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Abstract: This paper proposes a multi-action transmission scheduling problem for remote state 
estimation in wireless networked physical systems under global energy constraints. Firstly, the system 
state estimation is obtained through Kalman filtering. Then, the estimated values are transmitted from 
sensors to a remote estimator through randomly fading channel. Unlike traditional transmission 
scheduling problems, the proposed system model allows sensors to choose from multiple power levels 
at each decision node. Additionally, the study considers global energy constraint and formulates the 
system model as a constrained Markov decision process to obtain the optimal transmission strategy 
that minimizes the average estimation error covariance at the remote estimator over an infinite time 
horizon. Through model transformation, a important conclusion is derived. As the average estimation 
error covariance at the remote estimator increases, the optimal transmission power exhibits an 
increasing trend. This conclusion extends the threshold structure of the optimal strategy to a monotonic 
increasing structure. Finally, the theoretical result is verified through numerical simulations. 

Keywords: Optimal transmission scheduling; Estimation error covariance (EEC); Constrained Markov 
decision process (CMDP) 

1. Introduction  

In recent years, wireless communication has completely changed the way information is exchanged. 
We are able to use smartphones, tablets, and other devices to effortlessly access the internet, make 
phone calls, send messages, and remotely control devices. Therefore, research on transmission 
scheduling in wireless communication is of great significance. Efficient transmission scheduling can 
ensure balanced resource allocation and enhance the service quality and reliability of wireless 
communication systems by minimizing wait times and optimizing performance objectives. To achieve 
these communication goals, many scholars have extensively researched optimal transmission 
scheduling. Zhang et al. [1-3] studied the optimal transmission strategies for sensors, but overlooked the 
energy consumption that may occur due to the mobility of communication devices; Yuan et al. [4-6] 

investigated energy allocation problems in time-varying channels within a limited time period; Knorn S, 
Leong A S [7-8] incorporated energy harvesting devices; Qi Y, Wei J et al. [9-12] obtained threshold 
strategies for the estimation error covariance (EEC) within a finite time range; Leong A S et al. [13] 

further derived a dual-threshold strategy for the optimal transmission scheduling regarding EEC and 
channel state over an infinite time span. In addition, Salh A [14] considered the existence of 
eavesdropping, aiming to minimize the EEC at the remote estimator while keeping the EEC at the 
eavesdropping location above a certain level. 

However, these references only considered transmission scheduling problems with two actions, 
where sensors only decide whether to transmit data, limiting the flexibility of the system and 
overlooking more diverse optimal solutions. In practice, transmitters may have multiple transmission 
power levels; based on this, this study considers transmission scheduling problems with multiple 
actions. Furthermore, this study also takes into account global energy constraints, formulating the 
transmission scheduling problem as a constrained Markov decision process (CMDP) problem. A 
fundamental method to solve CMDP problems is the method of Lagrange multipliers, which can 
transform the CMDP problem into an unconstrained Markov decision problem and then solve it by 
finding the optimal Lagrange multipliers and MDP policy [15-17]. In order to find the optimal Lagrange 
multipliers, the gradient descent (GD) algorithm was proposed in [18-19]; however, the computational 
complexity of this algorithm is too high for the structural nature of the optimal strategy for the 
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transmission scheduling model in this study. Therefore, this study proposes a new algorithm to compute 
the optimal Lagrange multipliers, significantly reducing the number of iterations and computational 
complexity. 

2. Model And Problem 

2.1. System Model 

 
Fig. 1: Remote state estimation flow chart 

As shown in Figure 1, we consider a discrete time process formulated as follows. 
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where nx
k Rx ∈ denotes the state of the system at time k , and kω is Gaussian random vector with 

zero-mean and variance 0Q ≥ . In this system, the sensor performs the measurements, and 
ny

k Ry ∈ denotes the system measurement at moment k , kv is subject to a Gaussian distribution with 

zero-mean and variance 0U > . We further assume that the two noises { }kω and { }kv  are 

independent of each other. Assuming that A is unstable, ( , )A C is detectable and
1

2( , )A Q is 
controllable [20]. 

1) Local Estimation: The sensor is equipped with Kalman filtering capabilities, allowing for the 
calculation of the local state estimate and EEC directly on the sensor using the following standard 
Kalman filtering equations: 
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Under the detectability assumption, the steady state value of |ˆ s
k kp exists, and we denote

|ˆlim s
k kk

p p
→∞

= in this article. 

2) Markov Channel: We consider a flat-fading channel, and adopt a discrete-time Markov chain 
with finite state space to model the fading channel. The state transition probability matrix is denoted 

by ( )p h ' | hP =    , where 1( | ) ( | )k kp h h p h h h h+′ ′= = denotes the transition probability 

from state h at time k to state 'h at time 1k + for ,h h′∀ ∈ . For the channel state kh ∈ at time k , 

its corresponding channel gain is denoted by gk , i.e., ( )k kg g h , 0,1, 2,k =  . 

3) Data transmission: Let 1kγ = denote successful detection of sensor’s packet at time k ,and

0kγ = denote that the packet is failed to be transmitted. We also assume that each packet has the same 
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size which is denoted by R . Let kπ be the transmission power of the sensor at time k , and we assume 

that kπ is able to take M values, which are given in 

1 2{ , , , }Ma a a= … .                             (3) 

Given the channel state h∈ , and the transmission power a∈  is chosen, then the probability 
that the remote estimator can successfully receive the packet from the sensor is denoted by 

( , ) ( ( , ) )p h a p r h a R≥
 ,                           (4) 

where ( , )r h a  means the channel capacity, and it can be obtained by 

2
0

( )( , ) log 1[ ]g h ar h a B
N B

= +
Γ

,                          (5) 

in which B represents the channel bandwidth, Γ denotes the signal-noise ratio (SNR) gap, and 0N
is the power spectral density of the Gaussian noise. 

4) Remote Estimation: The optimal remote estimator, in terms of minimum mean-square 
error(MMSE), is defined as follows: 
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where ( ) Tf X AXA Q+ . Assuming that kγ will be feed back to the sensor by the remote 

estimator before the start of next time 1k + , then |k̂ kP will be update at the sensor. To simplify the 

notation, in the following |k̂ kP is denoted as pk . Let  be the state space of all possible values of pk at 

the remote estimator.In this article, we assume that is a finite state set. Obviously, this assumption is 
reasonable, since in practical application, after a finite number of transmissions, the packet can be 
received by the remote estimator eventually. Thus,  can be denoted as 

2, ( ), ( ), , ( ){ }p f p f p f pκ… ,                    (7) 

whereκ < ∞ is a given large enough positive integer, and we define 
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The elements in  have the following size relationship [20] 

2( ) ( ) ( )p f p f p f pκ≤ ≤ ≤ ≤ ,                      (9) 

and this inequality also indicates 
2( ) ( ( )) ( ( )) ( ( ))Tr p Tr f p Tr f p Tr f pκ≤ ≤ ≤ ≤ ,             (10) 

where ( ( ))nTr f p denotes the trace of the matrix ( )nf p for 0,1, 2, ,n κ=  . 

2.2. Problem formulation 

In the following, a new transmission scheduling problem, i.e., multi-action transmission scheduling 
problem under global energy constraint, is developed, and then it is transformed into a CMDP.The 
more detail is given as follows. 

1) State space: Let [ , ]k k ks h p= be the state of CMDP at time k , 0,1, 2,k =  , and the state 
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space is denote by ×   . 

2) Action space: Let A be the action space given in (2). Furthermore, we define 

{ , 0,1, 2, }k kπ π = …                           (11) 

as the transmission scheduling policy, where ( )k ksπ π ∈  denotes the rule of action at time k
when the state is ks . Also, defineΦ as the set of allπ and DΦ ⊂ Φ as the set of all deterministic 
policies. 

3) Transition probabilities: The transition probability from state [ , ]s h p= to [ , ]s h p′ ′ ′= when 
taking action a∈ is defined as 

{ } { ( )}
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{ ( , ) (1 ( , )) }p p p f p

p s s a p h p h p a p h h
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′ ′ ′=
′ ′+ −



 

,              (12) 

where { }I ⋅ is an indicator function, and ( , )p ⋅ ⋅  is defined in (4). 

4) Cost function: For [ , ] ,s h p a∀ = ∈ ∈  , define 

( , ) ( ), ( , )t s a Tr p c s a R a⋅  ,                      (13) 

where ( , )t s a denotes the trace of the EEC matrix p , and ( , )c s a  is the energy consumption of the 
sensor during each data packet transmission when the transmission power a is taken. We call ( , )t s a  
and ( , )c s a as instantaneous target cost and instantaneous constrained cost, respectively. 

5) Average target cost function: For 0s∀ ∈ ,  π∀ ∈Φ , define average target cost function as 

0 0

1

1( ) lim sup ( , )[ ]
N

s s
k kN k

T t s
Nππ π
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=
∑  .                   (14) 

6) Average constrained cost function: Similarly, the average constrained cost is 

0 0

1

1( ) lim sup ( , )[ ]
N

s s
k kN k

C c s
Nππ π

→∞
=

= ∑ .                   (15) 

One of our primary objectives is to determine the optimal transmission scheduling policy *π ∈Φ
that minimizes the target cost function (14) while the average constrained power consumption (15) is 
not more than some given threshold value c . That is, we mainly investigate the following optimal 
transmission scheduling problem: finding an optimal *  π ∈ Φ , such that 

0 0 0* *( ) inf{ ( )}, . . ( )s s sT T s t C c
π

π π π
∈Φ

= ≤  .                  (16) 

2.3. Lagrangian cost problem 

The average target cost function and the average constrained cost function under the policy * ( )cπ   

are denoted by *( ( ))T cπ  and *( ( ))C cπ  , respectively. Now, we solve the CMDP model by 
transforming it into unconstrained MDP with Lagrangian. We first recall the following lemma. 

Lemma 2 [21] If the CMDP with only one global constraint is feasible, then there exist 1λ , 2λ 0≥ , 

and 0 1q≤ ≤ , so that the optimal policyπ ∗ can be obtained by a combination of two optimal 

deterministic policies *
1( )π λ  and *

2( )π λ , in which the probability of *
1( )π λ being adopted is q  
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and *
2( )π λ being adopted is 1 q− . Furthermore, there exists at most one state that

* *
1 2( ; ) ( ; )s sπ λ π λ≠ . 

For the unconstrained average MDP with Lagrangian multiplierλ , the cost function ( ; )V s λ of the 

optimal deterministic policy * ( )π λ  can be obtained from 

*( ( ); ) ( ; ) min { ( , ; ) ( | , ) ( ; )}a s
J V s t s a p s s a V sπ λ λ λ λ λ′

′ ′
∈ ∈

+ = +∑ 
,    (17) 

where ( ; ) 0V s λ = for a certain reference state s∈ , and *( ( ), )J π λ λ is the optimal average 
Lagrangian cost. The above equation (17) is also called Bellman equation. The function ( ; )V s λ in (17) 
can be obtained by Relative Value Iteration (RVI) algorithm, in which a sequence of estimates

1{ ( ; )}m
mV s λ ∞
= with relationship 

1 ( ; ) min { ( , ; ) ( | , ) ( ; )}m m
a s

V s t s a p s s a V sλ λ λ′
+ ′ ′

∈ ∈
= +∑ 

,         (18) 

then we can obtain the value function ( ; ) lim sup ( ; )m

m
V s V sλ λ

→∞
= . Besides, the Lagrange cost 

function is defined when action a  is taken in state s  as 

( , ; ) ( , ; ) ( | , ) ( ; )
s

V s a t s a p s s a V sλ λ λ′
′ ′

∈
= +∑


,               (19) 

then there are 
*( ; ) min ( , ; ); ( ; ) arg min ( , ; )a aV s V s a s V s aλ λ π λ λ∈= = .          (20)  

3. Structural result of transmission scheduling  

We will establish the monotonic structure of scheduling policy. Toward that, we begin by 
introducing the following definition lemma.   

Definition 1(Submodularity)[22] A function f is said to be supermodular in ( , )a p , if given h∈ , 
for a a′∀ ≥  and p p′∀ ≥ ,it holds that 

( , ; ) ( , ; ) ( , ; ) ( , ; )f a p h f a p h f a p h f a p h′ ′ ′ ′− ≥ − .               (21) 

Lemma 1 [22] If the function f is a submodular function with respect to ( , ( ))x xπ , it follows that 
( )xπ  is increasing with respect to x . 

Lemma 2 Given h∈ , 0λ > , the value function ([ , ]; )V h p λ is increasing function of p∈ .  

Proof. From (18), we only need to prove that ([ , ]; )mV h p λ is creasing function with respect to p
for all m . It is apparently true for 0m = , then the increasing property of 
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             (22) 

is obtained easily. 

According to above discussion, we give the main result in the following. 

Theorem 1 Given a feasible transmission cost constraint 0c > ,for [ , ]s h p∀ = ∈ , the optimal 

policy * ( , )s cπ  is monotonic increasing with p . 

Proof. Since ( ) ( )f p f p′ ≥ for any p p′ ≥ , we have obtained from Lemma 2 that 
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([ , ( )]; ) ([ , ( )]; ) 0V h f p V h f pλ λ′ ′ ′− ≥ .                  (23)  

Based on (4), for a a′∀ ≥ , ( , ) ( , )p h a p h a′ ′ ′≥  , then the following inequality holds: 
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based on (24), we further get 

[ ( , ) ([ , ]; ) (1 ( , )) ([ , ( )]; )]
[ ( , ) ([ , ]; ) (1 ( , )) ([ , ( )]; )]
[ ( , ) ([ , ]; ) (1 ( , )) ([ , ( )]; )]
[ ( , ) ([ , ]; ) (1 ( , )) ([ , ( )]; )

p h a V h p p h a V h f p
p h a V h p p h a V h f p
p h a V h p p h a V h f p
p h a V h p p h a V h f p

λ λ
λ λ
λ λ
λ λ

′ ′ ′ ′ ′ ′ ′+ −
′ ′ ′ ′ ′ ′− + −
′ ′ ′ ′ ′≤ + −
′ ′ ′ ′− + −

 

 

 

  ]

.          (25) 

This indicates that 

( | , ) ( ; ) ( | )
[ ( , ) ([ , ]; ) (1 ( , )) ([ , ( )]; )]
p s s a V s p h h
p h a V h p p h a V h f p

λ
λ λ
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            (26) 

is a submodular function of ( , )p a from definition 1. Noting that the positive weighting of the 
submodular function remains the submodular function, then we obtain that 

1 ([ , ], ; ) ( | , ) ( ; )
s S

V h p a p s s a V sλ λ′
′ ′

∈
∑                    (27) 

is also a submodular function of ( , )p a . It is easy to see that ([ , ], ; )t h p a λ is a submodular 
function of ( , )p a , then 

1([ , ], ; ) ([ , ], ; ) ([ , ], ; )V h p a t h p a V h p aλ λ λ= +                  (28) 

is a submodular function of ( , )p a .Therefore,the monotonically increasing structure of the 

deterministic policies * ( ; )sπ λ with respect to p is obtained from Lemma 3. This completes the proof. 

4. Simulation results 

In this section we perform an empirical analysis of the optimal transmission scheduling problem 
under the framework of the CMDP model. 

4.1. Simulation Setup 

Consider the following linear time-invariant system with parameters 

[ ] 2 2

1.2 0.2
A ,C 1 1 , 1

0.2 0.7
,Q I U×

 
= = = = 
 

. 

From these parameters we can obtain 

1.3634 0.8347
0.8347 1.0809

p
− 

=  − 
. 

The channel state can be represented by three values: 1, 2, and 3, corresponding to the bad, fair, and 
good states of the channel, respectively. And the channel gains of state 1,2,3 are 0, 1310 10−× and 

1315 10−× respectively. The transition probability matrix of the channel fading process is assumed to 
be 
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0.3 0.4 0.3
0.2 0.3 0.5
0.1 0.1 0.8

P
 
 =  
  

. 

Assume that the packet size for each transmission task is 140R = bits, system bandwidth 5B =
MHz, noise power spectral density at Remote Estimator 17

0 10N −= , and SNR gap 5.48Γ = , the 

corresponding symbol error rate is 410− . We let 10K =  in our simulations. 

4.2. Numerical analysis 

 

Fig. 2: Optimal policy with respect to EEC when 1h = and [0,0.2]λ ∈  

Figure 2 shows the variation of optimal deterministic policy * ( )π λ with EEC when the channel 
state is 1 and [0,0.2]λ ∈ . From Figure 2 we can intuitively obtain that, given the channel state 1, for 
any [0,0.2]λ ∈ , when the EEC increases, the transmission power chosen by the optimal deterministic 
policy becomes larger, which is consistent with the conclusion of Theorem 1. Another observation is 
that, given the channel state andλ , the optimal transmission power is piece-wise function of the EEC. 
That is, when the performance index EEC reaches a certain level, the dynamic system will select the 
same transmission power to optimize the performance index. Confirming the monotonic property of the 
optimal deterministic policy. 

Now, an average cost constraint cwill be arbitrarily given and then the optimal transmission policy 
will be computed. We take 150c = as an example and set 410−= . With the RVI algorithm in [18-19] 
and for finding the optimal Lagrange multiplier *λ , we can find it with only 15 explorations in 
following table 1. 

Table1: The process of exploration of *λ  

1λ  2λ  3λ  4λ  5λ  6λ  7λ  8λ  
1.00000 0.50000 0.25000 0.12500 0.18750 0.15625 0.14063 0.14844 

9λ  10λ  11λ  12λ  13λ  14λ  15λ   
0.15234 0.15039 0.15137 0.15186 0.15161 0.15173 0.15167  

After the explorations in the table 1 above, we can get * 0.15167λ = , then 0.1516λ− = and

0.1517λ+ = . Thus we can obtain two deterministic policies * ( )π λ−  and * ( )π λ+ . By calculating 
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we can get the weighting factor 0.3571q = and *( ( )) 16.9281T cπ = . 

5. Conclusions  

This article focuses on the transmission scheduling problem for multi-action remote state estimation 
under a global constraint in CPS. The objective is to determine the optimal power allocation at discrete 
time intervals to minimize the average EEC at the remote estimator, while ensuring that the average 
energy consumption remains below a given threshold. We address this problem using the framework of 
CMDP and derive structural results for transmission scheduling. The theoretical findings are validated 
through simulations. In our future work, we plan to explore the optimal scheduling problem 
considering multiple global constraints. We will continue our investigation into the structural results. It 
is believed that this study has important theoretical and practical significance. 
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