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Abstract: Portfolio optimization is a crucial endeavor in finance which aims to effectively manage 
investment risks and maximize returns. This paper explores the application of complex networks and 
genetic algorithms as a solution to the challenges associated with portfolio optimization. This paper 
strives to optimize the composition of portfolios, mitigate risks, and enhances potential returns by 
analyzing the interdependencies and correlations among financial assets using complex networks and 
utilizing genetic algorithms as an optimization technique. The results demonstrate that the portfolio 
resulting from the optimization of genetic algorithms applied to complex networks exhibits remarkable 
risk control capabilities. This integrated approach effectively minimizes risks associated with 
investments, contributing to the creation of a more stable and resilient portfolio, particularly in volatile 
financial markets. 
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1. Introduction 

Portfolio optimization is a fundamental aspect of finance, aiming to achieve an optimal allocation of 
assets to maximize returns while minimizing risks. The integration of complex networks and genetic 
algorithms have emerged as a promising approach to address the challenges faced in portfolio 
optimization. This study aims to leverage the power of complex networks and genetic algorithms to 
optimize portfolio composition, enhance risk control capabilities, and contribute to the advancement of 
portfolio management strategies. 

Portfolio optimization has witnessed significant advancements throughout its history. It originated 
with Markowitz's seminal work in 1952, where he introduced mean-variance analysis and laid the 
foundation for modern portfolio theory[1]. This framework was further developed by Sharpe (1964) and 
Lintner (1965), who incorporated concepts such as the Capital Asset Pricing Model (CAPM) and the 
efficient market hypothesis to enhance risk and return analysis in portfolio construction[2,3]. The 
emergence of complex networks provided a fresh perspective on understanding the interconnections 
among financial assets[4-8]. Bonanno et al. (2003) applied network theory to explore the correlation 
structure of stocks and revealed complex patterns within financial markets[9]. This work laid the 
groundwork for further investigations in this field. Li, Y., et al. (2019) and Clemente, G. P., et al. (2021) 
demonstrated the possibility of using a network approach to solve the portfolio optimization problem 
[10,11]. The application of genetic algorithms in portfolio optimization was conducted by Zhang, P. M. 
(2022)., demonstrating their ability to handle large-scale investment portfolios and enhance the efficiency 
of the optimization process[12]. 

However, challenges persist in effectively integrating complex networks and genetic algorithms for 
portfolio optimization while considering risk control. This paper aims to address this gap by investigating 
the performance of genetic algorithms applied to complex networks. We focus on enhancing risk control 
capabilities in portfolio optimization to achieve more robust and resilient investment portfolios. 

We employ complex networks to capture the intricate interdependencies and correlations among 
financial assets. We tend to identify an optimal portfolio composition that strikes a balance between risk 
and returns by leveraging genetic algorithms as an optimization technique. The research aims to 
demonstrate the superior risk control capabilities of the portfolio obtained through the application of 
genetic algorithms to complex networks. 
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2. Preliminary 

In this section, we present the foundational knowledge and concepts that underpin our research. We 
introduce the relevant techniques and establish a unified notation for the entire paper. 

2.1 Portfolio Optimization 

Portfolio optimization is a vital component of modern finance, aiming to construct an optimal mix of 
financial assets to achieve the best risk-return trade-off. Mathematically, given a set of N financial assets, 
a portfolio is represented as a column vector x = [x1, x2, ..., xN] ', where each xi denotes the proportion of 
wealth invested in asset i, and Σxi = 1. 

2.2 Genetic Algorithms 

Genetic algorithms (GAs) are optimization techniques inspired by the process of natural selection. 
They are particularly well-suited for solving complex and non-linear problems. In our study, GAs are 
employed to find the optimal portfolio composition by mimicking the process of genetic evolution. The 
algorithm iteratively generates and evolves a population of potential portfolios through selection, 
crossover, and mutation operations, converging toward an optimal solution. 

2.3 Betweenness structural entropy 

Developed by Qi Zhang and Meizhu Li[13], the betweenness structural entropy is a measure used in 
this paper to quantify the centrality and influence of each stock in connecting different parts of the 
network. It assesses the extent to which a stock serves as a bridge or intermediary between other stocks 
in the portfolio. A lower betweenness structural entropy indicates that a stock has less influence in 
connecting different parts of the network, suggesting a more balanced distribution of influence among 
the stocks.  

2.4 Sharpe ratio 

The Sharpe ratio is a risk-adjusted performance measure that helps investors assess the return of an 
investment relative to its risk. It provides a metric to compare different investment opportunities by 
considering both the potential returns and the associated volatility or risk. A higher Sharpe ratio indicates 
a more favorable risk-return trade-off, as it implies a higher return achieved for each unit of risk assumed. 
It suggests that the investment or portfolio is generating better risk-adjusted returns compared to 
alternatives with lower Sharpe ratios. 

2.5 Data Set Description 

The data set utilized in this paper is sourced from the Wind data terminal, a comprehensive financial 
database. We selected a combination of five leading stocks, commonly referred to as "blue-chip" stocks, 
and forty-five randomly chosen stocks from the A-share market. This selection ensures a diverse 
representation of the market. The data set consists of daily returns spanning a ten-year period from 2010 
to 2020, with 2 trading days. As a result, we obtained a matrix of size 2520 ×50, representing the returns 
of the selected stocks over the ten-year period. 

2.6 Notation 

The notation of the whole paper is shown in the Table 1 below. 
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Table 1: Notation of the whole paper 

Symbol Description 
N Number of financial assets 
xi The proportion of wealth invested in asset i 
A Adjacency matrix 
E The betweenness structural entropy of the network 
pij Connection probabilities 
r A random number between 0 to 1 
σst The number of shortest paths from node s to node t. 
σst(i) The number of shortest paths from node s to node t that pass through node i 
B(i) The betweenness of node i 
P(i) The distribution of the structural components of node i in the whole network 

3. Model Construction 

3.1 Problem Analysis 

The primary objective of this study is to optimize the composition of a portfolio to achieve the best 
risk-return trade-off using complex networks and genetic algorithms. We can solve the problem by 
following steps: 

Network Construction. The research utilizes the correlation coefficients between the stocks as a 
measure of their interdependencies. These correlation coefficients serve as the basis for constructing a 
complex network representation of the portfolio. The network represents each stock as a node, and the 
connectivity between stocks is determined based on the corresponding correlation coefficients. Higher 
correlation coefficients imply a greater likelihood of a connection between stocks in the network. 

Optimization Objective. The optimization objective is to minimize the betweenness structural entropy 
of the network. The betweenness structural entropy measures the centrality and influence of each stock 
in connecting different parts of the network. By minimizing the betweenness structural entropy, the 
research aims to identify an optimized network configuration that achieves a well-balanced allocation of 
investment among the stocks. 

Genetic Algorithm Optimization. The research employs a genetic algorithm approach to achieve the 
optimization objective. The genetic algorithm iteratively generates and evolves a population of networks, 
representing different portfolio allocations. The fitness of each network is evaluated based on its 
betweenness structural entropy. Through successive generations, the genetic algorithm identifies and 
refines networks with lower entropy, leading to an optimized portfolio allocation. 

Portfolio Allocation and Risk Control. The optimized network obtained from the genetic algorithm 
represents an allocation of investment among the stocks. The allocation is based on the network's node 
degrees, which reflect the importance of each stock in the network. Stocks with higher degrees are 
assigned greater investment proportions.  

3.2 Model building 

3.2.1 Network Construction 

 
Figure 1: Network construction flow chart 

As Figure 1 shows, the process of constructing the network from the data set starts with quantifying 
the relationships between the stocks which captures the correlation matrix that is computed based on the 
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returns data. This matrix measures the statistical correlation between each pair of stocks in the portfolio, 
reflecting the degree of similarity or dissimilarity in their return patterns. A higher correlation coefficient 
suggests a stronger positive relationship, while a lower coefficient indicates a weaker or negative 
relationship. Having the correlation matrix serves as the basis, we are able to construct the network by 
representing each stock as a node in the network, and the connections between stocks are determined 
based on the corresponding correlation coefficients. The network captures the interdependencies and 
linkages among the stocks, enabling a comprehensive analysis of their collective behavior. 

In the practice of constructing the network, the correlation coefficients are transformed into 
connection probabilities(denoted as pij) using a sigmoid function: 

𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

                                      (1) 

This function maps the correlation coefficients to probabilities in the range of 0 to 1. Stocks with 
higher correlation coefficients have higher probabilities of being connected in the network, indicating a 
stronger relationship between them. This probabilistic approach allows for capturing the varying 
strengths of relationships within the portfolio. 

Based on the connection probabilities, an adjacency matrix is constructed to represent the network. 
The adjacency matrix is a binary matrix where the presence of a connection between two stocks is 
denoted by a value of 1, while the absence of a connection is represented by a value of 0. This matrix 
serves as a fundamental representation of the network structure, facilitating further analysis and 
optimization. 

3.2.2 Optimization Algorithm 

 
Figure 2: Optimization algorithm flow chart 

In this research, a genetic algorithm is employed as the optimization algorithm to refine the network 
structure and achieve an optimized portfolio composition. The genetic algorithm iteratively evolves a 
population of networks to minimize the betweenness structural entropy and identify an optimal portfolio 
allocation. Figure 2 shows how the genetic algorithm operates in this paper. 

The optimization process starts with setting the parameters for the genetic algorithm. The population 
size is determined to be 50, representing the number of networks or potential portfolio allocations within 
each generation. The generation count is set to 200, indicating the number of iterations or generations for 
which the genetic algorithm evolves the population. 

Initialization of the population with networks is the vital job of the optimization process. Each 
network is represented as an adjacency matrix, capturing the connections between stocks. The adjacency 
matrix is generated by a function that constructs a random network based on the given correlation 
coefficients. The probability that two nodes are connected is denoted as pij, and r is a random number. 
This step ensures diversity in the initial population. 

𝐴𝐴�𝑎𝑎𝑖𝑖𝑖𝑖� = �
1, 𝑝𝑝𝑖𝑖𝑖𝑖 > 𝑟𝑟
0, 𝑝𝑝𝑖𝑖𝑖𝑖 ≤ 𝑟𝑟                                 (2) 

The key to a genetic algorithm is evolution, which is based on evaluation and selection. The fitness 
of each network in the population is evaluated based on its ability to minimize the betweenness structural 
entropy. The betweenness structural entropy measures the centrality and influence of each stock in 
connecting different parts of the network. A lower betweenness structural entropy indicates that a stock 
has less influence in connecting different parts of the network, suggesting a more balanced distribution 
of influence among the stocks, while a higher value suggests a more concentrated or unequal distribution. 
A function calculates the betweenness structural entropy by considering the network represented by the 
adjacency matrix. 
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According to Qi Zhang and Meizhu Li[13]. The definition of the betweenness centrality of node i is: 

𝐵𝐵(𝑖𝑖) =  ∑ 𝜎𝜎𝑠𝑠𝑠𝑠(𝑖𝑖)
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠≠𝑖𝑖≠𝑡𝑡                                   (3) 

where the numerator 𝜎𝜎𝑠𝑠𝑡𝑡(𝑖𝑖)denotes the number of shortest paths from node s to node t that pass 
through node i, while the denominator 𝜎𝜎𝑠𝑠𝑡𝑡 represents the total number of shortest paths from node s to 
node t. The next equation calculates the probability P(i) of node i, which represents the distribution of 
the structural components of node i in the entire network. 

𝑃𝑃(𝑖𝑖) =  𝐵𝐵(𝑖𝑖)
∑ 𝐵𝐵(𝑖𝑖)𝑁𝑁
𝑖𝑖=1

                                    (4) 

We can define the betweenness structural entropy (E) of the complex networks as follows: 

𝐸𝐸 =  −∑ �𝑃𝑃(𝑖𝑖) ∗ 𝑙𝑙𝑙𝑙�𝑃𝑃(𝑖𝑖)��𝑁𝑁
𝑖𝑖=1                          (5) 

The selection process aims to choose the fittest networks as parents for the next generation. Networks 
with lower betweenness structural entropy, indicating better performance, are more likely to be selected. 
The selection process is performed by comparing the fitness of each network and probabilistically 
selecting them based on their fitness values. The chosen networks undergo crossover, which involves 
exchanging genetic information which is represented by the adjacency matrix, or the connections 
between stocks, to generate offspring networks with potentially improved performance. 

Another way to introduce diversity and explore new solutions is mutation. Random changes are made 
to the connections within the network with a certain probability that is 10%. This random alteration 
enables the exploration of different network configurations beyond the existing population, enhancing 
the chances of finding an optimal solution. The process of the network’s crossover and mutation is 
illustrated in Figure 3. 

 
Figure 3: The process of iteration 

After crossover and mutation, the offspring networks replace the previous generation's population. 
This population update ensures the evolution of the population towards networks with lower betweenness 
structural entropy. The updated population is then subjected to subsequent iterations of selection, 
crossover, and mutation, leading to the continuous refinement of the network structure. 

The best network with the lowest betweenness structural entropy is continuously updated and stored 
as the "best network." This network represents an optimal portfolio allocation with minimized risk and 
maximized returns based on the network structure and stock connections. 

3.2.3 Portfolio Optimization and Comparison 

 
Figure 4: Portfolio optimization and comparison flow chart 

In this study, the optimization process extends beyond network refinement to portfolio optimization. 
The optimal network configuration obtained through the genetic algorithm is translated into an optimized 
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portfolio allocation. Furthermore, a comparison is made between the optimized portfolio based on the 
genetic algorithm and the traditional Markowitz model. This comparison is performed using a simulation 
of the stock market to observe their respective performances in risk control. The process of portfolio 
optimization and comparison is shown in Figure 4. 

The optimal network configuration obtained through the genetic algorithm provides valuable insights 
into the relative importance and relationships between stocks. Each stock's degree centrality is 
determined, reflecting its significance within the network. This degree-based centrality is then used to 
allocate investment weights to each stock in the portfolio. There is a direct proportionality between the 
degree centrality and the weight assigned to the corresponding stock. This process allows for an 
optimized portfolio allocation based on the network configuration. 

The traditional Markowitz model is employed as a benchmark for comparison. In this model, the 
optimization is based on the expected returns and covariance matrix of the stocks. The Markowitz model 
aims to find the portfolio allocation that maximizes returns for a given level of risk. 

A simulated stock market environment is created to assess the performance of the optimized portfolio 
derived from the genetic algorithm and the Markowitz model. The historical returns data used to construct 
the network and calculate the correlation matrix are utilized in the simulation. By simulating the market 
conditions and the performance of the optimized portfolios over a specified time horizon, the risk control 
capabilities of the two approaches can be observed and compared. 

The risk control performance of the optimized portfolios is evaluated using relevant risk metrics, such 
as the Sharpe ratio. The Sharpe ratio measures the risk-adjusted returns of a portfolio, considering both 
the returns and the volatility or risk level. Insights into their respective risk control abilities can be 
obtained by comparing the Sharpe ratios of the optimized portfolios derived from the genetic algorithm 
and the Markowitz model. 

4. Experiment and analysis 

4.1 Design 

The experiment involves implementing the optimization algorithm and comparing the performance 
of the optimized portfolio derived from the genetic algorithm with that of the traditional Markowitz 
model. The experimental procedure is shown below: 

Firstly, the stock price data for the selected stocks are collected over the specified time period from 
the Wind data terminal. The daily stock returns are then calculated from the price data to construct the 
returns matrix. This step ensures the availability of accurate and reliable data for analysis. 

Next, the correlation matrix is computed from the returns matrix, capturing the interdependencies and 
relationships between stocks. Based on the correlation coefficients, the network connections are 
established by assigning probabilities to connect the stocks. These probabilities are determined by 
mapping the correlation coefficients to the sigmoid function, providing a probabilistic framework for 
network construction.  

 
Figure 5: Evolution of minimizing betweenness structural entropy   

The genetic algorithm is implemented to optimize the network structure and derive the optimal 
portfolio allocation. The algorithm iteratively evolves the population of networks, guided by the objective 
of minimizing the betweenness structural entropy. The evolution of minimizing betweenness structural 
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entropy is shown in Figure 5. And the optimal network obtained from the minimum betweenness 
structural entropy is displayed in Figure 6. The optimal network configuration is then translated into an 
optimized portfolio allocation. The degree-based centrality of each stock in the network serves as a basis 
for determining the investment weights in constructing the portfolio.  

 
Figure 6: The optimal network 

A simulation of the stock market is conducted using the historical returns data. The optimized 
portfolios derived from the genetic algorithm and the Markowitz model are evaluated based on risk 
metrics such as the Sharpe ratio. The performance of the portfolios is analyzed and compared to assess 
their risk control capabilities. The results are obtained by conducting this experiment by programming 
based on MATLAB. 

4.2 Results 

Table 2: Performance of two portfolios in stimulated stock market 

Method Total returns Sharpe ratio 
Degree-Based 0.2667 0.0685 

Markowitz 0.1058 0.0299 

 
Figure 7: Comparison of Sharpe Ratios and Total Returns 

The experimental results revealed intriguing insights into the risk control capabilities of the optimized 
portfolio derived from the network-based approach compared to the traditional Markowitz portfolio. The 
performance of the portfolios was evaluated using two key metrics: total returns and the Sharpe ratio. 

The performance of two portfolios in the stimulated stock market is displayed in Table.2. The degree-
based portfolio achieved a total return of 0.2667, indicating a higher overall gain compared to the 
Markowitz portfolio, which recorded a total return of 0.1058. However, focusing solely on total returns 
does not provide a comprehensive assessment of a portfolio's performance, as it neglects the level of risk 
associated with achieving those returns. 

The Sharpe ratio was utilized as a valuable risk-adjusted performance measure to account for risk. The 
degree-based portfolio exhibited a Sharpe ratio of 0.0685, surpassing the Markowitz portfolio's Sharpe 
ratio of 0.0299. The higher Sharpe ratio of the degree-based portfolio indicates a superior risk-adjusted 
return per unit of risk taken. This implies that the degree-based portfolio achieved a more favorable trade-
off between risk and returns compared to the Markowitz portfolio. 

The comparison of Sharpe ratios and total returns shown in Figure 7 suggests that the degree-based 
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portfolio not only generates higher total returns than the Markowitz portfolio but also exhibits a stronger 
ability to control risk. This is a significant advantage, particularly in volatile market conditions, as the 
degree-based portfolio demonstrated remarkable resilience in minimizing losses during market downturns. 

The results highlight the value of the network-based approach in portfolio optimization. By 
incorporating the complex network structure and leveraging genetic algorithms, the approach effectively 
identifies an optimized portfolio allocation that prioritizes risk control. The degree-based portfolio's 
emphasis on the connectivity and importance of each stock in the network enables the construction of a 
well-diversified and robust portfolio. 

However, it is essential to acknowledge the limitations of the experimental findings. The study utilized 
a specific dataset and focused on a defined set of stocks, which may limit the generalizability of the results. 
Additionally, the evaluation was conducted using historical data, and the performance in simulated market 
conditions may not directly translate to real-world scenarios. 

5. Conclusion 

The paper aims to optimize portfolio composition using complex networks and genetic algorithms and 
evaluate their risk control capabilities. This optimization process achieved a well-balanced allocation of 
investments among the stocks, considering their interdependencies and risk factors. The experimental 
findings demonstrated that the optimized portfolio derived from our network-based approach 
outperformed the traditional Markwotiz approach. It indicates that our approach effectively mitigates risks 
and provides a more stable and resilient investment portfolio. The significance and value of this research 
lie in its ability to enhance risk control in portfolio optimization. We provide a novel perspective for 
constructing and optimizing portfolios that consider interdependencies among stocks. This may benefit 
investors in making more informed decisions and achieving better risk-adjusted returns. There are several 
avenues for future research, such as: exploring more advanced optimization techniques or alternative 
network-based approaches, investigating the impact of incorporating additional factors, conducting real-
world validation, and exploring the scalability of the approach to larger portfolios and more diverse 
markets. 
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