATEL D, et al. A randomized controlled trial of a proactive analgesic protocol demonstrates reduced opioid use among hospitalized adults with inflammatory bowel disease[J/OL]. *Scientific Reports*, 2023, 13(1): 22396. DOI:10.1038/s41598-023-48126-0.

[27] GAO T, WANG Z, DONG Y, et al. Butyrate Ameliorates Insufficient Sleep-Induced Intestinal Mucosal Damage in Humans and Mice[J/OL]. *Microbiology Spectrum*, 2023, 11(1): e0200022. DOI:10.1128/spectrum.02000-22.

[28] HASHASH J G, KNISELY M R, GERMAIN A, et al. Brief Behavioral Therapy and Bupropion for Sleep and Fatigue in Young Adults With Crohn's Disease: An Exploratory Open Trial Study[J/OL]. *Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association*, 2022, 20(1): 96-104. DOI:10.1016/j.cgh.2020.09.047.

[29] TER AVEST M M, VAN VELTHOVEN A S M, SPECKENS A E M, et al. Effectiveness of Mindfulness-Based Cognitive Therapy in reducing psychological distress and improving sleep in patients with Inflammatory Bowel Disease: study protocol for a multicentre randomised controlled trial (MindIBD)[J/OL]. *BMC psychology*, 2023, 11(1): 183. DOI:10.1186/s40359-023-01127-0.

[30] XU C, XI W, WU C, et al. Effects of Continuous Nursing on the Disease Uncertainty, Coping Strategies and Quality of Sleep and Life of Patients with Inflammatory Bowel Disease[J/OL]. *Journal of Multidisciplinary Healthcare*, 2023, 16: 2071-2080. DOI:10.2147/JMDH.S414104.

[31] YU L, GUO N, WANG T, et al. Effects of aromatherapy on fatigue, quality of sleep and quality of life in patients with inflammatory bowel disease: A feasibility study[J/OL]. *Complementary Therapies in Clinical Practice*, 2022, 49: 101648. DOI:10.1016/j.ctcp.2022.101648.

[32] KAKUEI A, RAVARI A, MIRZAEI T, et al. Comparison of diaphragmatic breathing relaxation training and cognitive-behavioral therapy on sleep quality in the elderly: a randomized clinical trial[J/OL]. *Sleep & Breathing = Schlaf & Atmung*, 2025, 29(2): 131. DOI:10.1007/s11325-025-03296-1.

[33] SALWEN-DEREMER J K, SIEGEL C A, SMITH M T. Cognitive Behavioral Therapy for Insomnia: A Promising Treatment for Insomnia, Pain, and Depression in Patients With IBD[J/OL]. *Crohns Colitis* 360. 2020 Jun 24;2(3):1-8. DOI: 10.1093/crocol/otaa052.

[34] LIOU K T, GARLAND S N, LI Q S, et al. Effects of acupuncture versus cognitive behavioral therapy on brain-derived neurotrophic factor in cancer survivors with insomnia: an exploratory analysis[J/OL]. *Acupuncture in Medicine: Journal of the British Medical Acupuncture Society*, 2021, 39(6): 637-645. DOI: 10.1177/0964528421999395.

[35] KRAMER B A, JAEHN A, GRÜTZNER T M, et al. Exercise elevates serum brain-derived neurotrophic factor in partially remitted depression[J/OL]. *Psychiatry Research*, 2023, 326: 115283. DOI:10.1016/j.psychres.2023.115283.

[36] SOBOLEWSKA-WŁODARCZYK A, WŁODARCZYK M, ZIELIŃSKA A, et al. Circadian rhythm abnormalities in patients with inflammatory bowel disease - association with adipokine profile[J/OL]. *Scandinavian Journal of Gastroenterology*, 2020, 55(3): 294-300. DOI:10.1080/00365521. 2020. 1737727.

[37] TRIVIĆ MAŽURANIĆ I, SILA S, MIŠAK Z, et al. Exercise leads to better sleep in children with inflammatory bowel disease[J/OL]. *Pediatrics International: Official Journal of the Japan Pediatric Society*, 2024, 66(1): e15788. DOI:10.1111/ped.15788.

[38] KAUR S, D'SILVA A, RAJAGOPALAN V, et al. Evaluation of an integrated yoga program in patients with inflammatory bowel disease: A pilot study[J/OL]. *Explore (New York, N.Y.)*, 2022, 18(3): 335-341. DOI:10.1016/j.explore.2021.04.006.

[39] HE X, NG M S N, CHOI K C, et al. Effects of a 16-week dance intervention on the symptom cluster of fatigue-sleep disturbance-depression and quality of life among patients with breast cancer undergoing adjuvant chemotherapy: A randomized controlled trial[J/OL]. *International Journal of Nursing Studies*, 2022, 133: 104317. DOI:10.1016/j.ijnurstu.2022.104317.

[40] LIU Y, CHEN C, DU H, et al. Impact of Baduanjin exercise combined with rational emotive behavior therapy on sleep and mood in patients with poststroke depression: A randomized controlled trial[J/OL]. *Medicine*, 2024, 103(19): e38180. DOI:10.1097/MD.00000000000038180.

[41] DUBOIS K E, BLAKE C E, RUDISILL C, et al. Ulcerative Colitis Is Associated With Diet-related Inflammation and Physical Activity in the IBD Partners E-cohort[J/OL]. *Inflammatory Bowel Diseases*, 2024, 30(2): 273-280. DOI:10.1093/ibd/izad139.

[42] ZHENG J W, AI S Z, CHANG S H, et al. Association between alcohol consumption and sleep traits: observational and mendelian randomization studies in the UK biobank[J/OL]. *Molecular Psychiatry*, 2024, 29(3): 838-846. DOI:10.1038/s41380-023-02375-7.

[43] LI Q, LIU Y, ZHANG Z, et al. Washed Microbiota Transplantation Improves the Sleep Quality in Patients with Inflammatory Bowel Disease[J/OL]. *Nature and Science of Sleep*, 2024, 16: 1141-1152.

DOI:10.2147/NSS.S460882.

[44] ERDMANN A, SCHRINNER F, REHMANN-SUTTER C, et al. *Acceptability Criteria of Precision Medicine: Lessons From Patients' Experiences With the GUIDE-IBD Trial Regarding the Use of Mobile Health Technology*[J/OL]. *Crohns Colitis* 360. 2023 Nov 8;5(4):1-11. DOI:10.1093/crocol/otad068.

[45] HALPIN S J, XING L, GREENWOOD D C, et al. *Pre-sleep alpha brain entrainment by audio or visual stimulation for chronic widespread pain and sleep disturbance: A randomised crossover feasibility trial*[J/OL]. *The Journal of Pain*, 2025, 31: 105393. DOI:10.1016/j.jpain.2025.105393.