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Abstract: Infinite series is an important part of higher mathematics course, and it is also an important 
content of college students' mathematics competition. It is an indispensable tool for studying functions. 
It not only plays an important role in modern teaching methods, but also has a wide range of 
applications in a large number of applied sciences such as differential equations and numerical 
calculations. Studying how to use the knowledge points of infinite series to solve problems and its 
application in college students ' mathematics competitions will help students better understand and 
master the content, and also have certain reference value for teachers' teaching. 
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1. Introduction 

Infinite series is an important part of higher mathematics. It is a tool for representing functions to 
study the properties of functions and to carry out numerical calculation. In practical applications, 
infinite series are widely used in physics, engineering, statistics, finance and other fields. In the field of 
physics, infinite series can be used to describe the distribution of electric field and magnetic field, the 
propagation of light and the form of wave function. In the field of engineering, infinite series can be 
used to calculate the strength of the structure, the performance of the material, the sound wave and heat 
transfer and so on. In statistics, infinite series can be used to establish probability distribution, analyze 
random variables and estimate probability density function [1-5]. 

2. Research Content 

Through the analysis of the content of the infinite series part in the real questions of the 1-14 th 
National College Students ' Mathematics Competition from 2009 to 2022, this paper summarizes the 
knowledge points of the infinite series and its problem-solving methods in detail, and lists the 
application of its problem-solving methods in the College Students ' Mathematics Competition, as 
follows [6-10]. 

1) (The first National College Students' Mathematics Competition in 2009, 15 points) Known
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The first step: find the convergence domain 1
)1/(1

/1limlim
1

=
+

==
∞→

+
∞→ n

n
a
aR

n
n

n

n
convergence interval

)1,1(− .When 1−=x , the series∑
∞

=

−

1

)1(
n

n

n
converges.When 1=x , the series∑

∞

=1

1
n n

diverges, so the 

convergence domain )1,1[− . Step 2: Sum function in convergence interval )1,1(− .Let 

∑
∞

=

=
1

)(
n

n

n
xxS , )()(

1

′=′ ∑
∞

=n

n

n
xxS )(

1

′= ∑
∞

=n

n

n
x

x
xx

n

n

n

n

−
=== ∑∑

∞

=

∞

=

−

1
1

01

1 (arithmetic 

progression). Step 3: Determine the sum of the series at the convergence endpoint. When 1−=x , the 

series is∑
∞

=

−

1

)1(
n

n

n
, and the continuity 2ln)1( −=−S of the power series in the convergence domain 

is.Then )1ln(
1

x
n
x

n

n

−−=∑
∞

=

, )1,1[−∈x , and thus =∑
∞

=1
)(

n
n xu )1ln( xex −− , )1,1[−∈x . 

2) (The 2nd National College Students ' Mathematics Competition in 2010, 15 points)Let 0>na ,
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Analysis: the general idea of power series and function calculation: the first step: to find the 
convergence domain
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4) (The 4th National College Students ' Mathematics Competition in 2012, 15 points) Let∑
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Analysis: The convergence of abstract constant series is determined based on comparison method 
and rewriting condition description. The method of determining the convergence of series can be used 
to determine the convergence of positive series: ratio method, root value method, comparison method 
and sequence boundedness. 
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7) (The 7th National College Students ' Mathematics Competition in 2015, 6 points) The value of 

the Fourier series 0=x convergence of the function 
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Analysis: The problem of finding the sum function of Fourier series of functions.  

Solution: Dirichlet convergence theorem: If the function has only a finite number of extreme points 
or only a finite number of discontinuous points of the first kind on the definition interval, then for any
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8) (The 7th National College Students ' Mathematics Competition in 2015, 14 points) Find the 
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Step 2: Calculate the convergence interval. Solve the inequality of 1)( <xρ with respect to the 

variable x , because 10)( <=xρ , the convergence interval is ),( +∞−∞ , and the convergence 
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9) (The 8th National College Students ' Mathematics Competition in 2016, 14 points) Let )(xf  be 

derivable on ),( +∞−∞  and )3()2()( +=+= xfxfxf , and prove that )(xf is a constant by 
Fourier series theory. 

Analysis: the function is expanded into Fourier series, the key is to calculate the Fourier coefficient: 
period )3()2()( +=+= xfxfxf , the period of the function is 3,2 == TT 1, =L . 

General period Fourier coefficient calculation formula: ∫−=
L

Ln xdx
L

nxf
L

a πcos)(1
,
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xdx
L

nxf
L

b
L

Ln
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∫−= .According to Dirichlet convergence theorem, )(xf can be expanded 

into Fourier series on ),( +∞−∞ : )sincos(
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is proved that )(xf  is a constant, and it is verified that all coefficients nn ba , ,...)2,1( =n are equal to 
0. 
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10) (The 10th National College Students ' Mathematics Competition in 2018, 14 points) It is known 
that }{},{ kk ba  is a positive number sequence and δδ ,,2,1,01 =>≥−+ kbb kk is a constant. It 
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11) (The 13 th National College Students ' Mathematics Competition in 2021, 14 points) Let }{ na  

and }{ nb be positive real sequences, satisfying 111 == ba and 21 −= −nnn bab , ,3,2=n , and let

}{ nb be a bounded sequence. It is proved that the series∑
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=1 21
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converges and the sum of the 

series is obtained. 

Proof: 11 =a ,
1

2
2

2
b

ba +
= ,

1

2,
−

+
=

n

n
n b

ba
, is obtained from 21 −= −nnn bab ,

1

2

−

+
=

n

n
n b

ba , 

namely n
nn

n

n

n
n b

bbbb
bbb

bbb
bbbaaa

121

32

121

32
21

)2()2)(2()2()2)(2(

−−

+++
=

+++
=










, thus  

n
n

n b
bbb

aaa )21()21)(21(
32

21 +++=  , Then
)21()21)(21(

1

32

21

n

n

n

bbb
aaa

b

+++
=





. 

Note
n

n
n aaa

bA
21

= , then
n

nnn

n

n

n

n
nn aaa

bab
aaa

b
aaa

bAA
 21

1

121

1

21
1

−

−

−
−

−
=−=−

 

naaa 21

12−= . Thus, there is )(
2
11

1
21

nn
n

AA
aaa

−= −


)2( ≥n .   

So )]()[(
2
11)(

2
111

121
2

1
11 21

NN

N

n
nn

N

n n
N AAAAAA

aaaa
S −++−+=−+== −

=
−

=
∑∑ 

  

2
11+= NN AAA

2
1

2
3)( 1 −=− )2( ≥n . Among them 11 =a , 1

1

1
1 ==

a
bA .According to the 

pinch criterion, ==
∞→∞→

n

n

nnn aaa
bA
21

limlim 0
)21()21(

1lim

2

=
++

∞→

n

n

bb


is obtained,

=∑
∞

=1 21

1
n naaa 

−=
∞→ 2

3lim NN
S

2
3lim

2
1

=
∞→ NN

A . }{ nb is a bounded sequence, then

+∈∀>∃ ZnM ,0 Mbn ≤<0,  

makes
Mbn

11
≥ , 0

)21(

1
1
→

+
≤

−n
n

M

A , 121 >+
M

, 21 −= −nnn bab , 1
2
1 =
−− nnn bba

.Thus 

=
−

= −

n

nnn

n aaa
bba

aaa  21

1

21 2
1 )(

2
1

22 1
21121

1
nn

n

n

n

n AA
aaa

b
aaa

b
−=−= −

−

−



)2( ≥n , that is

∑∑
= −

−

=

−+=
N

n n

n
N

n n aaa
b

aaaa 1 121

1

11 21

(
2
111



=−+= ∑
=

−

N

n
nn

n

n AA
aaaa

b
1

1
121

)(
2
11)

 2
11

1

+=
a  



Academic Journal of Mathematical Sciences 
ISSN 2616-5805 Vol. 4, Issue 4: 62-73, DOI: 10.25236/AJMS.2023.040410 

Published by Francis Academic Press, UK 
-72- 

)( 1 NAA − NN AAA
2
1

2
3)(

2
11 1 −=−+=

.
 

12) (The 14 th National College Students ' Mathematics Competition in 2022, 14 points) Let the 

positive series∑
∞

=1n
na converge, and prove that there exists a convergent positive series∑
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3. Conclusion 

By summarizing the knowledge points of infinite series and its application in college students ' 
mathematics competition, it shows a clear knowledge framework and problem-solving ideas, and 
easy-to-understand problem-solving methods, so that students can better grasp the calculation methods 
and skills of infinite series. At the same time, it is also conducive to improving students ' ability to 
analyze problems, stimulating students ' interest in learning, helping to improve teachers ' teaching 
quality, and also has certain reference value for participating students[11-15]. 

Acknowledgement 

Guangdong Institute of Technology Quality Engineering Project ', 'Student-Centered' Higher 
Mathematics Teaching Reform and Practice ' (JXGG202362). 

References 

[1] Lu Xiaoqing. Some thoughts on infinite integrals and number series. Research on higher 
mathematics. 2023, 26 (03): 10-13.  
[2] Gu Rong. Discussion on the method of judging the convergence and divergence of infinite series. 
Sci-tech wind. 2022 (26): 7-9.  
[3] Li Yanwu, Wang Jiahuan. A counterexample to the convergence and divergence of any series. 
Journal of Zaozhuang University. 2021, 38 (02): 33-36.  
[4] Özgen H. Nedret. On Absolute Matrix Summability of Factored Infinite Series and Fourier Series. 
Numerical Functional Analysis and Optimization. 2023, 44(12): 1300-1308.  



Academic Journal of Mathematical Sciences 
ISSN 2616-5805 Vol. 4, Issue 4: 62-73, DOI: 10.25236/AJMS.2023.040410 

Published by Francis Academic Press, UK 
-73- 

[5] Heon Nikole; Mills Melissa. Comparing the Textbook with Professors’ Intended and Enacted 
Potential Intellectual Need for Infinite Series in Calculus II. Investigations in Mathematics Learning. 
2023, 15(3): 169-185.  
[6] Zhao Lijun, Song Jie, Huang Duanshan. Advanced Mathematics (II). Beijing: Peking University 
Press. 2019.  
[7] She Zhikun. National College Students' Mathematics Competition Analysis Course (Non- 
Mathematics) (Volume II). Beijing: Science Press. 2023.  
[8] Pu Heping. College Students Mathematics Competition Tutorial. Beijing: Electronic Industry Press. 
2015.  
[9] Zhao Lili. Several summation methods of constant series. Journal of Henan Institute of Education 
(Natural Science Edition). 2023, 32 (02): 50-54.  
[10] Wang Chengqiang. Analysis of the test points of infinite series of mathematics in the past five 
years. Research on higher mathematics. 202124 (03): 17-21.  
[11] Zhu Li. Convergence and Divergence of Infinite Product. Journal of Science, Teachers College. 
2022, 42(04): 6-8.  
[12] Wang Fei, Liu Jia. On the convergence and divergence judgment and summation method of 
infinite series. Research on higher mathematics. 2021, 24 (03): 10-12, 40.  
[13] Li Yanwu, Wang Jiahuan. A counterexample to the convergence and divergence judgment of any 
term series. Journal of Zaozhuang University. 2021, 3 8 
[14] Xu Xiujuan. Research on the determination method of convergence and divergence of arbitrary 
series. Mathematics learning and research. 2020 (03): 119.  
[15] Hu Haoyu. The summation method of infinite series. Education modernization. 2019, 6 (90): 
173-175.   


