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ABSTRACT. Formal methods have been applied more and more in industrial circles. 
They use mathematical logic and rigorous models for analysis and verification, can 
be used at all the system life cycles, and provide verified software without bugs with 
respect to certain properties. The increasing industrial applications show that 
formal methods not only are theoretical research anymore, but also can be deployed 
in many concrete industrial applications. This paper surveys the important formal 
specification and verification of system-Level achievements in industrial circles. 
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1. Introduction 

Formal methods have been applied more and more in industrial circles. They use 
mathematical logic and rigorous models for analysis and verification, can be used at 
all the system life cycles, and provide verified software without bugs with respect to 
certain properties. The increasing industrial applications show that formal methods 
not only are theoretical research anymore, but also can be deployed in many 
concrete industrial applications.  

Formal methods are mathematical methods  that support the strict specification, 
design, and verification of computer systems [1]. The mathematical foundations 
used in formal methods include mathematical logic, discrete mathematics, computer 
languages, etc., which aid in the establishment of correct, robust software design 
through mathematical analysis. The formal approach ensures that: (1), accuracy to 
describe the requirements of the software system; (2), no-confusion to achieve 
accurate communication between the engineers; (3), to provide accurate and 
consistent software requirements for the use of formal methods verified evidence; 
(4), providing proof of conformity and consistency between formal descriptions. 
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The contents of formal methods contains two main elements: the formal 
specification and formal verification. A formal specification is a software 
functional description developed using a formal language with strict grammar and 
semantics, which is the basis for the post-design, coding, and verification process. 
At present, there are two major classifications of specification methods: functional 
programming and state machine. Functional programming can be used in later 
interactive theorem proving, fine-grained formalization of objects of any abstraction 
layer, or refinement construction. There are many types of state machines, such as 
Timed Automata and Label Transition Systems. Formal verification is to verify 
that the system implementation conforms to the formal specification of the system. 
Traditional verification methods include review, analysis, and testing. Formal 
verification can be mathematical reasoning, simulation, simulation, and testing. 
Formal verification strives to achieve exhaustive testing of software, automated 
testing, and Conducted at the earliest stages of software development. 

There are four important review articles on formal methods in recent years that 
can be used by readers for reference, which are: [2] published by Abrial, the founder 
of Method B, in 2007, [3] published by York University's Woodcock J in 2009, and  
[4] and [5] published by Zhao Yongwang  in 2014 and 2017 respectively. Among 
them, the literature of Abrial and Woodcock J is mainly about the successful 
application of formalization in industry. Zhao Yongwang's research is more detailed 
and targeted. It mainly introduces the application of formal methods in Separation 
Kernels, which include both software and hardware. 

2. Formalization of  Application Software 

2.1 Airbus & Boeing 

The large-scale and successful use of formal methods by Airbus in a number of 
civil aircraft is a strong force in the industrial application of formal methods. There 
is nothing more persuasive than the large-scale application of formalized technology 
on large, commercial and civil aircraft used by the world. Boeing also uses formal 
methods in some new models. The same thing is that the formalization of the 
application software part uses SCADE.  

At the beginning of this century, Airbus began to develop the SCADE toolset [6] 
on a large scale into the development of key software for civil aircraft from their 
A340-500 models, including the Electric Load Management Unit (ELMU) and 
Backup Flight Control Computer (FCSC). 

At the same time, the A380 successfully used the formal method in the avionics 
certification phase [7]. The literature [6] lists several advantages of using the 
formalized SCADE toolset: (1) The code is more automated and the code errors are 
significantly reduced: 70% of the A340 aircraft's code is automatically generated. (2) 
Shorter time to change requirements: The SCADE toolset makes A340's 
requirements change management faster and traceability improved. (3) Increase 
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productivity: Although each new Airbus requires about twice as much software as 
its predecessor. 

In view of the previous successful experience, Airbus continued to use the 
formal method on a large scale in the world's largest civilian passenger aircraft A380, 
mainly based on the SCADE toolset. In fact, most of the onboard computers 
developed by Airbus and its suppliers benefit from the use of the SCADE toolset. 
The SCADE package is used to develop most of the key onboard software for the 
A380 and A400M military transport aircraft, as well as the SCADE Suite for the 
A340-500/600 passenger aircraft's auxiliary flight command system; the A380 and 
A400M cockpit control display systems and airborne The display of the airport 
navigation system was developed using SCADE Display and they all conform to the 
specifications of the graphical interface. 

The Boeing 787 Dreamliner also uses the SCADE toolset to develop applications. 
Unfortunately, we were unable to find an official Boeing official statement, but only 
in SCADE's official technical report [6], the Boeing 787's landing gear and brake 
system used SCADE. 

2.2 Paris Metro 

This article examines three Paris Metro application cases that use formal 
methods. 

In 1989, the SACEM system [8] [9] using the B method was successfully 
delivered to the Paris Metro. SACEM was proposed from the improvement project 
of the fast network commuter train in the RER region of Paris [10]. The 
improvement was initiated in 1988 by GEC Alsthom, MATRA Transport and RATP 
(Paris Public Transport Operator). They jointly studied computer signal systems 
used to control fast network commuter trains in the RER region of Paris. The goal of 
the signal system is to increase commute traffic by 25% while maintaining the 
existing level of safety. After the use of SACEM, it successfully operated on the A 
line train in the RER area of Paris. As of this, the resulting SACEM system with 
embedded hardware and software was delivered in 1989 and controlled the speed of 
the Paris RER A train, which has involved 7 billion passenger journeys since its 
introduction. The proposal of SACEM originated in 1988 

The formal specification in the SACEM system uses the B method [11], and the 
formal proof obligation is automatically generated, but the proof process is done 
manually. The verification of the entire system (including non-safety critical 
procedures) took approximately 100 person-years. At the beginning of the SACEM 
project, communication between formal team members and signal engineers was a 
dilemma, as signal engineers generally did not understand the B method. To this end, 
the B-method training was specially conducted for the signal engineering personnel 
to solve the communication problem between the two teams. SACEM's approach to 
ensuring security includes formal protocols and certifications for online error 
detection, software verification, and fault tolerance for on-board ground composite 
systems. 
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In view of this successful application, the Paris researchers deployed two traffic 
projects using the B method: Paris Metro Line 14 [12] and Paris Charles de Gaulle 
Airport commuter shuttle [13]. In these two systems, the key software part accounts 
for about 1/3 of the total software. These key software parts are developed using the 
B method. The operation of Metro Line 14 is fully automated, with safety critical 
aspects involving the operation and stopping of trains and the opening and closing of 
train and platform doors. No unit tests were performed on the Line 14 or Roissy 
Shuttle projects, which were replaced by some of the most successful overall tests. 
This significantly reduces overall development costs. 

3. Formalization of OS Kernels 

The formal proof of the Australian seL4 [14] [15] kernel is a milestone in the 
complete verification of system-level software, especially the underlying software 
operating system kernel.The seL4 embedded OS kernel is an evolution of the L4 
microkernel that enhances the security feature. The seL4 microkernel includes 8700 
lines of C and 600 lines of assembly, proving that the process uses approximately 
100,000 lines of Isabelle/HOL protocol and proof code. A total of 160 defects were 
discovered during the entire validation process, 16 of which were discovered during 
the testing phase, while the remaining 144 were discovered during the proof of use 
form of Isabelle/HOL. 

This chapter will introduce two other important OS kernels that use formal 
methods. 

3.1 INTEGRITY-178B 

INTEGRITY-178B [16] is an operating system product chain developed by 
Green Hills that focuses on software certification and guarantees a high level of 
safety & security. INTEGRITY-178B is a real-time, partitioned operating system 
that complies with DO-178B's highest-rated Class A safety standard (2002) and is 
the first EAL 6 to comply with the security standard Common Criteria (the highest 
level is EAL 7,) 2008) operating system. It has been successfully applied to military 
aircraft such as the B-2, F-16, F-22 and F-35, as well as the Airbus A380 large 
passenger aircraft. The INTEGRITY-178B also supports multi-core hardware 
platforms. 

The Security Standard Common Criteria requires that, starting with EAL 5, a 
formal method must be used. If you are conducting EAL Level 7 certification, you 
must also have a formal model and proof [17] for the entire development process. 
Finally, the product will be submitted to the IAD (Information Assurance 
Directorate) for information flow penetration testing. SKPP specifically requires the 
“NSA Evaluator” to perform vulnerability analysis, penetration testing and covert 
channel review. The assessment includes these specific activities and unconstrained 
searches for vulnerabilities. The certification process requires submission of some 
certification evidence, such as formal verification. These formal verifications are 
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required to demonstrate the abstract functionality of the kernel unrelated to the 
hardware platform [18]. 

INTEGRITY-178B uses GWV [19] as a security policy, and uses ACL2 to 
create a three-layer protocol, namely functional requirements specification, 
advanced and low-level design. Functional conventions are the formalization of 
interfaces. The other two are semi-formal descriptions of systems of different 
abstraction levels. The low-level design directly corresponds to the implementation, 
simplifying the “code-to-protocol” analysis requirements during CC certification. 
The GWV-based strategy they adopted is based on the MASK data separation 
strategy, which is designed to model a split kernel that can implement partitioning of 
applications running on a single-processor system. The GWV attribute requires that 
the execution step of modifying any memory segment must follow the mapping of a 
set of memory regions bound to the current partition and allow interaction with that 
memory segment. 

3.2 CertiKOS & mCertiKOS 

Yale University's CertiKOS [20] is an embedded OS microkernel for cloud 
computing security issues. It addresses the issue of functional correctness and 
sensitive information disclosure issues to be addressed during the certification 
process. For traffic security, CertiKOS researchers used Coq to formalize the 
information flow control of the kernel runtime. For ease of certification and 
formalization, CertiKOS uses a highly modular design that divides complex systems 
into smaller modules that are formalized and certified one by one. However, 
CertiKOS is not a fully formalized kernel. For example, virtual memory components 
are not subject to formal specifications and certification. In addition, the complex 
resource management algorithms in cloud virtualization are not formalized, but the 
permissions check is implemented in the kernel. This eliminates complex policy 
management and scheduling tasks from the kernel without sacrificing functionality, 
thereby reducing formal authentication of kernel code. 

In the literature [21] and [22] publied in 2015, the research team proposed the 
concept of deep specifications to fully complex the complex system-level software. 

The basis for their deep statutes is the abstraction of software. They believe that 
"modern computer systems consist of multiple layers of abstraction (eg, OS kernels, 
hypervisors, device drivers, network protocols, etc.), each of which defines an 
interface to the implementation details of the hidden functions. Built on each layer 
The client program on top can be understood based on the interface only, without 
having to care about the concrete implementation of each layer. Although they are of 
obvious importance, the abstraction layer is mainly regarded as a system concept; 
they are almost never officially specified or verified. This makes it difficult to 
establish strong correctness attributes and it is difficult to verify [21] across multiple 
layers of extensions." Accordingly, they proposed a deep specification: a powerful 
abstract form of a rich set of protocols. Just as data abstraction in a typed function 
language leads to important representation independence, the abstraction of depth 
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conventions is characterized by important implementation independence. This deep 
implementation requires that any two implementations of the same depth 
specification must have context-equivalent behavior. They also proposed a new 
layer calculus framework for formal protocol, programming, validation, and 
abstraction layer combinations. An important feature of the deep protocol concept is 
that the concept framework uses a formal-certified and certified CompCert [23] 
compiler to compile C into a complete assembly object code. 

mCertiKOS [24] is a fully formalized operating system microkernel based on the 
deep protocol concept. To achieve full kernel formalization, mCertiKOS is a single-
processor version of the simplified implementation of CertiKOS, designed for 32-bit 
x86 architectures, which also uses Coq form tools. mCertiKOS uses a separate 
virtual address space to provide a multi-process environment for applications where 
communication between different applications is established through messaging. 
mCertiKOS used 9.5 person-months in the planning and development phase and 2 
people in the link phase. 

4. Formalization of Compilers 

The CompCert [23] project presents a thorough, math-based solution to the 
problem of miscompilation: a form of the compiler itself, proof of the tool's 
operation. Applying program-proven techniques to the source code of the compiler, 
mathematical determinism can be used to prove that the behavior of the executable 
code generated by the compiler is exactly the same as the semantics of the source C 
program, thus eliminating all risks of compile errors [25]. Compiler validation is not 
a new idea: the first compiler correctness proof (for converting arithmetic 
expressions to stack machines) was published in the literature [26] in 1967, and then 
used Stanford LCF Proof Assistant in 1972. Make mechanization proof [27]. Since 
then, compiler formal verification has been the subject of much academic research. 

The CompCert project brings a range of work to a complete, optimized compiler, 
not for the production of critical embedded software systems. CompCert is the first 
compiler to use formal authentication and optimization and is IEC 60880 certified. It 
is a "lightweight optimization", machine-validable C compiler that is designed for 
the aerospace industry and contains a subset of C. The most important omission in 
CompCert verification is that it does not support concurrent and separate 
compilation, both of which are current research topics. 

Xavier Leroy of the INRIA Institute in France led the team to develop CompCert 
and formalized it using Coq. The reason for using Coq is that the compiler can be 
extracted from the proof of correctness. The CompCert implementation itself and the 
formalization process contained a total of 42K lines of code, which took three years. 
CompCert supports online evaluation, or you can purchase [28] commercially. The 
code generated by Compcert is good, but at a fair speed. It generates code at twice 
the speed of gcc at level 0, 7% slower than gcc-01, and 12% slower than gcc-02. On 
PowerPC, the performance of the generated code is approximately 90% of GCC 
version 4 at optimization level 1. For use in the aerospace industry, CompCert has 
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passed the DO-178B certification requirement [29]. It supports PowerPC, ARM, 
RISC-V and x86 (32 and 64 bit) platforms. 

The difference between CompCert and other compilers is that it is officially 
verified with Coq, which eliminates the problem of miscompilation on some 
targeted issues. That is, in the proven field, the executable code it produces is proven 
to be identical to the semantics of the source C program. CompCert opens up a 
viable path to the use of formal methods in the compiler world, and the results of 
this project are unprecedented in the compiler world. Yale's CertiKOS [20] and 
mCertiKOS [24] kernels and the deep protocol concept [21] both use CompCert as a 
compiler to ease verification and certification. CompCert's formal proof covers 
everything from abstract syntax trees to generating assembly code. To preprocess 
and generate executable object files, CompCert also uses external C precompilers, 
linkers, assemblers, and C libraries. These processing stages are not formally 
verified, but they are also well understood and robust. They claim that errors in 
intermediate processing stages found in other compilers have been eliminated in 
CompCert. As of early 2011, the development version of CompCert was the only 
compiler that Csmith could not find the error code. They spent about six CPU years 
completing the task in the Csmith test. CompCert uses formal verification to 
guarantee an excellent unbreakable feature. At the same time, it provides a proof 
framework for developing and optimizing the compiler, which is used to perform 
machine-enable security checks on the compiler. 

5. Formalization of Processors 

5.1 AAMPs 

In 1995, Miller and Srivas published their formal use of PVS [30] on the 
AAMP5 chip microcode in the literature [31][32]. The work was initiated by NASA, 
and Rockwell Collins and SRI International (Stanford International Research 
Institute) jointly completed. AAMP5 is a proprietary microprocessor within 
Rockwell Collins. It has a stack-based architecture, a large instruction set, and 
extensive use of microcode, a pipelined architecture and complex processing units 
with overall performance between Intel 386 and 486. 

Rockwell Collins formalizes AAMP5 at both the register transfer level and the 
instruction set level, and establishes a refinement relationship between the two to 
prove the correctness of the microcode instructions. The main experience of the 
project is to demonstrate the feasibility of the application of the formal method on 
the microprocessor. Second, the development engineer can read and write the form 
code after training. The unexpected result of motivating engineers was that they 
found two errors in the procedural process, even if they had not yet reached the 
formal proof stage. 

Formal engineering for AAMP5 has encountered difficult problems in progress: 
labor costs are too large, and an average of 300 people per instruction is required. 
However, the project team believes that this is the first time they have learned, used 
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PVS and formal methods. If similar projects are carried out in the future, it should 
be possible to significantly reduce labor time. Therefore, they then started a follow-
up project: Proof of the microcode for the AAMP-FV chip [33]. The project is still 
being initiated by NASA and is being developed by Rockwell Collins and SRI 
International. In addition to verifying the chip itself, the project has another 
experimental goal: skilled formalists can significantly reduce formal engineering 
time to an acceptable level. The progress of the AAMP-FV project also confirms the 
predictions of formalists: proficiency in formal methods and the accumulation of 
reusable code or modules for previous projects, resulting in a significant reduction in 
the progress of this project. . Although AAMP-FV is more complicated for AAMP5. 

What's even more exciting is that Rockwell Collins's formal work for the 
AAMP7 chip, [34], received the highest level of EAL-7 (US) National Security 
Agency security certification for the Common Criteria [17] standard. Multiple 
independent security level devices for encryption applications. The AAMP7 chip 
uses a microkernel architecture that supports partitioning. The formalization work 
uses the ACL2 [35]. The project established a line-by-line protocol model with 
AAMP7 microcode and added some security features for inter-partition 
communication in the protocol model. 

5.2 Transputers 

As early as the late half of the 1980s, Inmos et al. used Occam [36] [37] (a 
simple, low-level, operational process algebraic CSP subset) to implement the 
Transputer [38] series of microprocessor chips. Formal work. Transputer is designed 
for parallel processing. Among them, T800 includes floating point calculation, 32-
bit reduced instruction set, memory, four bidirectional communication links, and so 
on. The T9000 is more complex, and it also includes a memory model and a 
processor pipeline. 

As the scope of the test was clearly confirmed, Transputer developers began 
formalizing the use of correct-by-construction formal methods to build floating-
point units. 

They first used the Z [39] [40] method to formalize the IEEE-754 floating-point 
arithmetic standard for natural languages [41] and revealed some of the problems in 
the standard. For example, the standard requires that diagnostic information for 
invalid operations (such as the square root of a negative number) be propagated 
through further operations, but this is sometimes impossible. 

Next, their task is to prove that floating-point packages written in Occam and 
used in previous Transputers are the correct implementation of IEEE-754. Trial 
verification using Hoare Logic [42] found several errors in rounding and remainder 
operations. Occam is too abstract, it can't be used directly in hardware design. The 
Occam conversion system only applies the rules of Occam programming to generate 
equivalent microcode programs. 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015 

Published by Francis Academic Press, UK 
-30- 

Although Occam is still immature and has many flaws, using it for formal 
development of floating-point units is at least three months faster than simultaneous 
informal development [43]. More importantly, two errors were found in floating-
point microcode using Occam [44]. Inmos, the head of the University of Oxford and 
Transputer, also won the Queen's Technology Achievement Award in 1990. 

6. Formalization of the Multi-Level Systematic HACMS 

Aware of the many important achievements of the formal approach, the Defense 
Advanced Research Projects Agency (DARPA) launched a multi-level, system-level 
formal project in 2012 to address military traffic. The security of the tool prevents 
the military vehicles, especially the unmanned traffic equipment, from being 
hijacked by the network. This project is called "High-Assurance Cyber Military 
Systems" (HACMS [45] [46]). Such military transportation systems may be military 
unmanned vehicles, military unmanned aerial vehicles, and the like. 

The goal of HACMS is to create technologies that build high-assurance CPS 
systems. The high guarantee here is defined as functionally correct and satisfies the 
appropriate safety and security. Achieving this goal requires a completely different 
approach than mainstream software engineering. Therefore, the goal of HACMS is 
to adopt a clean-slate, formal-based software engineering approach; at the same time, 
this formalization method is required to generate source code automatically or semi-
automatically. In addition to generating code, the project requires proof of machine-
checkable proof that the generated code meets functional requirements as well as 
safety and security policies. A key technical challenge is to develop techniques to 
ensure that such evidence can be combined, allowing the construction of high-
assurance systems using high-assurance components. It can be seen that the project 
is different from other research projects. Its main goal is to use the existing formal 
method results to integrate different forms of different formal methods into a 
military transportation system. The project is more focused on the security of 
military vehicles that are linked via a network rather than physically linked. 

HACMS brings together many well-known research units, such as universities 
MIT, Princeton, UCLA, Boeing, research units NICTA, SRI and so on. At the same 
time, HACMS integrates several existing mature formalizations, such as the seL4 
operating system, the CertiKOS operating system, the CompCert compiler, and the 
SCADE formal toolset. The entire HACMS consists of five technical areas (TA), 
they are [46]: TA1-military vehicles, TA2-operating system, TA3-control system, 
TA4-research integration and TA5-red team (Read Team ). The red team in TA5 is 
the blue army in the military exercise. It is responsible for the security attacks in the 
network environment for the traffic systems developed by other teams. 

Different from the general research projects of universities and research 
institutions, the biggest feature of HACMS is that it has convened a group of cyber 
attack experts, Red Team, to carry out security attacks in the network environment 
for the vehicles developed by the project to establish a safety assessment baseline. 
And iteratively modify the traffic system software. HACMS is divided into three 
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phases in time, each phase being 18 months. HACMS requires that the developed 
system be delivered to the Red Team for security attack testing and evaluation 
during the final period of each phase. During this time of attack, Red Team found a 
serious vulnerability [45] on all platforms. For example, the Red Team can control 
an in-flight quad-copter like a legitimate operator and prevent the aircraft from 
rejecting legitimate commands. 

7. Conclusion 

Following the achievements of seL4, the completion of CompCert, CertiKOS 
and HACMS projects greatly invigorated the confidence of formal researchers. Most 
importantly, the industry has seen the commercial viability of formal application in 
commercial and industrial grades from the results of these system-level projects. 

The current stage is a period of rapid advancement in the theory of formal 
methods and its applications. From the current results, formal methods may achieve 
more results in the last decade or two and become more widely used in industry. 
There are three main reasons:  

1) Improvements of hardware computing power} makes it possible to perform 
some formal simulation and proof work that could not be completed, even if these 
formal methods have not made any progress. 

2) More and more formalization tool [46] can be used in a variety of fields, 
including aerospace, automotive, and networking. Well-known formal methods or 
tools now known include: Isabell/HOL, Event-B&Rodin, STCSP&PAT, Coq, ACL2, 
Alt-Ergo, Astree, Bedrock, Boogie, CVC4, Frama-C, KLEE, PVS , SLAM, TLA+, 
VCC, Nices2, Z3, etc. 

3) The formalization tool of more and more perfect can greatly reduce labor time. 
Most of these tools can be developed for a specific domain, reusable module library, 
and enhance the automatic proof function as much as possible. 
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