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Abstract: Discretization of the 3D Helmholtz equation leads to a linear system of a large size. The 
resulting linear system is difficult to be solved by a sequential method. In this paper, we propose a 
parallel preconditioned Bi-CGSTAB method for solving the system based on MPI(Message Passing 
Interface). We precondition the 3D Helmholtz equation by the complex shifted-Laplacian 
preconditioner, and employ the Krylov subspace method Bi-CGSTAB combined with the multi-grid to 
solve the resulting system. Numerical experiments are presented to illustrate the efficiency of the 
parallel Preconditioned solver. 
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1. Introduction 

The Helmholtz equation governs wave propagations and scattering phenomena, and it finds 
important applications in many areas of science and engineering such as geophysics, aeronautics and 
marine technology. Most popular numerical methods for solving the Helmholtz equation are the finite 
difference method and the finite element method. It is known that the numerical solution of the 
Helmholtz equation suffers from the “pollution effect” (cf. [7]), which deteriorates severely as the 
wavenumber increases. The pollution effect may be reduced in some situations. However, it can never 
be eliminated for the 2D and 3D problems. In practice, the wavenumber k and discretization step size h 
should satisfy at least the “rules of thumb” that kh remains a small constant. Consequently, small step 
size h results in a linear system of a large size. For the 2D problem, the linear system can be solved by 
the direct method such as the LU decomposition. For the 3D problem, the matrix size of the resulting 
linear system rapidly becomes extremely large, especially when the wavenumbers is large. The cost of 
direct methods for solving such a linear system becomes prohibitively expensive, and we have to resort 
to iterative methods. 

Solving the 3D Helmholtz equation requires considerable memories and computing time and this 
makes it not feasible to use the traditional serial method. For this reason, parallel algorithms are highly 
desirable for solving such problems. In [10], a parallel preconditioned iterative solver was designed, 
based on a parallel partition in two spacial dimensions and it was tested for small wavenumbers in a 
computer having 24 processors. In this paper, we develop a MPI-based parallel preconditioned iterative 
method for the 3D Helmholtz equation by using the Krylov subspace method Bi-CGSTAB combined 
with the complex shifted-Laplacian preconditioner. The preconditioned linear system is obtained from 
discretization of a dispersion minimizing finite difference scheme proposed in [4]. To approximately 
invert the preconditioner, we employ the 3D full-coarsening multigrid. The multigrid-based 
preconditioned Bi-CGSTAB solver can be well parallelized. The mail difficulty is the parallelization of 
the multigrid. We manage to solve successfully the problems arising in developing the parallel 
multigrid method, which include the parallel partitioning of the 3D computational domain, the 
information transferring between two neighboring levels as well as two neighboring sub-regions. 
Numerical experiments are presented to show that the parallel preconditioned iterative solver has a high 
parallel speedup. 

2. Multigrid-based Preconditioned Iterative Solver 

In this section, we review the multigrid-based preconditioned Bi-CGSTAB solver for solving the 
3D Helmholtz equation for the wave problem. The Helmholtz equation is preconditioned with the 



International Journal of Frontiers in Engineering Technology 
ISSN 2706-655X Vol.3, Issue 5: 84-90, DOI: 10.25236/IJFET.2021.030510 

Published by Francis Academic Press, UK 
-85- 

complex shifted-Laplacian preconditioner. 

We consider solving the 3D Helmholtz equation 

Au: = −∆u − k2u = g                              (1) 

where ∆ is the 3D Laplacian, unknown u usually represents a pressure field in the frequency 
domain, k := 2πf/v is the wavenumber with f and v indicating respectively the frequency and the wave 
velocity, g denotes the source term. In this paper, the wavenumber is referred to the dimensionless 
wavenumber (cf. [8]),  which is equal to 2πfι/v with ι being the size of the square domain. To 
model the wave propagation in a finite domain, artificial absorbing boundary conditions such as the 
perfectly matched layer (PML, cf. [3, 11, 12]) are often used to eliminate non-physical reflections of the 
solution at the boundary. We let ξx, ξy , ξz denote the 1D damping functions (cf. [4]) of the x, y, z 
directions, respectively, and define 

C1 =
ξ
y

ξ
z

ξ
x

, C2 =
ξ
x

ξ
z

ξ
y

, C3 =
ξ
x

ξ
y

ξ
z

, C4 = ξ
x
ξ
y
ξ
z
                     (2) 

Applying the PML technique to (1), we obtain the 3D Helmholtz equation with PML 
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which is equipped with a zero Dirichlet boundary condition. Solutions of equation (3) will have no 
non-physical reflections at the boundary and thus, we shall use it to replace equation (1) in our further 
numerical consideration. 

It is known that the standard iterative method converges slowly and even diverges when solving the 
linear system that results from the discretization of (3). To make the iterative method efficient, we need 
preconditioning. Many authors (cf. [1, 2, 5, 6, 9]) developed shifted-Laplacian preconditioners for the 
Helmholtz equation. Shifted-Laplacian preconditioners, especially the complex shifted-Laplacian 
preconditioner, perform efficiently. In this paper, we employ the complex shifted-Laplacian 
preconditioner. 
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where β is a positive number, and i is the imaginary unit. Using (4) to precondition the 3D 
Helmholtz equation (3) leads to the preconditioned equation in the operator form 

AM−1v =  g,  with   v = Mu.           (5) 

Discretization of (5) shall lead to the discrete preconditioned system, with the discretization of M 
being the preconditioner. We shall employ the Krylov subspace method Bi-CGSTAB combined with 
the multigrid method to solve the preconditioned linear system and call this method the multigrid-based 
preconditioned Bi-CGSTAB solver. We choose the Bi-CGSTAB method due to its fast convergence. 
The multigrid is used to invert the preconditioner approximately. Though the preconditioner does not 
have to be inverted exactly, it would be beneficial if a more accurate approximation can be obtained at 
a low cost. For this reason, the multigrid method is a good choice. In this paper, the original purpose is 
to develop an MPI-based parallelization of Bi-CGSTAB method to solve the discrete preconditioned 
system, which contains a process of inverting approximately the preconditioner M by using the 
matrix-based multigrid. The Bi-CGSTAB method may be described as matrix-vector multiplications 
and it can be well parallelized by using the standard MPI-subroutines. 

3. Parallel Partition of the Computational Domain 

In this section, we consider partitioning the computational domain with grids, which is the 
foundation of the parallel multigrid method. 

It is known that the parallel computing refers to making computation with more than one processor 
at the same time. Hence, the first thing we have to do is to partition the computing task, that is, to 
divide the task into many small sub-tasks, each of which is done by a processor. In this paper, it has an 
obvious geometrical background (the 3D computational domain) for the multigrid method. Thus, to 
partition the computing task is equivalent to partition the 3D computational domain. However, the 3D 
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computational domain with the grids it contains, generates all the basic data for our computation, that is, 
the matrix and vector data. Consequently, the partition of the 3D computational domain leads to the 
partition of the data, which is the specific aim for our practical parallel computations involving 
operations of matrices and vectors. Since it has a clear geometrical background, we here choose to 
partition the 3D computational domain instead of partitioning directly the data. A parallel partition will 
divide the computational domain into many sub-regions, each of which contains a part of the grids. 

It is known that the parallel partition divides the computational domain into many sub-regions, 
which are disjoint with each other. It means that two adjacent sub-regions have no overlapping part, 
which indicates there is no overlap between the data corresponding to a sub-region and that 
corresponding to its neighboring sub-region. This is not beneficial to the parallel computing. Since there 
is no overlap, two adjacent sub-regions are not able to obtain information from each other. To deal with 
this problem, we shall extend the sub-regions, that is, to extend a sub-region into his neighboring 
sub-region so that the two adjacent sub-regions have overlap. Taking into account the multi-level grids 
it contains, the sub-regions shall be extended hieratically according to the level of the grids. We first 
extend the sub-region with the finest (original) grid, and then extend similarly the sub-regions with 
coarse grids of each level. It is pointed out that the extension is not arbitrary, and it should satisfies two 
principles. Firstly, we should guarantee that in each extended sub-region, the data information can flow 
freely among grids of different levels via restriction operator and prolongation operator. That is, in each 
extended sub-region, we should keep the multi-level grids are nested and matched level by  level in 
the sense that each of the fine grid point has at least two coarse grid point neighbors. Secondly, a 
sub-region should be extended as less as possible so that the overlap between it and its neighboring 
sub-region has less grid points, which means a less total amount of computations. In a word, we extend 
the sub-region as less as possible, meanwhile, make sure that in the extended sub-region, each fine grid 
point has at least two coarse grid point neighbors. After extension, the extended sub-regions forms a set 
of coverings for the computational domains, and two adjacent coverings can communicate information 
freely since they have overlapping part. 

We next shall describe the parallel partition of the 3D computational domain and the extension of the 
resulted sub-region with the original(finest) grid. We now begin with partitioning the 3D computational 
domain. There are two ways to partition the computational domain: the two- directional partition and 
the three-directional partition illustrated in Figure 1 (a) and (b), respectively. 

    
(a)                                       (b) 

Figure 1: Illustration of two partitions: (a) only in x- and y-directions. (b) in all the three directions. 

 

Figure 2: The partitions for two neighboring level grids: the fine and coarse grids. 
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After parallel partition, we next describe the concrete extension of the sub-region with the original 
(finest) grid. The extension of the sub-region with other level grids can be done in a fairly similar 
manner. We first illustrate in Figure 2 the 2D projection onto the x-y plane for the 3D domain with the 
original (finest) grids, which is assumed to be the 0th-level grid. To make our idea clearly, we also 
present the 1th-level grid, the grid point of which is plotted in blue dot. The 0th-level grid and 1th-level 
grid form a two-level grid. It is seen that after parallel partition, the 2D projection of the computational 
domain on the x-y plane is divided into four disjoint sub-regions Ωj, j = 1, 2, 3, 4. Each sub-region 
contains a part of the two-level grids, the 0th-level and the 1th-level grids. For each sub-region, the 
black dash line represents the boundary that is generated by the parallel partition. 

It is also observed that two adjacent sub-regions are disjoint, having no overlap, which disables the 
information exchanging between them. Hence, we need to extend the sub-regions into their adjacent 
sub-regions so as to keep two adjacent sub-regions having overlapping part. We next demonstrate the 
extension in Figure 3, which presents the extension of the sub-region with the 0th-level grid in Figure 2. 
As it can be seen that in Figure 3, the region Ω′1, Ω′2, and Ω′3 are extended, respectively, from the 
corresponding sub-regions Ω1, Ω2, and Ω3 in Figure 2, while with Ω′4= Ω4. We now focus on region 
Ω′1, which is obtained by extending the sub-region Ω1into its adjacent sub-regions  Ω2, Ω3, Ω4. The 
overlapping parts between Ω′1 and Ω2, Ω3, Ω4 are respectively the upper part, left part, central part of 
the shadow ares. The upper part of the red dash-dot lines is the left boundary of Ω′1 and left part of the 
red dash-dot lines is the lower boundary of Ω′1. We can see that the two-level grids contained in Ω′1are 
well nested and matched, since in Ω′1each fine (0th-level) grid point has at least two coarse (1th-level) 
grid point neighbors. In each direction, the overlapping parts between Ω′1and  Ω2, Ω3, Ω4 have three 
fine grid points.  

 
Figure 3: Extension of the coarse grids. 

For region Ω′2, it is obtained by extending Ω2 into Ω4 only, while it is not necessary to extend Ω2 
into Ω1 and Ω3. Similarly,  Ω′3 is obtained by extending  Ω3 into Ω4 only, while it is not necessary 
to extend  Ω3 into Ω1 and Ω2. This is because both  Ω′2 and  Ω′3 already have had overlapping 
parts with  Ω′1(the upper part and left part of the shadow area). Furthermore, when regions Ω2 and 
Ω3 are extended into Ω4, the resulted  Ω′2 and  Ω′3 will naturally have overlapping part, that is, the 
central part of the shadow area. As for  Ω′4, it is exactly the sub-region Ω4, which does not need 
extension. This is because when  Ω′1,  Ω′2 and  Ω′3 are obtained, Ω4 naturally have overlapping 
parts with them, which are respectively the central part, left part and lower part of the shadow area. It is 
easily seen that sub-regions Ωj, j = 1, 2, 3, 4 form a set of coverings for the projection of the 3D 
domain on the x-y plane, and any two adjacent coverings have overlapping part, which makes them be 
able to communicate data information with each other. Up to this point, we have described the 
extension of the sub-region with the finest (0th-level) grid. Accordingly, the resulted coverings is called 
the coverings corresponding to the finest (0th-level). Similarly, we have the coverings corresponding to 
the 1th-level, 2th-level, and so on. Finally, we point out that for coverings Ωj, they have some 
boundaries (plotted in black dash lines and red dash-dot lines) in the interior of the original 
computational domain. In order to distinguish them from the boundaries of the original computational 
domain (original boundaries), we call them the artificial boundaries, since they are generated by the 
parallel partition artificially. The data information communication between a covering and its 
neighboring coverings usually occurs on the corresponding artificial boundaries. 

For parallel computing, we next discretize the preconditioned Helmholtz equation (5) in the 
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resulting sub-region after extension corresponding to the original (finest or 0th-level) grid. For instance, 
in Fig. 3, we discretize (5) separately in each of sub-regions Ωj, j = 1, 2, 3, 4. We assume that there 
exists another virtual boundaries adjacent to the artificial boundaries, and the Dirichlet zero boundary 
condition is imposed on both the virtual boundaries and original boundaries. In each sub-region, we 
arrange the unknowns in the order of z-, y- and x-directions. To discretize (5), we here adopt the 
27-point finite difference scheme based on minimizing the numerical dispersion, proposed in [4]. This 
scheme is simple in construction and can suppress the “pollution effect” of the large wavenumbers to a 
certain degree. After discretization, in each sub-region, we obtain the discrete preconditioned system 

AM−1v = g,                               (6) 

Mu = v,                                 (7) 

where matrices A, M are discrete form of the operator A and M, respectively. M is the 
preconditioner of the coeffcient matrix A and it can be obtained easily. Corresponding to each 
sub-region, Bi-CGSTAB combined with the multigrid method is employed to solve separately the 
linear systems (6)-(7). The Bi-CGSTAB method is used as the outer iteration which solves (6) while the 
multigrid is used as the inner iteration which solves (7). 

The parallel partition described above divides the computational domain into many small sub- 
regions, to which we assign a processor. For instance, in Fig. 1 (b), there are total 8 sub-regions, which 
correspond to 8 processors labeled as 0, 1, ... , 7. After extension, the 8 sub-regions become 8 coverings, 
and each of which has the same processor label as the original sub-region. This is the basis for us to 
develop parallel algorithms. 

Since a sub-region corresponds to a processor with local memory, we call the above matrix and 
vector the local matrix and local vector. The local matrix and vector have clear geometrical structures 
corresponding to the grid points in the sub-region, and these structures are very important for the 
efficient implementation of the parallel multigrid method. We store all the local vectors separately in 
the form of 1D array in the local memory, which can be considered as the distributed parallel storage. 
Local A and local M are sparse 27-diagonal, and also stored in the local memory by using the technique 
of sparse compressed storage, which possesses a relative less memory. 

For the multigrid method, the full multigrid V-cycle (FMG) is employed, since it possesses both the 
efficiency of the standard V-cycle and robustness of the W-cycle. The pointwise Jacobi relaxation with 
underrelaxation (ω-JAC) is used as a smoother, where 0 ≤ ω ≤ 1 is a relaxation parameter. To 
implement the parallel multigrid method, we first partition the computational domain and extend the 
resulting sub-regions level by level, which is the foundation of the parallel computing. We then setup 
the parallel multigrid method, that is, to obtain local prolongation operators and local grid operators. 
Finally, we perform the parallel multigrid iteration, which involved a lot of data communication. 

4. Numerical Experiments 

In this section, we test the performance of the parallel multigrid-based preconditioned Bi-CGSTAB 
method for solving the 3D discrete Helmholtz equation (2.3) . All numerical experiments presented in 
this section are executed on a Dell server with 32 CPU cores and 64 threads.  

In the computation, k is the wavenumber, and different values of k are tested. After k is given, and 
the discretization h is properly chosen. The thickness of the PML is 20, that is, the PML possesses 20 
gridpoints in each direction. The 3D multigrid takes the form of FMG cycle with the full-coarsening 
strategy, matrix-based prolongation operator, full-weighting restriction operator, plus pointwise Jacobi 
relaxation with underrelaxation . The parallel preconditioned Bi-CGSTAB iteration terminates when 
the Euclidean norm of the relative residual error is less than 10-6. 
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(a)                                  (b) 

Figure 4: Visualization of numerical solutions for k = 60 with point sources placed at two different 
locations. 

We first test the parallel speedup of the preconditioned iterative solver. We begin with computing a 
small wavenumber k=60 and visualize the numerical solutions, to verify the correctness of the parallel 
iterative solver. We  use 4 processors, and the computing results are gathered on one processor. Figure 
4 presents the numerical solutions for k=60 with point source placed at two different locations. We next 
solve the 3D Helmholtz equation with four large wavenumbers, that is, k=100, 150, 200, 250. The 
results are demonstrated in Table 1. Here, p indicates the number  of processors that are used. The 
number of processors used ranges from 1 to 32. The number of computational grid points (unknowns) 
are 1833, 2753, 3653, and 4553 respectively. For k=250, the computing time for p=1 is 362.78 minutes, 
while the computing time for p=32 is only 17.43 minutes, that is, the time is saved by 95.2%. Denote 
by t(p) the execution time of the parallel preconditioned Bi-CGSTAB iterations with using p processors, 
we present in Tab. 2 the parallel speedup, which is given 

S(p): = t(1)
t(p)

,  p = 1, 4, 8, 16, 32.                             (8) 

As is observed, the parallel preconditioned Bi-CGSTAB method achieves a good speedup. 

Table 1: Compute time (in minutes) of the parallel preconditioned Bi-CGSTAB method. 
 

 p = 1 p = 4 p = 8 p = 16 p = 32 
k=100 

  
(1833) 25.96 7.08 3.81 2.06 1.12 

k=150 
  

(2753) 83.03 22.46 12.30 6.76 3.86 
k=200 

  
(3653) 193.45 53.31 28.82 15.91 9.07 

k=250 
 250 

(4553) 362.78 101.62 55.23 30.85 17.43 

Table 2: Speedup of the parallel preconditioned Bi-CGSTAB method. 

 p = 1 p = 4 p = 8 p = 16 p = 32 
k=100 

  
(1833) 1.00 3.67 6.81 12.60 23.18 

k=150 
  

(2753) 1.00 3.70 6.75 12.28 21.51 
k=200 

  
(3653) 1.00 3.62 6.71 12.16 21.32 

k=250 
 250 

(4553) 1.00 3.57 6.57 11.76 20.81 

5. Conclusion 

In this paper, we develop a parallel preconditioned iterative solver for the 3D Helmholtz equation, 
which is preconditioned by the complex shifted-Laplacian. Krylov subspace method Bi-CGSTAB 
combined with the multigrid is employed to solve the discrete preconditioned system. Based on the 
MPI, we realize the parallelization of the preconditioned iterative solver, and achieve a high parallel 
performance. We manage to solve some important problems arising in the parallelization, including the 
parallel partition of the computational domain, extension of the resulting sub-regions with the 
multi-level grids, and information transferring between two neighboring levels and two sub-regions. 
Finally, we test the parallel preconditioned iterative solver. Numerical results are presented to illustrate 
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the efficiency of the parallel preconditioned iterative solver. 
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