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Abstract: The Grey Wolf Optimization (GWO) algorithm, inspired by grey wolf social behaviors, has 
shown excellent performance in various optimization problems. However, it faces limitations in handling 
dynamic optimization problems. To address this, we propose an enhanced version, Merged Teaching and 
Learning Grey Wolf Optimization (MTLGWO). MTLGWO introduces a two-phase teaching and learning 
strategy, improving global exploration and local exploitation capabilities. The core improvements 
include using Latin Hypercube Sampling for better population initialization and adopting a group 
teaching mechanism to simulate diverse teaching strategies. Through comprehensive performance 
testing on CEC2017 basic test functions, MTLGWO demonstrates superior performance in terms of 
convergence accuracy, stability, and convergence speed.  Compared with other classical heuristic 
optimization algorithms, MTLGWO proves its potential and reliability as an efficient tool for solving 
optimization problems. These results highlight MTLGWO's potential as an efficient tool for practical 
optimization problems. 

Keywords: Bionic intelligent computing, Grey Wolf Optimizer, modified Grey Wolf Optimizer, teaching-
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1. Introduction 

Optimization algorithms represent one of the most active and rapidly evolving fields in today's 
domains of science, technology, and engineering. With continual advancements in computer science, 
industrial engineering, mechanical engineering, and management science, optimization problems and 
their solutions play increasingly vital roles in various aspects of production, life, and scientific research. 
Notably, metaheuristic algorithms have emerged as crucial tools for addressing NP-hard (Non-
deterministic Polynomial-time hard) problems, adapting well to the uncertainties and complexities 
inherent in optimization processes. 

Metaheuristic algorithms, inspired by natural phenomena or physical principles, share the common 
characteristic of not imposing specific requirements on the objective function or constraint conditions of 
a problem. They do not rely on precise analytical expressions or mathematical models. Instead, these 
algorithms effectively handle the uncertainties associated with optimization problems and are adaptable 
to a variety of complex optimization scenarios. 

In recent years, as research has deepened and technologies have advanced, numerous novel 
metaheuristic algorithms have been introduced. Seyedali Mirjalili[1] introduced the Grey Wolf 
Optimization algorithm (GWO), inspired by the hierarchical leadership and hunting mechanisms of grey 
wolf populations, featuring alpha, beta, delta, and omega wolves to simulate leadership hierarchies. 
Building upon the original GWO, many scholars have continually improved the algorithm. Mohammad 
H. Nadimi-Shahraki[2] proposed the Improved Grey Wolf Optimizer (I-GWO) to address global 
optimization and engineering design problems, alleviating issues of population diversity, imbalance 
between exploration and exploitation, and premature convergence in the GWO algorithm. Nitin Mittal[3] 

presented the modified GWO (mGWO), focusing on achieving an appropriate balance between 
exploration and exploitation for optimal algorithm performance. Xianqiu Meng[4] addressed issues of 
local stagnation and premature convergence when handling specific datasets, proposing an Advanced 
Grey Wolf Optimization algorithm (AGWO) with elastic, cyclic, and attack mechanisms. Mehak Kohli[5] 

introduced chaos theory to the GWO algorithm, proposing the Chaos Grey Wolf Optimization algorithm 
(CGWO) for solving constrained optimization problems. Rahul Kumar Vijay[6] developed the Quantum 
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Grey Wolf Optimizer (QGWO) algorithm, applying it to seismic activity modeling in various regions. 
Ashutosh Bhadoria[7] developed a hybrid version, combining the Grey Wolf Optimization algorithm with 
simulated annealing (hGWO-SA), for solving nonlinear, highly constrained, and non-convex engineering 
design and optimization problems. 

This paper delves into a comprehensive study of the Grey Wolf Optimization algorithm (GWO), 
focusing on improvements in population initialization, parameters, and search mechanisms. A novel 
approach, named Merged Teaching and Learning Grey Wolf Optimization (MTLGWO), is proposed. 

The enhancements presented in this paper are divided into two main parts. In the first part, addressing 
population initialization, the Latin Hypercube Sampling method (LHS)[8] is employed to initialize the 
grey wolf population. This ensures that the algorithm's initial search points comprehensively cover the 
solution space, mitigating the risk of falling into local optima and increasing the likelihood of finding 
global optimum solutions.The second part introduces an iterative process divided into education and 
learning stages. In the education stage, the population is split into two subsets, A and B, based on the 
individual positions. Subset A comprises individuals with better positions, while subset B contains those 
with poorer positions. Different updating mechanisms are applied to transform the positions of 
individuals in subsets A and B. The learning stage is further divided into individual self-learning and 
mutual learning phases. In the self-learning phase, grey wolves update their positions based on their 
historical optimal positions. In the mutual learning phase, wolves randomly learn from individuals 
(neighbors) within the population who outperform themselves, or update their positions based on the 
overall population's positions. 

2. Merged Teaching and Learning Grey Wolf Optimization (MTLGWO) 

The Grey Wolf Optimization (GWO) algorithm, while widely recognized for its simplicity, minimal 
parameter tuning requirements, and robust global search capability, may exhibit slower convergence 
speeds, particularly when faced with complex or high-dimensional optimization problems. Additionally, 
the algorithm may sometimes prematurely converge to local optimal solutions, especially in the presence 
of vast search spaces or structurally intricate problems. Despite having fewer parameters, the 
performance of GWO remains sensitive to parameter settings, and inappropriate configurations can lead 
to a significant degradation in performance. When dealing with multi-peaked problems containing 
multiple local optimal solutions, GWO might struggle to distinguish and select the global optimum. 

In addressing these issues, this section introduces a teaching and learning mechanism into the Grey 
Wolf Optimization algorithm, proposing a Hybrid Teaching and Learning Grey Wolf Optimization 
algorithm (MTLGWO). This section provides a detailed introduction to the fundamental concepts of 
MTLGWO.MTLGWO consists of two stages: the teaching phase and the learning phase. 

1) Teaching phase 

During the teaching phase of the grey wolf population, based on the individual positions (determined 
by their fitness values), the population is divided into two parts: a superior subset and an inferior subset. 
The individuals in the superior subset have better positions, while those in the inferior subset have poorer 
positions. The positions of the superior subset are primarily influenced by the position of the alpha wolf, 
whereas the positions of the inferior subset are influenced not only by the position of the alpha wolf but 
also by the average position of the wolf pack. Different updating mechanisms are applied to these two 
subsets of individuals for position transformation, with the update formulas as follows: 

( ) ( ), 1 mean 2+     if   new i i ipX X X A D f X f Xω ω= × × − × <                 (1) 

( ) ( )2, 1 mean ( +( 1) )   if      new i i iX X C E diff f X f Xω ω= − × × + × >            (2) 

Xnew,i represents the updated position of the grey wolf individual, Xp is the position of the alpha wolf 
(prey), Xmean is the average position of the current population, w1 and w2 are weighting factors used to 
adjust the weights of the current position and the alpha wolf's position, A is a random number controlling 
the intensity or step size of the search, C is a random number in the [0,2] interval, D represents the 
distance between the current wolf and the target (prey), simulating the interaction and hunting behavior 
among wolf pack members, E represents the distance between the current wolf and the average position 
of the population, and diff represents the distance between the prey and the average position of the grey 
wolf population. The calculation formulas are as follows: 

(2 1)A a r= × × −                                   (3) 
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In this context, iter represents the current iteration count, MaxIter denotes the maximum number of 
iterations, r is a random number within the [0,1] interval, a is a dynamic decay factor whose magnitude 
depends on the values of amin and amax. 

Finally, as each grey wolf individual is guided by three alpha, beta, and delta wolves, they obtain 
three positions. The average of these three positions serves as the final position. The specific updating 
formula is as follows:  

( )1 2 3
, 3new i

X X X
X

+ +
=                                  (10) 

2) learning phase 

The learning phase consists of two parts: the individual self-learning phase (first phase) and the inter-
group mutual learning phase (second phase). In the individual self-learning phase, grey wolves update 
their current positions based on their own historical best positions. The formula is as follows: 

( ),,       sne i i iiw be tX X X X a r= + − × ×                            (11) 

Where Xi,best represents the individual grey wolf's own historical best position (optimal fitness), a is 
a dynamic decay factor, and r is a random number within the [0,1] interval. 

During the inter-group mutual learning phase, grey wolves randomly learn from individuals within 
the population who have superior fitness (neighbors), or they update their positions based on the overall 
position of the population. The formula is as follows: 

( ) ( ), neighbour neighbour  + ( )    if    new i i i iX aX X X f X fr X×= − >×            (12) 

( ) ( ), neighbour     if  + ( ) ( 1   )  new i i worst ibestX X X X X f X f X× −= − <           (13) 

Where Xneighbour represents a randomly selected neighbor within the population, Xbest denotes the 
current best position of the population, and Xworst represents the worst position within the current 
population. 

3. Algorithm performance testing 

To validate the effectiveness of MTLGWO, this paper continues testing using the CEC2017 basic test 
functions [9], denoted as TF1-TF20. The theoretical optimal values for these functions are all 0. The 
mathematical formulas for the test functions are presented in the table 1 below: 

Table 1: CEC2017 basic test functions 
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In this section, these test functions are utilized to verify the performance of MTLGWO. The 
population size D is set to 30, and the maximum number of iterations is set to 500. To reduce statistical 
errors, the algorithm independently runs 30 times, and the average and standard deviation of the optimal 
fitness values from these 30 runs are calculated. The average represents convergence accuracy, and the 
standard deviation indicates the stability of the algorithm. Smaller average values and standard deviations 
correspond to better algorithm performance.  

On the test functions, MTLGWO is compared for performance against six classical heuristic 
optimization algorithms: Cat Swarm Optimization (CSO) [10], Particle Swarm Optimization (PSO)[11], 
Cuckoo Search (CS)[12], Artificial Bee Colony (ABC)[13], Whale Optimization Algorithm (WOA)[14], and 
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Artificial Fish Swarm Algorithm (AFSA)[15]. The testing results are presented in the table 2 below: 

Table 2: Testing results of MTLGWO and six classical heuristic optimization algorithms on CEC2017 
functions 

function   MTLGWO CSO PSO CS ABC WOA AFSA 
TF1 Ave 2.45e-244 2.77e-09 2.32e-07 3.77e-07 2.45e-06 5.40e-71 2.74e-02 

Std 0.00e+00 5.34e-08 1.54e-07 5.33e-06 1.44e-06 9.80e-71 3.69e-03 
TF2 Ave 1.43e-177 2.47e-47 6.66e-24 3.84e-14 8.27e-22 1.28e-68 4.64e-04 

Std 0.00e+00 7.05e-47 1.67e-25 5.84e-14 2.46e-23 3.15e-68 1.68e-04 
TF3 Ave 5.26e-126 2.84e-07 3.17e-02 7.83e-01 3.17e-02 4.88e-02 3.46e-01 

Std 1.58e-125 5.40e-07 1.47e-02 1.92e-01 2.92e-01 9.41e-01 3.62e-01 
TF4 Ave 0.00e+00 5.44e-01 1.40e-01 8.54e-01 1.14e-01 0.00e+00 9.86e-07 

Std 0.00e+00 1.41e-01 1.05e-01 9.71e-02 3.52e-01 0.00e+00 1.53e-06 
TF5 Ave 0.00e+00 3.24e-01 6.93e-01 2.15e-01 3.84e-02 0.00e+00 1.02e-09 

Std 0.00e+00 1.09e-01 5.70e-01 2.59e-01 2.62e-02 0.00e+00 1.62e-10 
TF6 Ave 4.11e+00 4.48e+00 2.41e+00 3.35e+00 2.49e+00 3.79e+00 3.51e-01 

Std 5.00e-01 9.76e-01 8.80e-01 4.28e-01 3.59e-01 1.95e+00 6.54e-02 
TF7 Ave 0.00e+00 2.80e-01 1.68e-01 2.76e-01 1.28e-01 0.00e+00 1.51e-08 

Std 0.00e+00 6.89e-01 4.62e-01 1.26e-01 2.31e-01 0.00e+00 2.31e-09 
TF8 Ave 0.00e+00 1.27e-02 2.92e-01 2.21e-01 8.26e-02 0.00e+00 9.39e-10 

Std 0.00e+00 3.47e-01 3.22e-01 3.09e-01 4.86e-02 0.00e+00 1.72e-10 
TF9 Ave 9.87e-01 6.05e-01 1.16e-01 2.04e-01 4.25e-01 4.17e-01 1.79e-02 

Std 3.13e-01 2.09e-01 3.48e-00 5.81e-01 1.63e-01 1.89e-01 3.58e-02 
TF10 Ave 3.82e-04 3.31e-03 1.07e-02 5.85e-01 5.16e+00 3.82e-04 3.82e-04 

Std 0.00e+00 1.06e-03 1.59e-02 4.08e+00 2.77e+00 1.78e-12 3.59e-09 
TF11 Ave 6.12e-245 1.29e-08 1.02e-06 2.07e-05 2.45e-04 2.92e-70 5.41e-02 

Std 0.00e+00 5.33e-07 9.57e-05 6.14e-04 2.77e-04 7.56e-70 1.94e-02 
TF12 Ave 3.08e-247 8.34e-02 2.64e-02 4.13e-01 3.75e-01 6.04e-76 8.05e+00 

Std 0.00e+00 1.94e-02 9.90e-01 5.94e-01 5.72e-01 1.64e-75 1.03e+00 
TF13 Ave 4.44e-16 1.98e-01 8.95e-02 3.19e-01 5.77e-01 3.29e-15 2.65e-01 

Std 0.00e+00 5.71e-01 1.46e-02 2.30e-01 7.90e-01 2.13e-15 4.26e-01 
TF14 Ave 0.00e+00 1.19e-01 4.56e-01 2.82e-01 1.06e-01 0.00e+00 4.75e-01 

Std 0.00e+00 1.19e-01 9.70e-01 1.53e-01 1.20e-01 0.00e+00 9.88e-02 
TF15 Ave 6.19e-03 1.38e-04 1.39e-02 7.31e-03 7.45e-01 3.14e-02 1.52e-02 

Std 1.75e-02 4.04e-03 9.46e-01 9.80e-02 3.28e-01 9.43e-02 1.08e-02 
TF16 Ave 3.54e-14 0.00e+00 2.77e-02 4.53e-02 1.44e-02 0.00e+00 1.31e-02 

Std 1.06e-13 0.00e+00 3.60e-02 6.89e-03 3.98e-03 0.00e+00 2.26e-03 
TF17 Ave 6.19e-02 7.58e-02 3.66e-02 1.04e-01 1.11e-01 5.67e-02 1.05e-02 

Std 1.28e-02 3.35e-02 1.05e-02 1.63e-02 1.53e-02 1.13e-02 2.46e-03 
TF18 Ave 3.74e-02 5.01e-02 3.68e-02 7.28e-02 6.11e-02 4.19e-02 1.04e-03 

Std 1.34e-02 2.46e-02 1.02e-02 1.24e-02 1.03e-02 9.92e-03 4.61e-04 
TF19 Ave 0.00e+00 1.56e-01 4.79e-01 9.49e-01 5.01e-02 0.00e+00 1.11e-17 

Std 0.00e+00 7.68e-01 2.04e-01 2.15e-01 1.09e-02 0.00e+00 3.33e-17 
TF20 Ave 1.57e-124 5.40e-01 2.37e-01 1.33e-02 1.53e+00 2.90e-58 2.27e-01 

Std 2.73e-124 7.87e-01 2.40e-01 3.16e-01 3.50e-01 8.10e-58 1.98e-02 
Based on the testing results from TF1 to TF20, we can conduct a performance analysis. Regarding 

optimization accuracy, MTLGWO demonstrates high precision across multiple test functions, 
particularly achieving average values close to the mathematical limits in TF1, TF2, TF11, and TF12. This 
surpasses the performance of other algorithms, indicating that MTLGWO can approach global optimum 
solutions very closely for these problems. In terms of stability and consistency, MTLGWO shows 
extremely low standard deviations, close to zero or zero, across almost all test functions. This highlights 
the algorithm's exceptional stability and consistency, suggesting that MTLGWO reliably achieves 
consistently high-precision results in repeated runs. 

Comparing with other algorithms, MTLGWO's average values outperform CSO, PSO, CS, ABC, and 
WOA algorithms across most test functions. This demonstrates the superiority of MTLGWO in these 
optimization problems, particularly in handling complex problems or those requiring high precision. It's 
noteworthy that in certain test functions, such as TF4, TF5, TF9, TF10, etc., other algorithms also show 
good performance, but MTLGWO generally maintains strong performance or performs equally well 
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compared to other algorithms. 

4. Conclusions 

The main work and innovations of this study are summarized as follows: 

1) Improvement of Optimization Algorithm: Effective enhancements were made to the original Grey 
Wolf Optimization (GWO) algorithm, resulting in the proposed MTLGWO algorithm. The new 
algorithm introduces the Latin Hypercube Sampling (LHS) method during population initialization, 
significantly enhancing the algorithm's initial search capabilities. Through the implementation of a 
grouping teaching mechanism and a novel individual position updating strategy, the algorithm's 
performance in global exploration and local exploitation has been strengthened. 

2) Validation and Comparative Analysis of Algorithm Performance: The superiority of the MTLGWO 
algorithm was validated through performance testing on the CEC2017 benchmark functions. In 
comparison to six classical heuristic optimization algorithms, MTLGWO demonstrated significant 
advantages in terms of convergence accuracy and stability. 
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