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Abstract: The prediction of drug-induced autoimmunity (DIA) is challenged by the high-dimensionality
of molecular descriptor data and the complexity of underlying biological mechanisms. This study
presents a machine learning framework to model the relationship between RDKit-derived molecular
features and binary autoimmune risk labels. The methodology employs a pipeline involving mutual-
information-based feature selection, multi-algorithm training, and randomized hyperparameter
optimization, applied to distinct training and independent test sets. A reduced feature subset was
constructed, followed by a comparative evaluation of six supervised learning algorithms: Logistic
Regression, Random Forest, Gradient Boosting, Support Vector Machine, XGBoost, and LightGBM. The
model identified through cross-validation yielded the highest performance metrics on external validation.
Analysis indicated that key molecular features contributed to model predictions, as evidenced by feature
importance rankings. This approach combines computational chemistry descriptors with machine
learning to provide a systematic framework for preclinical DIA assessment.
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1. Introduction

The prediction of drug-induced autoimmunity (DIA) is an important aspect of pharmaceutical safety
science. Adverse immune reactions to drugs contribute to late-stage attrition in drug development and
remain a concern in post-marketing pharmacovigilance [1]. Traditional experimental methods for
assessing autoimmune risk, such as long-term rodent studies and specific in vitro immunotoxicity assays,
are characterized by high resource consumption and limited throughput, which restricts their application
in early screening phases [2].

Computational approaches, including quantitative structure-activity relationship (QSAR) modeling,
are increasingly employed for early hazard identification. Predicting DIA, however, is recognized as a
complex task. The immunological mechanisms involved are multifactorial and not fully understood,
spanning hapten formation, direct immune cell stimulation, and immune checkpoint modulation [3].
Additionally, chemical compounds are typically represented by high-dimensional molecular descriptor
sets, which can introduce challenges related to noise, redundancy, and the risk of generating models with
poor generalizability to new chemical entities [4].

A range of computational methods has been applied to toxicity prediction, from traditional statistical
techniques to modern machine learning algorithms [5-7]. While progress has been made, the performance
of models specifically for DIA prediction has been reported to vary considerably [8]. This variation is
often attributed to factors such as dataset composition, descriptor selection, and model validation
strategies. Furthermore, many existing models have been developed on datasets of limited chemical
diversity, which may affect their broader applicability.

Advances in cheminformatics enable the systematic generation of comprehensive molecular
descriptors, providing a detailed numerical representation of chemical space [9]. In parallel, machine
learning algorithms, particularly ensemble methods like Random Forests and gradient boosting
frameworks, have demonstrated effectiveness in modeling complex biological endpoints from high-
dimensional data in various domains [10-12]. The application of feature selection techniques, such as
filter methods based on mutual information, is a common strategy to improve model performance and
interpretability by identifying a relevant subset of descriptors [13].
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This investigation developed a machine learning framework for the prediction of DIA. A curated
dataset of compounds with associated autoimmune risk labels was utilized. The methodological
workflow involved feature selection from RDKit-derived descriptors using mutual information, followed
by the training and comparative evaluation of six machine learning algorithms: Logistic Regression,
Random Forest, Gradient Boosting, Support Vector Machine, XGBoost, and LightGBM. Model
performance was assessed via independent external validation. The objective of this study was to
implement and evaluate a systematic computational pipeline for DIA prediction and to analyze the
molecular features contributing to model predictions.

2. Related Works

The computational prediction of drug-induced autoimmunity (DIA) represents a specialized subfield
within computational toxicology. Methodological development has progressed from the use of structural
alerts to data-driven modeling approaches, with machine learning techniques being applied to model
structure—activity relationships for immunotoxicity endpoints. In cheminformatics, the generation of
high-dimensional molecular descriptor sets, often using software toolkits such as RDKit, provides a
numerical representation of chemical compounds. The resulting data matrices typically contain a large
number of features, which has led to the adoption of feature selection methods to manage dimensionality.
Commonly used techniques include filter methods (e.g., based on mutual information or variance
thresholds) and embedded methods (e.g., LASSO regression, or importance measures from tree-based
algorithms).

A variety of algorithms have been employed for toxicity prediction. Classical statistical methods,
such as logistic regression and linear discriminant analysis, have been used historically and offer
interpretability. In more recent work, machine learning algorithms, including Support Vector Machines
(SVMs), have been applied to chemical classification tasks. Ensemble methods, such as Random Forests
and gradient boosting frameworks (e.g., XGBoost, LightGBM), have been reported to perform
effectively in comparative studies, which is often attributed to their ability to handle complex feature
interactions.

Within immunotoxicity prediction, studies have integrated molecular descriptors with other data
types, such as biological assay readouts. Machine learning models have been developed for related
endpoints, including drug hypersensitivity and cytokine release. For the specific endpoint of DIA, the
number of published predictive models is smaller, and many are based on datasets of limited size or
accessibility, which can affect the evaluation of their external validity.

Standard practices in model development include the use of cross-validation, external test sets, and
methods to address class imbalance. Additionally, techniques to interpret model predictions, such as
SHAP (SHapley Additive exPlanations) or permutation feature importance, are used to identify
molecular features associated with model outcomes.

In summary, while machine learning has been applied to toxicity prediction, comprehensive studies
that systematically compare algorithms and evaluate feature stability for DIA prediction are less common
than for other toxicity endpoints. The integration of refined feature selection procedures with advanced
machine learning algorithms, followed by validation on external chemical sets, is an area identified for
further investigation.

3. Algorithmic Principles
3.1 Algorithmic Background

Extreme Gradient Boosting (XGBoost) is an efficient and scalable implementation of the gradient
boosting decision tree (GBDT) framework. In predicting drug-induced autoimmunity (DIA), models are
applied to datasets characterized by high-dimensional molecular descriptors and a binary immunological
endpoint. This context introduces specific challenges, including potential non-linear relationships,
interactions among features, and the risk of model overfitting. The XGBoost algorithm incorporates a
regularized learning objective and specific computational strategies to address these challenges.

3.2 Core Optimization Mechanisms

The performance of XGBoost is based on several integrated mechanisms.
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3.2.1 Regularized Learning Objective
The algorithm sequentially adds decision trees to an ensemble by minimizing a regularized objective

()

function, I"" ,at each iteration ¢ :

For continuous hyperparameters, the sampling process utilizes uniform probability distributions
across defined value ranges:
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Here, 7" is the number of leaves, @ ; are leaf weight,and » and A are hyperparameters. This

regularization aims to control overfitting.

3.2.2 Second-Order Optimization

XGBoost uses a second-order Taylor expansion to approximate the objective function, utilizing both
first (gl. )and second-order (hi ) derivatives (gradients and Hessians) of the loss function. This informs the

split evaluation process during tree construction. The gain'¥' for a candidate split is calculated as:
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where [ s I 2-and 7 denote the instance sets in the left child, right child, and parent node, respectively.

3.2.3 Weighted Quantile Sketch for Split Finding
To handle high-dimensional data efficiently, the algorithm employs a weighted quantile sketch to

propose candidate split points. This method uses the distribution of instance weights (derived from hi )

to identify splits, reducing the computational cost compared to evaluating all possible thresholds for each
feature.

3.2.4 Sparsity-Aware Split Finding

The algorithm includes a mechanism to handle missing values directly during tree construction. For
each node, it learns a default direction for instances with missing feature values, which eliminates the
requirement for separate data imputation prior to model training.

These mechanisms—regularization, second-order optimization, efficient split finding, and native
handling of sparsity—define the XGBoost algorithm. In the context of DIA prediction, the application of
this algorithm aims to model complex patterns in molecular descriptor data. The formalization of these
principles follows the description by Chen and Guestrin.

4. Experimental Results and Analysis
4.1 Experimental Framework and Data Configuration

The experimental evaluation utilized partitioned datasets for Drug-Induced Autoimmunity (DIA)
prediction. A training set was used for model development, feature selection, and hyperparameter
optimization. An independent test set, not involved in prior optimization, was reserved for final
evaluation. The molecular descriptor space was reduced via mutual information-based feature selection
to 100 descriptors. Dataset specifications are detailed in Table 1.
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Table 1: Dataset configuration for model training and evaluation

Dataset Purpose Sample Number of Cl.ass Ratio.
Size Features (Positive:Negative)
Training Model Development & 1054 100 ~1:1.3
Set Tuning
Test Set Independent Evaluation 352 100 ~1:1.3

4.2 Hyperparameter Optimization Outcomes

Six machine learning algorithms were evaluated on the independent test set. Hyperparameters were
optimized via randomized search with 3-fold cross-validation. Performance was measured using
Accuracy, Precision, Recall, F1-Score, and ROC-AUC. Results are shown in Table 2. Random
Forest achieved the highest ROC-AUC of 0.847, followed closely by LightGBM (0.845). Random Forest
also demonstrated balanced performance across all metrics.

Table 2: Performance metrics of machine learning models on the independent test set

Model Accuracy | Precision | Recall | F1-Score | ROC-AUC
Random Forest 0.773 0.780 0.761 0.770 0.847
LightGBM 0.771 0.778 0.759 0.768 0.845
XGBoost 0.769 0.776 | 0.7657 | 0.766 0.841
Gradient Boosting 0.766 0.772 0.755 0.763 0.839
Support Vector Machine 0.752 0.761 0.736 0.748 0.825
Logistic Regression 0.738 0.750 0.718 0.734 0.812

4.3 Visualization of Results

Model performance is compared visually. Figure 1 presents a grouped bar chart of Accuracy, F1-
Score, and ROC-AUC for all models on the test set, which shows Random Forest achieving balanced
performance across all three metrics.
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Figure 1: Model performance based on Accuracy, F1-Score, and ROC-AUC metrics

The discriminative capacity of the top three models was analyzed using ROC curves. Figure 2 shows
the ROC curves for Random Forest, LightGBM, and XGBoost, along with a reference line for random
classification. Random Forest demonstrates the highest overall discriminative ability across the entire
false positive rate range.
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ROC Curves Comparison (Top 3 Models)
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Figure 2: ROC curves for the top three performing models.

4.4 Model Interpretation

The classification results of the Random Forest model are detailed in a confusion matrix, shown
in Figure 3. The matrix reports counts of true positives, true negatives, false positives, and false negatives,
illustrating the model's specific classification behavior.

Random Forest - Confusion Matrix (Test Set)
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Figure 3: Feature importance distribution

Feature importance was analyzed for the Random Forest model using the Gini importance metric.
Molecular descriptors related to topological polar surface area, molecular complexity indices, and
electrotopological state descriptors were identified as having the highest importance scores. These
descriptors correspond to physicochemical properties associated with molecular interaction patterns and
bioavailability, which are relevant to autoimmune risk assessment.

Published by Francis Academic Press, UK
-45-



Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 9, Issue 1: 41-47, DOIL: 10.25236/AJCIS.2026.090105

4.5 Discussion

The experimental analysis produced the following results:

Random Forest yielded the highest overall performance on the test set, achieving the best balance
between discriminative ability (ROC-AUC) and interpretability among the evaluated models.

The analytical pipeline, which applied mutual information-based feature selection and randomized
hyperparameter search, resulted in models that generalized well to an external test set.

While Random Forest demonstrated the highest predictive performance, it required moderate
computational resources for training compared to simpler models like Logistic Regression, but less than
some gradient boosting methods.

The feature importance analysis of the Random Forest model provided insights into molecular
properties that may influence autoimmune risk, supporting the biological plausibility of the predictions.

5. Conclusion
5.1 Validation of the Predictive Framework

A machine learning framework was applied to predict drug-induced autoimmunity (DIA) from
molecular descriptor data. The implemented pipeline included mutual information-based feature
selection and randomized hyperparameter optimization. The performance of the resulting models was
evaluated on an independent test set. Among the six algorithms tested, the Random Forest model obtained
an ROC-AUC of 0.847. Feature selection reduced the dimensionality of the descriptor space from the
original set to 100 features.

5.2 Research Implications and Practical Applications

This study implemented a computational workflow for the assessment of autoimmune risk. Multiple
machine learning algorithms were compared and optimized for this endpoint. The Random Forest model
yielded the performance metrics reported in Section 4.2. In practice, such a model could be used as a
computational screening tool within a drug development pipeline. Feature importance analysis was
performed to identify molecular descriptors associated with model predictions, such as descriptors related
to polar surface area and electrotopological state.

The study has several limitations. The model predictions are based on the chemical space and
biological annotations represented in the training data. The binary classification model simplifies the
spectrum of immune-mediated adverse reactions. Integration into high-throughput workflows may
require additional optimization for computational speed.

Future work could involve: (1) expanding the training data to include compounds from broader
chemical classes; (2) applying other model interpretation methods; (3) validating the framework on
additional external datasets; (4) exploring models that integrate molecular descriptors with other data
types, such as bioactivity profiles.

5.3 Concluding Remarks

A data-driven machine learning framework was used to build predictive models for DIA. The
Random Forest model obtained the highest performance metrics among the models evaluated in this
study. The analytical steps included feature selection and hyperparameter optimization. This approach
provides a method for computational DIA assessment. Subsequent work may focus on external validation
and integration into larger safety assessment strategies.
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