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Abstract: With increasing bridge service life and traffic loads, real-time structural health monitoring 
faces challenges from high-dimensional, non-stationary, and heterogeneous data. This paper proposes 
a Spatio-Temporal Multi-Relational Graph Attention Network (ST-MRGAT), which constructs 
spatio-temporal graphs from bridge sensor nodes and incorporates structural mechanics priors to 
capture complex spatial dependencies. The model employs enhanced gated temporal convolution to 
capture short-term dynamics and long-term evolution, and multi-relational graph attention to unify 
local cross-section and overall bridge responses. Experiments on real-world data show that 
ST-MRGAT significantly outperforms baseline models in multi-step predictions of deflection and strain, 
maintaining minimal error growth and demonstrating high accuracy, stability, and effective multi-task 
feature sharing, validating its robustness and generalizability for bridge structural health monitoring. 
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1. Introduction 

Bridges are critical components of transportation infrastructure, and their structural integrity 
directly affects public safety and economic stability. With aging structures and increasing service 
demands, traditional manual inspections can no longer meet the needs of real-time and precise 
monitoring. Sensor-based and data-driven Structural Health Monitoring (SHM) systems enable 
continuous observation of key responses such as deflection and strain[1]. 

Nevertheless, predicting structural responses remains challenging due to high-dimensional, 
heterogeneous, and non-stationary multi-source data. Bridge behavior exhibits strong spatiotemporal 
coupling, where local deformations propagate through mechanical connections, forming complex 
dependencies that traditional time-series models fail to capture [2, 3 4, 5]. 

Bridges are critical components of transportation infrastructure, and their structural integrity 
directly affects public safety and economic stability. With aging structures and increasing service 
demands, traditional manual inspections can no longer meet the needs of real-time and precise 
monitoring. Sensor-based and data-driven Structural Health Monitoring (SHM) systems enable 
continuous observation of key responses such as deflection and strain. 

2. Related Works 

2.1 Time Series Forecasting Methods 

Time-series forecasting is central to bridge Structural Health Monitoring (SHM), aiming to predict 
future structural responses from historical signals. Early statistical models, such as ARIMA[6], capture 
linear temporal dependencies but fail under nonlinear and non-stationary conditions. 

Deep learning methods have since become mainstream. Recurrent architectures (RNN, LSTM, 
GRU) model nonlinear temporal dependencies but suffer from sequential inefficiency and gradient 
decay. Temporal Convolutional Networks (tcns) improve parallelism via dilated convolutions, while 
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Transformers employ self-attention to capture long-range dependencies and achieve superior accuracy. 

However, these models typically treat each sensor sequence independently, ignoring the spatial 
topology and mechanical coupling among bridge components. This limitation motivates the integration 
of graph-based spatiotemporal modeling to jointly capture spatial dependencies and temporal dynamics 
within structural systems. 

2.2 Application of Graph Neural Networks in Structural Health Monitoring 

Graph Neural Networks (GNNs), such as Graph Convolutional Networks (GCNs), effectively 
model spatial dependencies in non-Euclidean domains through neighborhood aggregation or attention 
mechanisms[7]. In bridge health monitoring, they enable spatial modeling of sensor networks and local 
damage detection. When combined with recurrent or attention-based temporal models, spatiotemporal 
graph frameworks can jointly capture spatial correlations and temporal dynamics. 

However, conventional GNN-based methods face limitations. A single topological graph cannot 
represent diverse physical interactions—such as structural connectivity, load transfer, and 
symmetry—nor handle cross-modal coupling between deflection and strain. Moreover, isotropic 
aggregation and sequential stacking of spatial–temporal modules weaken the model’s capacity to 
capture complex structural dependencies. 

To overcome these issues, this study proposes a multi-relational graph learning framework that 
encodes heterogeneous physical relationships—including sectional co-location, longitudinal continuity, 
and transverse symmetry—within a unified structure. Based on this, a physics-informed spatiotemporal 
attention network is developed to fuse structural priors with data-driven learning, achieving 
interpretable and precise modeling of both local and global bridge behaviors. 

3. Proposed method 

3.1 Problem Definition and Data Representation 

To Bridge health monitoring aims to model the spatiotemporal evolution of structural responses 
unden external loads. In this study, the bridge monitoring system is represented as a spatiotemporal 
multirelational graph: 

                                                                           𝐺𝐺 = {𝑉𝑉,ℰ,𝐴𝐴}                                (1) 

Where each node vi∈V  denotes a sensor, and edges E  encode mechanical dependencies, 
including intra-sectional, Iongitudinal, and transverse relations. Node features at time t are 

                                                                    𝑋𝑋𝑖𝑖 = �𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2, . . . , 𝑥𝑥𝑖𝑖,𝐹𝐹�
⊤ ∈ ℝ𝐹𝐹                          (2) 

With sensor types encoded as binary labels to unify deflection and strain measurements. The 
temporal input sequence preprocessed by interpolation, forward filling, and Min-Max normalization. 
To incorporate physical priors, a multi-relational graph with 36 nodes (0-17 deflection, 18-35 strain) is 
constructed. Three spatial relations are defined: intra-sectional (same cross-section), Iongitudinal 
(along the bridge), and transverse symmetry (across the bridge). Self-loops are added for numerical 
stability. This multi-relational spatiotemporal representation integrates sensor layout and bridge 
mechanics, providing a structured foundation for ST-MRGAT to capture local and global dynamic 
correlations. 

3.2 ST-MRGAT Model Design  

To achieve accurate modeling and prediction of bridge structural health, we propose the 
ST-MRGAT model, which jointly captures the temporal evolution of structural responses and 
multi-relational spatial dependencies among sensor nodes. This unified spatio-temporal framework 
enables multi-task prediction of deflection and strain. 

The model employs a modular spatio-temporal stacked structure. Input features are first projected to 
a high-dimensional space, then processed through multiple sequential Spatio-Temporal Blocks 
(ST-Blocks). Residual and skip connections facilitate multi-scale feature fusion and stabilize deep 
network training. The output layer aggregates skip connections along the temporal dimension and 
applies a terminal convolution to generate multi-step predictions. The overall architecture is illustrated 
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in Figure 1. 

   
Figure 1 Structure of ST-MRGAT.  

To clarify the internal mechanism and spatio-temporal fusion, the core unit of ST-MRGAT, the 
Spatio-Temporal Block (ST-Block), is introduced, as shown in Figure 2. Each ST-Block consists of a 
temporal layer and a spatial layer, capturing temporal dynamics and spatial dependencies, respectively. 
Their outputs are combined via a residual fusion mechanism, enhancing spatio-temporal interaction, 
stabilizing deep network training, and improving representation expressiveness. 

   
Figure 2 Structure of ST-Block.  

In the temporal layer, ST-MRGAT utilizes an Enhanced Gated Temporal Convolution to capture 
both short-term dynamics and long-term trends of bridge responses. As shown in Figure 3, this 
mechanism extends the conventional Gated Linear Unit (GLU) with a residual channel, ensuring stable 
feature propagation and smooth gradients. The temporal block comprises three parallel 1D 
convolutions:𝑊𝑊1 and 𝑊𝑊2 ,form the gating mechanism to generate feature transformations and gate 
signals, form the gating mechanism, while 𝑊𝑊3  provides a residual path preserving the original 
temporal information. Formally, the computation is: 

                                                    𝐻𝐻 = ReLU�(𝑋𝑋 ∗𝑊𝑊1) ⊙𝜎𝜎(𝑋𝑋 ∗𝑊𝑊2) + (𝑋𝑋 ∗𝑊𝑊3)�               (3) 

Here * denotes the 1D convolution operation,⊙ represents the element-wise multiplication, σ(·) is 
the Sigmoid activation function. This design enables adaptive temporal feature selection through the 
gating mechanism, while the residual connection preserves critical information from the original time 
series, thereby enhancing the robustness and stability of dynamic response modeling in bridge 
structures. 

 
Figure 3 Structure of the temporal convolution block. 

In the spatial modeling layer, a Multi-Relational Graph Attention (MR-GAT) mechanism is 
employed to capture the structural dependencies and heterogeneous spatial interactions among bridge 
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components. As illustrated in Figure 4, let the feature representation of node i under relation r be 
denoted as ℎ𝑖𝑖𝑟𝑟 = 𝑊𝑊𝑟𝑟ℎ𝑖𝑖, The attention coefficient between node pair (𝑖𝑖, 𝑗𝑗) is then computed as: 

                                                       𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟 =
exp�LeakyReLU�𝑎𝑎𝑟𝑟⊤�ℎ𝑖𝑖

𝑟𝑟∥ℎ𝑗𝑗
𝑟𝑟���

∑ exp𝑘𝑘∈𝒩𝒩𝑖𝑖
𝑟𝑟 �LeakyReLU�𝑎𝑎𝑟𝑟⊤�ℎ𝑖𝑖

𝑟𝑟∥ℎ𝑘𝑘
𝑟𝑟���

                           (4) 

Neighboring node features are aggregated using attention weights to obtain the node representation 
under relation r . 

                                                                    mi
r=∑ αij

r
j∈Ni

r hj
r,                                 (5) 

The final spatial feature of each node is obtained by averaging across all relations, followed by a 
residual connection and an activation function. This design enables the model to balance different 
structural dependency patterns within a multi-relational framework, thereby efficiently capturing the 
spatial coupling characteristics of bridge components. 

 
Figure 4 Structure of the spatio module. 

In the output layer, the prediction of bridge health involves the joint forecasting of deflection and 
strain. ST-MRGAT employs a multi-task learning framework to enable collaborative modeling across 
tasks. The model extracts unified feature representations through a shared spatio-temporal encoding 
module and generates joint features for all tasks via a terminal convolution module (comprising two 
convolutional layers). These joint features are then split along the predefined channel dimension to 
produce separate prediction sequences for deflection and strain. Specifically, the model’s final output 
corresponds to task-specific predictions: 

                               {𝐘𝐘deflection,𝐘𝐘strain} = 𝑓𝑓𝜃𝜃(𝐗𝐗,𝒜𝒜)                        (6) 

Here, 𝑓𝑓𝜃𝜃(⋅) denotes the parameterized ST-MRGAT function, and AAA represents the set of 
multi-relational adjacency matrices. To predict structural responses over multiple future time steps, the 
model employs a rolling prediction scheme, which recursively generates subsequent predictions based 
on an autoregressive approach: 

                      𝐘𝐘�𝑡𝑡+ℎ = 𝑓𝑓𝜃𝜃��𝐗𝐗𝑡𝑡−𝐿𝐿+1:𝑡𝑡,𝐘𝐘�𝑡𝑡+1:𝑡𝑡+ℎ−1�,𝒜𝒜�, ℎ = 1,2, … ,𝐻𝐻              (7) 

This scheme dynamically updates the input window while keeping its length constant, enabling 
multi-step temporal inference and facilitating continuous monitoring and early warning of bridge 
structural health. 

4. Experimental Analysis 

4.1 Dataset 

Experiments were conducted on a real-world bridge health monitoring dataset comprising 
deflection and strain measurements from 36 deck sensors. Data were sampled every 10 minutes over 
seven consecutive days, capturing structural responses under varying traffic and environmental 
conditions. Each input sequence of 12 time steps was used to predict the next 3 steps. 

4.2 Evaluation Metrics and Experimental Setup 

Model performance was evaluated using Mean Absolute Error (MAE) and Root Mean Square Error 
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(RMSE), providing complementary measures of accuracy and stability. The implementation was based 
on PyTorch 2.1.1, optimized with Adamand trained for 100 epochs with a batch size of 64. The best 
model was selected according to validation performance. 

4.3 Multi-Task Prediction Results and Baseline Comparison 

Multi-step forecasting experiments for deflection and strain show that ST-MRGAT consistently 
outperforms all baseline models. As summarized in Table 1, for a 3-step prediction task across eight 
baselines—including temporal models (LSTM, GRU, TCN, Transformer) and classical spatio-temporal 
models (DCRNN, STGCN, Graph wavenet, ASTGCN)—ST-MRGAT achieves relative MAE 
improvements of ~2.96% for both deflection and strain, and RMSE reductions of 2.5%–2.6% compared 
to the strongest baseline ASTGCN. The comparable prediction errors for deflection and strain indicate 
that the shared spatio-temporal representation effectively captures their coupled dynamics. Minimal 
error growth over successive steps further demonstrates the robustness and stability of ST-MRGAT for 
continuous bridge health monitoring and early warning. 

Table 1 Comparison of Multi-Step Prediction Performance of Deflection and Strain across Baseline 
Models and ST-MRGAT. 

Method Deflection 
MAE 

Deflection 
RMSE 

Strain  
MAE 

Strain 
 RMSE 

LSTM[2] 0.284 0.374 0.283 0.372 
GRU[3] 0.282 0.371 0.281 0.369 
TCN[4] 0.279 0.368 0.278 0.366 

Transformer[5] 0.277 0.366 0.276 0.364 
DCRNN[8] 0.273 0.362 0.272 0.360 
STGCN[9] 0.272 0.361 0.271 0.359 
Graph WaveNet[10] 0.271 0.360 0.270 0.358 

ASTGCN[11] 0.270 0.359 0.269 0.357 
ST-MRGAT 0.260 0.350 0.261 0.348 

5. Conclusions 

The proposed ST-MRGAT integrates spatio-temporal dependencies with structural priors for 
accurate prediction of bridge sensor data. Experiments show improved accuracy and stability in 
deflection and strain forecasts, demonstrating the effectiveness of multi-relational spatio-temporal 
graph modeling for structural health monitoring. Incorporating physical priors enables unified 
modeling of dynamic bridge evolution, supporting multi-task prediction. Future work may extend to 
multi-scale graphs and dynamic topology learning for enhanced long-term predictions. 
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