
Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 5, Issue 1: 15-18, DOI: 10.25236/AJCIS.2022.050103

Published by Francis Academic Press, UK

-15-

Analysis of Testing Methods of Large-scale

Information Software

Bin Wang, Hang Li

Yunnan Electronic Information Products Inspection Institute, Kunming 650031, Yunnan, China

Abstract: Software testing is an extremely important work link in software engineering. It runs through

the entire life cycle of software engineering to ensure that software development meets requirements

and can meet certain software quality requirements. With the continuous expansion of the scale of

information systems, simple software testing can no longer meet the requirements of system and

software quality assurance. This requires practitioners to gradually begin to think about and improve

the testing methods of large-scale information software. For large-scale information software, testing

will be embedded in each unit, and the software testing process will be organized in a more

macroscopic way of thinking and organization. This article will summarize a series of methods suitable

for large-scale information software testing through the research of software testing and the practice of

the author. It is hoped that the research in this article can provide some help for the testing of

large-scale information software, and also provide help for the precipitation and improvement of the

author's own work.

Keywords: Information Software, System Testing, Software Engineering

1. Introduction

With the continuous development of information technology, information systems have gradually

been combined with various traditional businesses to form larger-scale and more logically complex

information systems and software. The large-scale and complicated information software makes

software testing face new challenges. First, the types of software designed by the software system are

gradually expanded, from traditional PC or web systems to mobile terminal software, embedded

software, and so on. At the same time, the expansion of the software scale has made the scale of

demand that the software has to deal with and the source of demand more extensive, which also

introduces rapid iteration of user needs. At the same time, the development and organization model of

large-scale information software has also changed from traditional team collaboration to cross-domain

collaboration and even large-scale parallel development [1]. Under this status quo, traditional manual

software testing has encountered a series of bottlenecks, such as insufficient time reserved for testing

work and insufficient preparation; the comprehensive quality of testers varies, and the test team is small;

The software testing approach is more traditional and cannot cope with high-speed iterations. The

emergence of the above-mentioned challenges has forced the testing work to change its mode, and meet

the testing needs of large-scale information software through working ideas, organization methods and

testing methods that are more suitable for large-scale information software. This article will discuss the

necessary testing methods for some large-scale information systems.

2. Pre-planning of intensive testing

Traditional software project managers often underestimate software testing, especially when R&D

tasks are tight and R&D schedules are busy, software testing is often ignored. Due to the contempt of

software testing by project managers, the share of software testing in the life cycle of software

engineering is seriously insufficient. This directly leads to the fact that testers do not have enough time

to fully test, nor can they effectively discover the problems of the software system, which in turn

affects the quality of the software system. Therefore, in the process of software project management,

the pre-planning of testing work should be strengthened, and the testing goals and testing paths should

be designed early in the project and included in the project promotion plan [2].

During the test planning process, the following work should be focused.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 5, Issue 1: 15-18, DOI: 10.25236/AJCIS.2022.050103

Published by Francis Academic Press, UK

-16-

(1) Clarify the type of project, determine the scale and requirements of the project, and clarify the

level of testing to be implemented in this project.

(2) Further clarify the project characteristics, determine whether the test target is system software,

application software or embedded software, and set test items and test content in a targeted manner.

(3) Clarify the unit and configuration items, agree on the test environment required by the project,

and clarify the tools and resources.

(4) Clarify the test objectives, priorities and test plans of the test work.

(5) Establish the corresponding relationship between the test item and the demand point in the

project-related demand document to ensure that testing and R&D can be advanced simultaneously.

Software testing is always a gradual process. Only by establishing a detailed plan linked to

requirements as early as possible in advance, can software testing be carried out in an orderly manner

during the project advancement process, and ultimately ensure that the quality of large-scale

information software meets the design expectations.

3. Synchronous advancement of R&D and testing

In the related theories of software engineering, life cycle theory is often used to explain the software

development process. Generally speaking, errors in a software system are not only generated during the

coding phase, but may also have occurred during the requirements analysis, outline design, and detailed

design phases. Therefore, simply placing the testing work in the development stage or even the final

stage of development will inevitably increase the risk of software project advancement. It is also for

this reason that testing work should run through the entire software life cycle, from requirements

analysis to software design to software implementation, testing work should be added to all links in

order to find defects as early as possible and avoid larger problems [3].

3.1. Testing at the software requirement analysis stage

In the requirements analysis stage, engineers mainly capture requirements and form requirements

specification documents based on the requirements obtained. At this stage, the test engineer should

strictly review the requirements specification documents and test the requirements captured and

organized to ensure that the requirements are fully covered, and the requirements are clearly and

accurately expressed, and there is no ambiguity. At the same time, the test project needs to be clear at

this stage, whether the output requirements specification document can support the test work to be

effectively promoted in the future.

3.2. Testing at the software design stage

The testing in the software design phase is essentially oriented to the design results, cooperating

with other roles to jointly evaluate whether the design meets the requirements, and whether the design

clarifies the relationship between the modules and whether it has good exception handling logic.

3.3. Testing at the software coding stage

The testing at the software coding stage is the testing for the results of software coding in traditional

cognition. Under normal circumstances, developers are the actual execution of static tests and unit tests,

while testers usually use automated testing tools or test cases to guide developers or perform functional

tests on their own. After the coding is completed, a series of automated defect detection frameworks

can usually be used for analysis to ensure that the system can automatically trigger testing and

optimization during the continuous integration process to ensure reliable results in the coding phase [4].

3.4. Testing of software integration

The integration phase is usually to test the configuration items of the software. In the requirements

analysis stage, a series of contents such as software functions and interfaces have been determined,

which need to be processed in the software integration stage to ensure that the system has strong

consistency and robustness.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 5, Issue 1: 15-18, DOI: 10.25236/AJCIS.2022.050103

Published by Francis Academic Press, UK

-17-

3.5. Testing of software joint debugging

Software joint debugging means that after the entire set of software and the system are fully

integrated, performance and business tests are performed based on the business logic obtained from the

demand analysis, using the real work flow and processing flow. This stage not only requires in-depth

testing of the business itself, but also needs to test the overall system capacity, reliability, data

processing capabilities, security, etc., to comprehensively evaluate the software quality.

4. Improve the ability and level of automated testing

Automated testing is a testing method that can effectively replace manual completion of many

testing tasks that are difficult to manually advance. Reasonable use of automated testing tools to

improve automated testing capabilities and levels can effectively improve testing efficiency, shorten

development cycles, and save development costs.

4.1. Automatic code defect detection

Although the theory and practice of software testing have been developed for many years, the

application of automated testing in most development scenarios is still limited, mainly due to the large

scale of the software and frequent changes in requirements. The lack of automated testing tools has

threatened development effectiveness and quality. This requires the application of automated testing of

software code defects is extremely necessary. By introducing an appropriate code analysis framework,

code defect detection rules and mechanisms can be defined in the early stage of development, and

automatic defect monitoring mechanisms can be embedded in each link of code writing, warehousing,

integration and testing to ensure that the code in each link is safe and of high-quality [5]. This method

can effectively reduce the cost of defect repair and improve the efficiency of software development.

4.2. Automatic generation of test documents

In fact, the process of software testing is basically consistent with the principles of all aspects of

software engineering, that is, the specification documents of the previous stage are required to be used

as the basis and source of work in the latter stage. The same is true for testing. Test requirements

analysis, test planning, test design, test execution, test evaluation and other links should output

corresponding documents. However, manually sorting and compiling the results of the

above-mentioned links consumes the experience and time of testers. Therefore, software technology

can be actively used to automatically form test reports at the above-mentioned different test work

stages, and output appropriate circulation documents according to the documents [6]. The automatic

generation of test documents can effectively improve the efficiency of the test work, and in the case of

limited testers, improve the work effectiveness and quality of the test work.

5. Establish a networked test environment

In order to further ensure that the developed system can be well compatible with different types of

hardware and software environments, and can withstand different levels and requirements of software

evaluation, and to ensure the reliability of the developed system, we should start with the establishment

of a networked software testing support environment. And in addition, we should also use the

corresponding evaluation environment integrating simulation, testing and evaluation to support the

testing work.

First of all, it should be based on the relevant theories and methods of systems engineering, and on

the basis of the application of professional test tools and test theories, to conduct rigorous demand

mining and analysis for the test work to clarify the core purpose and requirements of the test work.

Afterwards, it integrates the design, execution, analysis and evaluation of the test scheme, and

completes all the above-mentioned evaluation tasks under a set of platforms to improve efficiency.

Second, it is possible to build a standardized testing support environment that meets the testing

objectives as the goal, establish a basic platform for software evaluation, and gradually improve it, and

finally form a networked testing environment that meets the overall testing objectives.

Third, we should always keep abreast of the development of related theories and methods of testing,

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 5, Issue 1: 15-18, DOI: 10.25236/AJCIS.2022.050103

Published by Francis Academic Press, UK

-18-

and continuously introduce advanced testing and evaluation technologies in the networked testing

support environment to ensure that the testing environment and testing methods are always advanced,

reliable and effective. The networked test environment created in this situation can effectively respond

to software evaluation requirements of different levels and different purposes, and support system

evaluation work of various scales and types [7].

6. Establish a test work evaluation system

For large-scale information systems with rich internal interactions, testing is always a key factor

directly related to the success or failure of the entire system. To ensure that the entire set of software

and systems can have good software quality, it is necessary to increase investment in testing work. On

the one hand, the establishment of testing work evaluation system should be strengthened, and on the

other hand, the quality and effectiveness of testing work should be monitored at all times. The method

constrains the testing process to ensure that the test is measurable, monitorable, and predictable.

The process of software testing can also be quantified in essence, so a certain quantitative

evaluation plan should be established on the basis of the finalized staged work description and

evaluation. The difficulty of this work lies in how to quantitatively evaluate the test work. While

ensuring the objectivity and authenticity of the quantification, it further ensures that the lighting work is

complete [8] so you can try to test the effectiveness. A dynamic measurement standard and method is

established between the three points of adequacy and efficiency, and a set of fuzzy decision-making

models are constructed through fuzzy mathematics to realize the quantification and evaluation of the

software testing process.

7. Conclusion

Although software testing has existed as early as the emergence of software development

technology, but limited to the completeness of software engineering and the lag in practice progress,

software testing is still a relatively marginal and downstream work in many teams. In fact, to ensure the

quality of large-scale information software, software testing should be based on the status of the

enterprise team and project characteristics, and targeted improvements in ideas and methods to ensure

that software testing can truly penetrate the software under the complex system design requirements.

Life cycle, to ensure that software project risks can be controlled within an acceptable range. This

article once again puts forward some test methods that can effectively guarantee the quality of

large-scale information software, and hope to provide some help to related fields.

References

[1] Han Tao. Application of software testing strategies and testing methods [J]. Information Recording

Materials, 2018, 19(11): 97-98.

[2] Wu Zhaoyu, Zhang Yueqin, Yan Hua. Research and application of software testing methods [J].

Journal of Taiyuan University of Technology, 2016, 47(03): 379-383.

[3] Qinghua Ha, Dayou Liu, Xiangheng Shen, Luo Liu. A method for generating test cases for

aerospace software based on a demand model [J]. Optics and Precision Engineering, 2016, 24(05):

1185-1196.

[4] Yang Peipei, Zhao Haisheng, Li Zhenxing. Research on practical software testing methods [J].

Computer Applications, 2015, 35(S1): 166-167+173.

[5] Sun Hui. Design and implementation of system testing for a certain software [D]. Beijing

University of Posts and Telecommunications, 2015.

[6] Chen Wenbing. Research and application of quality measurement based on software testing [D].

University of Chinese Academy of Sciences (School of Engineering Management and Information

Technology), 2015.

[7] Wang Zhenzhen. The preliminary framework of software testing theory [J]. Computer Science,

2014, 41(03): 12-16+35.

[8] Xu Siyan. Design and implementation of software system testing for large-scale command and

control information systems [D]. South China University of Technology, 2013.

