
International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.5, Issue 3: 40-48, DOI: 10.25236/IJFET.2023.050307

Published by Francis Academic Press, UK
-40-

FPGA-Based Design for Accelerating 3D
Convolutional Neural Networks

Yuesong Yang1,2, Wenjing He1,*, Jian Hu1, Sai Cheng1, Wanqiu Xu1

1Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of
Sciences, Beijing, 100049, China
*Corresponding author: hewj@aircas.ac.cn

Abstract: Three-dimensional convolutional neural networks (3D CNNs) have been shown to be excellent
for classification in human action recognition, hyperspectral image classification and many other
aspects. However, 3D CNNs often contain convolution kernels of different sizes and a large number of
operations, and the numerous operations make 3D CNNs consume a lot of time when executing inference
on resource-constrained terminals. Aiming at these two points, this paper proposes a 3D CNN
accelerator design based on loop optimization and weight reuse. The design adopts loop tiling, loop
unrolling and loop fusion to optimize the direct convolution form of the 3D convolution operation; and
guided by the optimized form of the 3D convolution operation, a module that can accelerate different 3D
convolution operations is designed; and a memory access method based on weight reuse is also designed
to reduce the memory access time of features and weights. Experimental results show that the proposed
accelerator not only supports convolution kernels of different sizes, but also has a performance density
of 1.59, which outperforms most existing accelerators.

Keywords: 3D CNN, Loop Optimization, Parallel Computing, FPGA

1. Introduction

By sliding the convolution kernel in three dimensions, three-dimensional convolutional neural
networks (3D CNNs) have excellent 3D feature extraction capability, and have been brilliant in many
aspects such as human action recognition [1] and hyperspectral image classification [2]. However, due
to the high computational complexity of 3D CNNs, it takes a lot of time to execute inference on resource-
constrained terminals, which greatly limits its application in practice. Therefore, more and more studies
begin to pay attention to the acceleration of the inference phase of 3D CNNs. Common CNN acceleration
platforms include GPUs, FPGAs and ASICs. GPUs generally contain thousands of stream processors,
which can perform operations in parallel, but their power consumption is too large. ASICs can be
customized for a specific layer, but their development cycle is too long and the cost is too high. FPGAs
are programmable logic devices, and have the characteristics of low power consumption,
reconfigurability and high performance, making them ideal for accelerating 3D CNNs.

Currently, several FPGA-based inference accelerators for 3D CNNs have been proposed. Fan et al.
[3] propose a 3D residual module that reduces the number of parameters in the layers at the algorithmic
level and a hardware architecture that accelerates different types of convolutional layers at the hardware
level, but the performance density (i.e. the performance that a single DSP can provide per clock period)
of this architecture is low. Shen et al. [4] propose a uniform acceleration architecture for 2D and 3D
CNNs based on the Winograd algorithm. The Winograd algorithm can significantly reduce the number
of multiplications in the operation, but it is only applicable to the case where the stride of the convolution
kernel is 1, and the transform matrix of the Winograd algorithm is very sensitive to the size of the
convolution kernel. Liu et al. [5] also proposed a uniform architecture design for accelerating 2D and 3D
CNNs, which includes a module that maps convolution operations to matrix multiplication and uses a
2D multiply-and-accumulate array to improve the performance of matrix multiplication. The acceleration
performance of this architecture is good, but due to the high-level synthesis design, the hardware cannot
be precisely controlled, and there is still room for further improvement in terms of acceleration
performance.

In this paper, we analyze common 3D CNNs, and propose an FPGA-based design for accelerating

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.5, Issue 3: 40-48, DOI: 10.25236/IJFET.2023.050307

Published by Francis Academic Press, UK
-41-

common 3D CNNs. According to the characteristics of 3D convolution operation, we adopt loop
optimization design such as multi-dimensional loop tiling, loop unrolling, and adopt pipeline design to
further improve the efficiency of parallel computing. Correspondingly, we also designed a memory
access method based on reusing weight, which greatly reduces the pressure of memory access.
Experimental results show that the accelerator proposed in this paper has excellent acceleration
performance while supporting convolution kernels of different sizes.

2. CNN basics and characteristics

2.1 Basic principles of CNNs

CNNs are developed from neural networks. The basic unit of a neural network is the neuron, which
can perform linear binary classification of the input data, and multiple layers of neurons combined
together make up a neural network [6]. In some neural networks, neurons in each layer of the neural
network are connected to all of the neurons in the next layer. As the number of layers increases, the
network may contain a massive amount of weight parameters. In CNNs, taking the convolutional layer
as an example, one neuron is only connected to some neurons in the next layer and the weight parameters
of the same convolution kernel are constant when convolving with the input feature. The features of local
connection and weight sharing significantly reduce the weight parameters in the network and simplify
the complexity of the network model. Figure 1 demonstrates the 3D convolution operation. For ease of
presentation, this paper uses the same data dimensional representation as TensorFlow, i.e. N for output
channel, C for input channel, D for depth, H for height and W for width.

Figure 1: Schematic diagram of 3D CNN

CNNs generally contain convolutional layers, pooling layers and fully connected layers. Among them,
convolutional layers play the role of feature extraction, pooling layers are to reduce the dimension of the
features, and fully connected layers are to synthesize features of the previous layer. When various layers
are combined into a CNN, the weight parameters contain enough information to characterize the input
feature after sufficient training. In practical applications, only the inference phase of the CNN is used, so
this paper will only focus on the acceleration of the inference phase.

2.2 Characteristics of common 3D CNNs

Common 3D CNNs include C3D [1], HybridSN [2] and other neural networks. When the input of a
neural network is data such as hyperspectral images or videos, 3D CNNs can perform better 3D feature
extraction. This is because compared to 2D convolution kernels, 3D convolution kernels slide in the
dimension of the channel while sliding in the spatial dimension, and the network retains information
about the channel after several convolutional layers, thus allowing more 3D features related to space and
channel to be extracted [7].

By summarizing the characteristics of common 3D CNNs, the following rules can be obtained:

(1) The number of input channels of the first layer is the number of channels of the input feature, and
the number of input channels of subsequent layers is mostly a multiple of 8.

(2) The convolution kernel sizes of different 3D CNNs are generally different, and the convolution
kernel sizes of different layers of the same CNN are generally different. In general, the depth of the
convolution kernel is 3, 5, 7, and the width and height are 3; in special cases, the width and height of the
convolution kernel may also be 1.

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.5, Issue 3: 40-48, DOI: 10.25236/IJFET.2023.050307

Published by Francis Academic Press, UK
-42-

(3) The number of parameters in the convolutional layers is generally smaller than that in the fully
connected layers.

(4) The number of operations in the convolutional layers is generally larger than that in the fully
connected layers.

3. Accelerator design

3.1 Overall accelerator architecture design

Figure 2: Overall architecture of the accelerator

In order to design an accelerator that supports common 3D CNNs, this paper proposes an accelerator
design with flexible parallelism and high efficiency. The accelerator proposed in this paper consists of
three parts: control, computing and storage. Figure 2 shows the overall architecture of the accelerator
designed on ZYNQ platform and the accelerator is all implemented on the programmable logic side, that
is, FPGA. It can be seen from Figure 2 that the accelerator mainly includes a configuration register
module, a convolution operation module, a pooling operation module, and a transfer data module, all of
which are implemented on the programmable logic side. The configuration register module is responsible
for receiving the information sent from CPU on the processing system side, and configuring the
corresponding registers of the operation module. The convolution operation module can perform parallel
computing in dimensions such as the channel of the output feature, the channel of the convolution kernel,
and the depth of the convolution kernel to accelerate the 3D convolution operation. The pooling operation
module performs parallel computing in the dimension of the input channel to accelerate the 2D pooling
operation. In order to complete data transfer between the operation modules and the external memory
while avoiding the introduction of complex control logic, a transfer data module is designed between the
operation modules and the external memory, which can convert multiple sets of custom data buses to
AXI4 bus.

The accelerator in this paper is a dataflow processing architecture, i.e. the accelerator already contains
internal circuit structures that implement the configuration and computation of a particular layer, and the
corresponding output is available after the input data has flowed through the circuit [8]. From the
dataflow perspective, CPU on the processing system side sends configuration information to the
accelerator, such as the kernel sizes, the base address of the read/write data, whether to start convolution,
etc. The configuration register module of the accelerator receives the information and configures the
information to the corresponding registers in operation modules. After configuring the registers and
receiving the message to start the operation, the operation module sends a read data request to the external
memory via the transfer data module and stores the returned data in the on-chip cache before starting the
corresponding operation. After completing the operation, the operation module sends a write request to
the external memory via the transfer data module to write the result of the operation to the specified
address of the external memory.

The key to the acceleration of the accelerator is the design of the operation module. The convolution
operation module achieves acceleration of convolution operation by optimizing access memory by
adding caches and reusing weights, performing parallel computing in multiple dimensions such as the
channel of the output feature, the channel of the convolution kernel and the depth of the convolution
kernel, and performing loading data, convolution and writing data in a pipelined fashion. In addition, the
key for the accelerator to support setting convolution kernels of different sizes is that the loading data
submodule contains two loops of the height of the convolution kernel and the width of the convolution

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.5, Issue 3: 40-48, DOI: 10.25236/IJFET.2023.050307

Published by Francis Academic Press, UK
-43-

kernel. When facing some CNNs with different kernel sizes, it can be achieved by configuring the upper
limit of these two loops in the accelerator. The pooling operation module performs parallel computing in
the input channel dimension, and uses pipeline design to read data, wide-direction pool, high-direction
pool and write data, both of which also achieve good acceleration of pooling operation.

3.2 Loop optimization design

Convolution operations are in fact the operations of a large amount of repeated data over multiple
loops, so the focus of this paper is the optimized design of multiple loops. In an ideal convolution
operation, all loops can be unrolled and computed at the same time, but it is often difficult to unroll all
loops due to the limitation of hardware computing resources. Therefore, in order to reduce the
consumption of hardware resources, it is necessary to use loop tiling and loop unrolling in the actual
design process. Loop tiling means that a large loop can be split into smaller loops to reduce the
consumption of hardware resources, while loop unrolling means that the contents of a loop can be
unrolled multiple times to increase the chance of parallel computing.

Figure 3: Pseudocode for the direct convolution form of the 3D convolution operation

Figure 3 shows the pseudocode for the direct convolution form of the 3D convolution operation. From
Figure 3, it can be seen that the direct convolution form of 3D convolution operation contains eight loops,
namely the channel of the output feature, the depth of the output feature, the height of the output feature,
the width of the output feature, the channel of the convolution kernel, the depth of the convolution kernel,
the height of the convolution kernel and the width of the convolution kernel.

Combined with the analysis of common 3D CNNs, the width and height of the convolution kernel
are generally between 1×1 and 9×9, and if loop tiling is performed in these two dimensions, it is easy to
cause the problem that the utilization rate of the multiply-and-accumulate array is not high. The depth of
the convolution kernel generally does not exceed 9 and is not 1, which is suitable for loop tiling. In the
dimension of the channel of the convolution kernel, generally except for the first convolutional layer, the
number of channels is a multiple of 8 or 16, so this dimension is also suitable for loop tiling. The channel
of the output feature is generally a multiple of 8 or 16, which is suitable for loop tiling. The height, width
and depth of the output feature of different CNNs varies greatly, which need to be analyzed in
combination with specific network structures.

Figure 4: Pseudocode for 3D convolution operation based loop optimization

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.5, Issue 3: 40-48, DOI: 10.25236/IJFET.2023.050307

Published by Francis Academic Press, UK
-44-

As shown in Figure 4, this paper performs loop optimization on the basis of the direct convolution
form of the 3D convolution operation, and selects the channel of the output feature, the channel of the
convolution kernel and the depth of the convolution kernel for loop tiling. The tiling sizes of the three
dimensions are PN, PC and PD in sequence, which can be flexibly adjusted according to the specific
network structure and hardware resources. Afterwards, loop unrolling is performed on the subloop of the
three dimensions after loop tiling, and these subloops are mapped into a multiply-and-accumulate array
of the accelerator to complete the parallel computing on the PD depth on the PC input channels on the PN
output channels. In addition, since the height and width of the output feature are equivalent, this paper
also fuses the height and width dimensions of the output feature, and performs loop tiling on the new
fused loop.

Compared with the unoptimized pseudocode, the loop-optimized pseudocode can perform parallel
computing in three dimensions, including the channel of the output feature, the channel of the
convolution kernel, and the depth of the convolution kernel, and perform serial loops in other dimensions,
which provides great convenience for the subsequent design of the convolution operation module.

3.3 Pipeline design

Figure 5: Schematic diagram of the internal structure of the convolution operation module

The core part of the accelerator is the convolution operation module. The internal structure of the
convolution operation module is shown in the dashed box in Figure 5, which includes five submodules,
namely reading data, weight cache and feature cache, loading data, convolution, and writing data.

In order to further improve the performance, pipeline design is introduced into the convolution
operation module, where each of the five submodules respectively corresponds to five-stage pipeline,
and the end signal of each submodule corresponds to the start signal of the previous one.

(a) no pipeline design

(b) pipeline design

Figure 6: Comparison of no pipeline design and pipeline design in convolution operation module

Among the five submodules of the convolution operation module, the convolution submodule takes
the longest time and has the most potential for acceleration. As shown in Figure 6(a), to complete a
convolution operation without pipeline design, the convolution operation module needs to load the
weight data first, then load the feature data and complete the operation; as shown in Figure 6(b), the
pipeline-optimized convolution operation module loads the feature data and completes the operation
while also loading the weight data, which enables the submodules to run at full capacity without idle
states, thus further improving the acceleration efficiency of the convolution operation module.

3.4 Data reuse and memory access design

The design of the neural network accelerator should consider not only the computing capacity of
operation modules, but also the data transfer between operation modules and the memory, i.e. to reduce
the transfer of duplicate data and to set the cache reasonably to optimize the memory access. During the
convolution operation, a large amount of data participates in the operation on multiple loops, and some
data is reused. Therefore, it is of great help to improve the performance of the accelerator to reasonably
design the data reuse mode by using characteristics of convolution operation.

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.5, Issue 3: 40-48, DOI: 10.25236/IJFET.2023.050307

Published by Francis Academic Press, UK
-45-

Figure 7: Schematic diagram of convolution operation with weight reuse

Through the analysis of the pseudocode after loop optimization, it is found that the upper-level loop
outside the red box is related to the height and width of output feature after loop fusion and loop tiling.
The feature data on this loop changes, while the weight data is fixed. As shown in Figure 7, when this
loop is executed, it is only necessary to fix the weight data and update the feature data to complete the
operation on this loop; after the weight data completes all operations, then to load new weight data.
Therefore, the accelerator in this paper adopts the method of reusing weight data to reduce the pressure
of data transfer, and sets the weight cache and feature cache separately as a data cache bridge between
the convolution operation module and the external memory.

The ways of weight reuse and parallel computing affect the data storage method. On the one hand,
the feature and weight data should be stored in the external memory in the order of participating in
parallel computing; on the other hand, the data storage method cannot violate the requirements of weight
reuse. From the above two points, this paper designs a suitable data storage method for the 3D
convolution operation accelerator.

Figure 8: Schematic diagram of features rearrangement

The first is the feature storage method. Taking Figure 8 as an example, the features in the 3D
convolution operation are four-dimensional, expressed as (Cd, Dd, Hd, Wd). In order to facilitate the
expression, the original four-dimensional features are first rearranged into the new three-dimensional
features. The rearrangement method is to arrange the first depth data of all input channels in the original
features in sequence, then arrange the second depth data in sequence, and so on until the last depth data
are arranged, and finally to concatenate these data together along the depth direction. Considering every
PC data with a width of 1 and a height of 1 as a subblock, the new three-dimensional features formed by
these subblocks can be represented as (Dd×ceil(Cd/PC), Hd, Wd). The feature storage method is to store
the data of the first subblock in the first row and first column of the new three-dimensional features in
sequence, and then store the data of the first subblock in the first row and second column in sequence,
and so on until all the data of the first subblock in the first depth are stored following the order of width
and height. Then repeat the above operations on the depth dimension.

Figure 9: Schematic diagram of weights rearrangement

Next is the weight storage method. Taking Figure 9 as an example, the weights in the 3D convolution
operation is five-dimensional, expressed as (Nw, Cw, Dw, Hw, Ww). For ease of introduction, it is also
necessary to rearrange the original five-dimensional weights into the new four-dimensional weights. The
rearrangement method is to arrange the first depth data of all input channels on each output channel in

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.5, Issue 3: 40-48, DOI: 10.25236/IJFET.2023.050307

Published by Francis Academic Press, UK
-46-

the original weights in sequence, then arrange the second depth data in sequence, and so on until the last
depth data, and finally to concatenate these data together along the depth direction on each output channel.
Considering each Cw data with a width of 1 and a height of 1 on each output channel as a subblock, then
the new four-dimensional weights formed by these subblocks can be expressed as (Nw, Dw, Hw, Ww). The
dimensions of parallel computing related to weights are PN, PC and PD. The weight storage method is to
store the PC data of each subblock in the PD subblock in the first row and first column of each output
channel of the first PN output channel of the new four-dimensional weights in sequence, and then store
the PC data of each subblock in the first row and second column of each output channel in sequence, and
so on until the first PC data of each PD subblock on each output channel are stored in the order of width
and height; then store the second PC data in each subblock of PD subblock in the first row and first column
of each output channel of the first PN output channel, and so on until all the weights on the first PN output
channels are stored. Finally, repeat the above operations in the order of depth and output channel.

4. Experimental results

4.1 Experimental platform

The CNN inference accelerator designed in this paper is based on an FPGA platform. This paper uses
ZYNQ UltraScale+ development board from Alinx as the development platform. The core board of this
development board uses XILINX Zynq UltraScale+ EG chip, which has a capacity of 4GB high-speed
DDR4 SDRAM chip on the processing system side. The simulation environment of this paper is in
Vivado 2020.2 and the hardware description language is Verilog.

4.2 Results analysis

In this paper, the acceleration effect of CNNs will be illustrated from the aspects of acceleration time,
performance, hardware resource consumption and comparison with other accelerators based on FPGA,
so as to verify the characteristics of the proposed accelerator.

4.2.1 Results analysis on HybridSN

The CNN selected in this paper is HybridSN. In addition to including 3D convolutional layers and a
2D convolutional layer, the kernel sizes for the three 3D convolutional layers of HybridSN are different,
which are 7×3×3, 5×3×3 and 3×3×3 respectively. The above two aspects can fully verify the versatility
of the accelerator in the context of different kernel sizes. The accelerator uses a 100MHz synchronous
clock. The input features and weights are int8 type data that have been quantized, and the output features
are also int8 type data. And the performance is the ratio of the number of operations to the acceleration
time.

Table 1: Acceleration effect of each layer of HybridSN on FPGA

Layer
Shape of the
input feature

map

Kernel’s
number/size/stride

Number of
operations
/MFLOPs

Acceleration
time /ns

Performance
/GOPS

Conv3d_1 (1, 30, 25,
25) 8/ 7×3×3/ 1 12.8 8156240 1.57

Conv3d_2 (8, 24, 23,
23) 16/ 5×3×3/ 1 101.6 4067760 24.98

Conv3d_3 (16, 20, 21,
21) 32/ 3×3×3/ 1 179.7 3600080 49.92

Conv2d_1 (576, 19, 19) 64/ 3×3/ 1 191.8 4292450 44.68
FC_1 (18496) 256 9.5 5959660 1.59
FC_2 (256) 128 0.07 41440 1.58

Classification (128) 16 0.004 2660 1.54
Considering the conditions of each layer and hardware resources, PN is set to 16, PC is set to 16 and

PD is set to 8. The acceleration effects of the accelerator on each layer of HybridSN are summarized in
Table.1. It can be seen from the table that the acceleration effect of the 3D convolutional layers increases
with the increase of the input channel and output channel of the input feature map, and the performance
of the third 3D convolutional layer reaches the maximum, which is 49.92 GOPS. This is because the
input channel of the first 3D convolutional layer is 1 and the output channel is 8, while the input channel
of the second 3D convolutional layer is 8 and the output channel is 16. When PN is 16 and PC is 16, these

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.5, Issue 3: 40-48, DOI: 10.25236/IJFET.2023.050307

Published by Francis Academic Press, UK
-47-

two convolutional layers do not exert the parallel computing capability of the accelerator at all, so the
acceleration time is longer and the performance is lower.

Because the 2D convolution operation can be regarded as the 3D convolution operation with the depth
of 1, the accelerator in this paper is also compatible with the 2D convolution operation. Although the
input channel and output channel of the 2D convolutional layer in HybridSN can give full play to the
parallel computing capability of the accelerator, the acceleration performance of the 2D convolutional
layer is slightly lower than that of the third 3D convolutional layer because the accelerator needs to spend
more time loading data between the cache and the convolution submodule during the whole acceleration
process. In addition, the accelerator is also compatible with the acceleration of the fully connected layers.

Table 2: FPGA resource utilization

Resource LUT FF BRAM DSP
Utilization 94804 59947 456 1221
Available 341280 682560 744 3528

Utilization (%) 27.78 8.78 61.29 34.61
The total on-chip power of the accelerator is 4.359 W. Table.2 shows the resource utilization of FPGA

with PN of 16, PC of 16 and PD of 8. The size of the weight cache and feature cache is 1MB each. Among
them, DSPs are mainly used to realize the operation logic of the multiplication part in the convolution
operation module, and DSP utilization rate is 34.61%; BRAMs are mainly used to realize on-chip cache,
and BRAM utilization rate is 61.29%. The utilization rates of FFs and LUTs are 8.78% and 27.78%
respectively.

4.2.2 Comparison with other accelerators on C3D

Table 3: Comparisons with other accelerators based on FPGA

 [3] [5] [4] Ours
CNN C3D C3D C3D C3D

FPGA Xilinx
ZC706

Xilinx
XC7VX690T

Xilinx
XC7VX690T

Xilinx
XCZU15EG

Clock (MHz) 172 120 150 100
DSP Utilization 810 3595 1536 1317

Performance (GOPS) 142 667.7 431 209.4
Performance Density
(GOPS/DSPs/MHz) 1.02 1.55 1.87 1.59

Table.3 compares the acceleration effect of the accelerator in this paper with that of accelerators from
other papers. Since the kernel sizes of 3D convolutional layers in C3D are all 3×3×3, [4] uses the 3D
Winograd algorithm to reduce the computational complexity of the network, that is, to reduce
multiplication and increase addition. In this way, the impact on resources is to reduce the use of DSPs
and increase the use of LUTs, which is also the reason why [4] has the best performance density. However,
in terms of flexibility, the accelerator of [4] still has some limitations. Winograd algorithm is only
applicable when the stride of the convolution kernel is 1, and its transformation matrix changes with the
convolution kernel size, thus affecting the performance density. However, through the design of loading
data submodule, the accelerator in this paper can be applied to CNNs with different convolution kernel
sizes and can be applied with good generality. Moreover, through loop optimization and pipeline design,
the performance density is superior to that of [3, 5].

5. Conclusions

This paper analyzes the characteristics of 3D convolution operations, summarizes the rules of
common 3D CNNs, and proposes a 3D CNN inference accelerator based on FPGA. The accelerator
adopts methods such as loop tiling, loop unrolling and loop fusion to obtain an optimized form of 3D
convolution operation, and determines the parallel computation in three dimensions. And the accelerator
also determines a memory access method based on weight reuse and the corresponding feature and
weight storage method. The accelerator can not only accelerate 3D convolutional layers with different
convolution kernels, but also accelerate 2D convolutional layers with different convolution kernels and
fully connected layers. Experimental results show that compared with the accelerator designed by the 3D
Winograd algorithm, the accelerator proposed in this paper is more versatile; and compared with other
existing acceleration methods, the performance density of the accelerator is better. At present, the
accelerator only considers parallel computing from three dimensions. In the future, it will explore the

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.5, Issue 3: 40-48, DOI: 10.25236/IJFET.2023.050307

Published by Francis Academic Press, UK
-48-

feasibility of parallel computing in terms of the height, width, and depth of output feature in combination
with specific CNNs.

Acknowledgements

The National Key Research and Development Program of China, Grant No.2022YFB3902304.

The Pilot Fund of Aerospace Information Research Institute, Grant No. E2Z206010F.

References

[1] Ji S, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE
transactions on pattern analysis and machine intelligence, 2012,35(1):221-231.
[2] Roy S K, Krishna G, Dubey S R, et al. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for
hyperspectral image classification [J]. IEEE Geoscience and Remote Sensing Letters, 2019,17(2):277-
281.
[3] Fan H, Niu X, Liu Q, et al. F-C3D: FPGA-based 3-dimensional convolutional neural network[C].
2017 27th International Conference on Field Programmable Logic and Applications (FPL), 2017. IEEE.
[4] Shen J, Huang Y, Wang Z, et al. Towards a uniform template-based architecture for accelerating 2D
and 3D CNNs on FPGA[C]. Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2018.
[5] Liu Z, Chow P, Xu J, et al. A uniform architecture design for accelerating 2D and 3D CNNs on
FPGAs [J]. Electronics, 2019, 8(1):65.
[6] Bishop C M. Neural networks and their applications[J]. Review of scientific instruments, 1994,
65(6):1803-1832.
[7] Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3d convolutional
networks[C]. Proceedings of the IEEE international conference on computer vision, 2015.
[8] Hou R, Zhang L, Huang M C, et al. Efficient data streaming with on-chip accelerators: Opportunities
and challenges[C]. 2011 IEEE 17th International Symposium on High Performance Computer
Architecture, 2011. IEEE.

	2.1 Basic principles of CNNs
	2.2 Characteristics of common 3D CNNs
	3.1 Overall accelerator architecture design
	3.2 Loop optimization design
	3.3 Pipeline design
	3.4 Data reuse and memory access design
	4.1 Experimental platform
	4.2 Results analysis

