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Abstract: Time series forecasting plays a crucial role in various real-world applications. However, the 

pervasive missing data caused by sensor failures, communication interruptions, and system malfunctions 

poses significant challenges to accurate forecasting. Existing forecasting methods that rely on imputation 

techniques often struggle to effectively preserve temporal dependencies and capture underlying patterns 

of missing data, thereby compromising forecasting accuracy and robustness. To address this issue, we 

propose a novel dual-stage framework that jointly learns missing data patterns and time series dynamics. 

It consists of (1) a pattern-aware encoder that captures missing value distributions and (2) a dual-

forecasting module to enhance forecasting accuracy. Experimental results on real-world electric power 

data from charging stations demonstrate that our approach outperforms several baseline models, 

achieving superior forecasting performance under missing data conditions. 
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1. Introduction  

Time series forecasting is a fundamental task in various domains, including finance, healthcare, and 

energy management. With the advancement of deep learning, forecasting models have significantly 

improved in capturing complex temporal dependencies and nonlinear patterns. However, in real-world 

applications, missing values frequently arise due to sensor failures, communication errors, or operational 

disruptions. For instance, in electric power monitoring systems at charging stations, data loss can occur 

due to network failures or equipment malfunctions. This results in incomplete time series data, which 

degrades forecasting performance. 

Most existing forecasting methods are designed under the assumption of complete time series data. 

For example, Informer, the most classical time-series prediction model in the Transformer variant, was 

performed on datasets such as WHETHER, ETT (Electricity Transformer Temperature), etc., which had 

no missing values. When confronted with the ECL (Electricity Consuming Load) dataset with missing 

data, the researchers constructing Informer chose to transform the dataset to 2 years of hourly 

consumption as a way of circumventing the effect of missing values on the model. The rest of the 

algorithms are similar, mostly choosing complete datasets or avoiding missing data through some 

processing. When dealing with missing data, the common practice is to apply data imputation techniques 

as a preprocessing step. In addition to the more basic mean-filling, there are a number of statistical and 

machine-learning based methods such as MICE, KNNI, and TIDER; and more recently there have been 

a number of deep learning based filling algorithms such as GRU-D, BRITS, and so on. However, these 

approaches present several challenges: (1) The effect of data interpolation varies greatly in different 

datasets and contexts, and different scenarios require different missing value filling methods according 

to the reality, a situation that puts high demands on the researchers' judgement. (2) The more advanced 

depth filling methods can reasonably interpolate according to the temporal characteristics of the data and 

reduce the pressure of researchers' judgement; however, due to their complexity and high computational 

cost, they are not often adopted in the task of time series prediction and their popularity is limited. (3) 

The missing value processing method is used separately from the time-series prediction model, which 

causes the problem that the integration of missing values and prediction model is not close enough. The 

prediction model cannot fully utilise the intrinsic structure and missing patterns of the time-series data, 

which may lead to the accumulation of prediction errors. Especially when facing the task goal of long 

time series prediction, ignoring the long-term dependence and trend of the data can directly affect the 
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accuracy of the model. 

To address these issues, our research goal is to construct a model that not only achieves the time series 

forecasting objective, but also learns the missing patterns inherent in the time series data. Our 

contributions are as follows: 

 To allow the model to learn the missing patterns in the sequence, we integrate missing patterns and 

time series data into the embedding layer of the model, followed by using a variational autoencoder 

to learn the time series and missing patterns simultaneously. In addition, to mitigate the influence of 

missing values during training, we use a loss function based on weight decay to reduce the impact of 

missing data on model training.Bottom: 2.54 cm; 

 To improve the prediction performance, we adopt a dual prediction mechanism, specifically a 

decomposition prediction and fusion approach. In this method, a simple convolutional neural network 

(CNN) is used to capture the linear components of the time series, while a more complex network 

handles the nonlinear components. We offer two module options: one based on Fourier transform and 

another with time segmentation and fusion capabilities. The final step is to fuse both components, 

which improves the model's ability to fit time series data. 

 We construct a real-world dataset of electricity consumption from charging stations based on actual 

order data. In the input phase, we manually mask parts of the data for experimentation to validate the 

model's effectiveness in real-world scenarios. 

The remainder of this paper is structured as follows. Section 2 introduces the Related Work. In Section 

3, we present an overview of our framework along with its key components. Section 4 details the 

experimental results. Section 5 concludes the paper.   

2. Related Work  

Time series forecasting techniques have shown significant application value in areas such as medical 

diagnosis, energy planning, weather forecasting and financial risk control. Initially, time series 

forecasting was largely based on statistical algorithms, leading to the development of classical methods 

such as ARIMA and the sliding window approach, which remain common strategies, or ensemble 

methods to improve model performance. With breakthroughs in machine learning and deep learning, 

researchers have improved neural network architectures, and these structural reorganisations and 

functional optimisations have greatly expanded the theoretical boundaries and application scenarios of 

time series modelling. 

In terms of improvements to classical models, Lai et al. developed the LSTNet framework, which 

innovatively constructed a convolutional neural network without pooling layers to extract local time 

series features, followed by a GRU network with skip connections to capture long-range temporal 

dependencies.[1] The Transformer architecture proposed by the Vaswani team, although originally from 

the field of natural language processing, quickly attracted attention in the field of time series analysis due 

to its advantages in sequence modelling.[2] The improvements made by Zhou's team based on this 

architecture are particularly noteworthy, as they creatively employed a probabilistic sparse attention 

mechanism to effectively reduce the computational complexity of the model, while the generative 

decoder they designed broke the limitations of traditional step-by-step prediction methods.[3] Scholars 

such as Wu took a different approach, designing a time series decomposition unit to extract periodic 

features and innovatively replacing the traditional attention mechanism with autocorrelation operations, 

resulting in double improvements in computational efficiency and prediction accuracy. [4] 

In recent years, time series forecasting research has diversified. By systematically decoupling the 

relationships between the time dimension and feature channels, the Li research team developed a 

forecasting framework with independent embedding modules, which significantly improved the 

representability of complex time series patterns. [5]The Wang team constructed a multi-frequency 

sampling framework that achieved collaborative modelling of multi-scale time series features through 

frequency domain decomposition and dynamic information fusion mechanisms. These innovative 

methods have broken the inherent paradigms of traditional architectures and brought new impetus to the 

field of time series analysis. [6] 

The task of predicting time series with missing values has already been explored to some extent in 

the deep learning field. Zhengping Che et al. proposed GRU-D, a model based on gated recurrent units 

that simultaneously learns two representations of missing patterns: the mask and the time interval. These 
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are integrated into the model architecture to capture missing value patterns and temporal dependencies 

in long time series. [7]Cristian Challu et al. proposed SpectraNet, which uses latent space spectral 

decomposition to estimate missing data while performing time series forecasting. Although this study 

guarantees good prediction performance even under extreme missing data conditions, the study set the 

prediction window size at 24 time points, which belongs to short and medium term forecasting, leaving 

the task of long-term time series forecasting still to be explored. [8]Chengqing Yu et al. proposed a new 

graph interpolation attention recursive network, replacing the fully connected layer of simple recurrent 

units with interpolation attention and adaptive graph convolutions to recover all missing variables and 

reconstruct the correct spatiotemporal dependencies. [9]However, this method was developed for spatio-

temporal data with missing values and has not yet been adapted to multivariate time series data. 

3. Methodology 

3.1. Problem Statement 

The aim of this paper is to solve the problem of Long-Term Time Series Forecasting (LSTF) under 

missing values. Given a multivariate time series 𝑋𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛} sampled at regular intervals, we 

aim to construct an appropriate model that, when given a sequence with missing values 𝑋𝑛 as input, 

can output the next 𝑚 time points of the multivariate time series 𝑋𝑚 = {𝑥𝑛 + 1, 𝑥𝑛 + 2, … , 𝑥𝑛 + 𝑚}, 

where 𝑚 ≥ 24. 

3.2. Model 

 

Figure 1: General framework of the model. The model consists of two parts: a missing value 

processing module and a time series prediction module. 

As shown in Figure 1, the main part of the model consists of two parts. The first part is the missing 

pattern processing module, which employs a special Embedding to dimensionally expand and combine 

both the original input sequence and the mask representing the missing pattern, followed by the REVIN 

method to process the resulting hybrid input, and finally the Variational Auto-Encoder VAE is used to 

capture the underlying structure of the input data. The second part serves as the main network module 

for time series prediction, and the structure is predicted jointly using several sub-modules as a way to 

ensure the model's ability to capture complex time series dependencies. 

3.2.1. Missing Value Processing Module 

The model constructed in this paper can accept two parts of input: the initial data X and its missing 

value matrix 𝑀𝑎𝑠𝑘𝑥 where the missing value matrix has the same size as the initial data and contains 

only two variables, 0 and 1. If the value in the Mask matrix is 0, it indicates that the data at that position 

is missing; otherwise, it means the data at that position is not missing. 

To enable the model to learn the missing value patterns, we designed a missing value processing 

module, as shown in Figure 2, to adapt to the time series missing scenario. Unlike the time series 

preprocessing work that fills missing values in advance, we aim for the model to deeply learn the missing 

patterns through this module, so the information in the mask matrix needs to be effectively utilized. 

In time series forecasting tasks, the most commonly used embedding is proposed by Informer, which 

includes the input feature sequence, positional embeddings, and specific information at each time point. 

However, in this task, considering that the module is designed for data processing, the embedding design 

should pursue simplicity. To avoid unnecessary complexity, the feature embedding only focuses on the 

input sequence and mask matrix, which are mapped to the same embedding space through linear 

transformation and then weighted and fused. The formula is expressed as: 𝑍 =  𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋, 𝑀𝑎𝑠𝑘𝑥). 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 8, Issue 3: 72-78, DOI: 10.25236/AJCIS.2025.080310 

Published by Francis Academic Press, UK 

-75- 

In this case, the model does not need to consider many additional time series structures, allowing it to 

focus more on learning the missing patterns. 

The Variational Autoencoder (VAE) is a generative model that can model the joint embedding 

obtained through the latent space, thus learning the latent features of the sequence. As shown in the figure, 

the VAE is divided into three main parts: encoder, latent space, and decoder. The latent space primarily 

learns the parameters of the probability distribution, such as the mean μ, variance σ, and random noise ϵ 

sampled from the standard normal distribution, to learn the latent distribution. By incorporating the 

variational autoencoder into the model, we can leverage its modeling capability in the latent space to 

capture the latent missing patterns in the data and generate possible missing values or fill in the missing 

parts. 

 

Figure 2: Missing value processing module, consisting of an Embedding layer that receives input from 

both parts, REVIN normalization, and a Variational Autoencoder module. 

Although this module processes the data with respect to missing values and achieves the goal of 

embedding missing features and variational learning, from the perspective of long-term time series 

forecasting tasks, the module has poor ability to capture trends and seasonality in long time series and 

cannot capture the long-term dependencies in time series. To address this shortcoming, we added a 

dedicated time series processing module after this module to achieve high-precision time series 

forecasting. 

3.2.2. Timing Prediction Module 

This module receives the output of the missing value processing module and captures the hidden 

relationships in the time series data. This module consists of multiple layers of sub-modules stacked 

together, and the interior of the sub-modules is divided into two channels, the first part is a simple linear 

prediction channel, and the second part is a complex feature extraction channel, which are related by 

residual links. 

In the simple linear prediction channel, we use a one-dimensional convolutional network suitable for 

linear feature extraction of data and providing stable output when dealing with high-dimensional time-

series data. The linear component extracted by this network allows us to obtain a linear prediction at that 

level, and the nonlinear component obtained by subtraction is subsequently passed to the complex feature 

extraction channel for modeling. 
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Figure 3: Two possible modeling approaches for complex feature extraction channels, nonlinear 

modeling based on Fourier variation (left) vs. nonlinear modeling based on temporal slicing fusion 

prediction (right) 

In the complex feature extraction channel, the submodule selects a more complex network for 

prediction. In order to adapt to different types of time series, we provide two different schemes, the first 

one is nonlinear modeling based on temporal slice fusion prediction, and the second one is nonlinear 

modeling based on Fourier transform. The structure of the two complex nonlinear feature extractors is 

shown in Figure 3. Among them, the implementation process of nonlinear modeling based on time-sliced 

fusion prediction is: 

(1) Split the input two types of sequence information of position and placement into multiple sub-

sequences according to the sampling rate; 

(2) Extract and learn the timing information of each sequence using MLP. As a combination of linear 

layer and nonlinear activation function, this module maps the input data to a higher dimensional space 

for feature extraction, and finally back to the original dimensional space; 

(3) The segmented sequence information is obtained by merging in the original order, which is used 

as the output of forward propagation. 

The implementation process of nonlinear modeling based on Fourier transform is: 

(1) The input sequence is Fourier transformed to extract its frequency domain features; 

(2) The normalized frequency domain features are nonlinearly transformed using a multilayer 

perceptron to extract and learn the timing information. This module maps the input data to a higher 

dimensional space for feature extraction through a combination of linear layers and GELU activation 

functions, and finally maps back to the original dimensional space; 

(3) The MLP processed results are residually concatenated with the original inputs and layer 

normalized to obtain the final output. 

After each sub-module returns its linear prediction and non-linear prediction results accordingly, we 

collect the returned prediction results separately, accumulate them one by one, and further fuse the total 

results of linear prediction and non-linear prediction at the end of the sub-module arithmetic to generate 

the final prediction results. 

4. Experiments 

4.1. Dataset 

We process the tram charging order data provided by the Star Charging platform based on the valid 

information therein. The specific process is as follows: the start time of the order is processed in chunks, 

the order charging volume data is filtered out, and integrated with the information of each charging station, 

and the total hourly power consumption of the 10 charging stations in Nanjing from January 1, 2023 to 

July 19, 2024 at the power station is finally obtained. 

Although charging is a time-sensitive scenario, considering the large scale of the stations, the content 
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of 0 in the dataset is about 10%, which is not consistent with the intermittent characteristics. In order to 

obtain data containing certain missing values, we choose to randomly generate a mask matrix and obtain 

experimental data by controlling the proportion of 0 values in it. In this experiment we control the content 

of 0 in the mask matrix by setting 10%, 20% & 30%. 

4.2. Setups 

During the training process, we set up five window sizes for the predictions, which are 24, 48, 168, 

336, and 720 time nodes afterward, corresponding to the five different day criteria of {1d, 2d, 7d, 14d, 

30d, 40d}. 

Our model epoch was set to 50 to ensure sufficient time for optimization and convergence; the Adam 

optimizer was used, with the initial learning rate set to 0.0001 and the batch size set to 32. The model 

was trained in an environment where Pytorch was deployed on a server equipped with NVIDIA GeForce 

RTX 3090 GPUs. server.  

In terms of Baseline, we selected four models as references, including two types of Transformer-

based models, Informer and Autoformer, a CNN-RNN-based fusion time series prediction model, 

LSTNet, and a model for intermittent time series data, Mixformer. in terms of evaluation metrics, we 

selected the models that are commonly used in time series prediction tasks. We select MSE and MAE, 

which are often used in time-series prediction tasks, as evaluation metrics. In terms of loss function, we 

design a weighted MSE loss function to give lower weight to the prediction error at the location of 

missing values, so that the model pays more attention to the real data while not completely ignoring the 

missing parts, making the model still robust in the case of missing values. The formula is as follows: 

𝐿𝑜𝑠𝑠 =
∑ [(𝑦𝑝𝑟𝑒𝑑

(𝑖)
−𝑦𝑡𝑟𝑢𝑒

(𝑖)
)

2
· (𝑚𝑎𝑠𝑘(𝑖) + 𝜆(1 − 𝑚𝑎𝑠𝑘(𝑖)))]𝑖

∑ (𝑚𝑎𝑠𝑘(𝑖) + 𝜆(1 − 𝑚𝑎𝑠𝑘(𝑖)))𝑖

   (1) 

Where 𝜆 is the weight assigned to the missing part and 𝑚𝑎𝑠𝑘(𝑖) denotes the missingness of the 

data. 

4.3. Results 

We selected five prediction windows with mask rates of 10%, 20% & 30% in turn on a real dataset 

of hour-by-hour electricity usage at charging stations to evaluate the performance of our proposed model 

and the four benchmark models, respectively. The experimental results are shown in Table 1, where bold 

represents the optimal results and underlined represents the sub-optimal results. The experimental results 

show that on the charging station electricity usage dataset with missing values, our model achieves better 

results in experiments with different prediction lengths. 

Table 1: Multivariate time series prediction results with different mask rates. Lower MSE and MAE 

indicate better prediction results. 

Pred_Len 24 48 168 336 720 

 MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

mask=0.1 

Our 0.349 0.456 0.332 0.445 0.328 0.441 0.333 0.443 0.338 0.448 

Mixformer 0.457 0.525 0.460 0.530 0.522 0.559 0.555 0.581 0.651 0.636 

Autoformer 0.469 0.533 0.465 0.532 0.520 0.557 0.588 0.591 0.493 0.539 

Informer 0.515 0.568 0.635 0.642 0.912 0.792 0.808 0.731 0.879 0.776 

LSTNet 0.875 0.803 0.880 0.806 0.896 0.814 0.906 0.819 0.903 0.817 

mask=0.2 

Our 0.359 0.469 0.344 0.461 0.336 0.455 0.340 0.457 0.340 0.457 

Mixformer 0.452 0.527 0.470 0.546 0.497 0.545 0.528 0.574 0.592 0.614 

Autoformer 0.466 0.533 0.441 0.520 0.542 0.572 0.451 0.524 0.459 0.527 

Informer 0.486 0.551 0.578 0.610 0.708 0.668 0.721 0.676 0.735 0.683 

LSTNet 0.797 0.758 0.805 0.762 0.818 0.769 0.827 0.775 0.825 0.773 

mask=0.3 

Our 0.359 0.471 0.346 0.468 0.337 0.464 0.338 0.462 0.336 0.459 

Mixformer 0.424 0.511 0.445 0.532 0.459 0.527 0.492 0.560 0.527 0.576 

Autoformer 0.441 0.517 0.426 0.508 0.468 0.535 0.409 0.505 0.430 0.512 

Informer 0.456 0.534 0.518 0.554 0.612 0.604 0.633 0.615 0.638 0.618 

LSTNet 0.720 0.712 0.731 0.718 0.740 0.722 0.747 0.726 0.745 0.725 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 8, Issue 3: 72-78, DOI: 10.25236/AJCIS.2025.080310 

Published by Francis Academic Press, UK 

-78- 

As shown in Table 1, our proposed model improves on both types of evaluation metrics over five 

different time span windows. At the same time, our model plays more consistently on the dataset and 

does not show significant performance degradation with the change of prediction length as in Informer. 

In addition, we also compare the training time of the baseline method and the proposed method, and 

the results are shown in Table 2. The results show that compared to some of the RNN-based models and 

Transformer-based models, our method is demonstrating better training efficiency. As an example, the 

efficiency of each model for long time series prediction with 720 timesteps is as follows: 

Table 2: Comparison of modeling time, using the time spent on one experiment with prediction step = 

720 and mask rate = 0.3 as an example. 

Model Single epoch time 

consumption 

Number of epochs Total training duration 

Our 2.57 8 20.56 

LSTNet 3.01 16 48.16 

Mixformer 33.74 8 269.92 

Autoformer 55.18 5 277.4 

Informer 21.99 14 307.86 

5. Conclusion 

In our study, we designed a time-series prediction model that not only predicts time series but also 

learns potential missing data patterns. We learned the missing patterns of the data using Embedding with 

Variational Autoencoder that integrates the missing patterns, and subsequently combined the dual 

prediction mechanism of linear and nonlinear models for time series prediction. Experiments were 

conducted on real data of charging station electricity usage and the results validate the effectiveness of 

our model in handling missing values with practical applicability in real prediction tasks. Future work 

can explore further optimization of the model as well as extension to other domains with incomplete data. 
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