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Abstract: In the front-end matching process of the Cartographer algorithm, the accuracy of matching 
between the point cloud and submap relies on the initial values provided by the pose fusion algorithm. 
However, the original algorithm's pose fusion algorithm has low accuracy. To address this issue, this 
paper proposes an improved Cartographer algorithm based on a laser odometer. The improved 
algorithm utilizes NDT registration to obtain the pose transformation between frames. Additionally, a 
pre-integration of the IMU between the front and back frames is performed for joint optimization, 
allowing for the acquisition of a more accurate pose. This enhanced accuracy contributes to improving 
the matching of high point clouds with the submap. To analyze the efficacy of the improved algorithm, 
comparisons were made with the original Cartographer algorithm by analyzing the map construction 
effect and conducting positioning accuracy tests using datasets. The experiments confirmed that the 
improved algorithm is both feasible and effective in enhancing the map construction effect and pose 
accuracy. 
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1. Introduction 

SLAM (Simultaneous Localization and Mapping) was first introduced by Cheeseman in 1986 at the 
IEEE Conference on Robotics and Automation. This technology enables a robot to achieve localization 
and pose determination in an unknown environment using sensor data, and construct a map based on 
environmental data corresponding to its poses. There are two approaches to implementing 
LiDAR-based SLAM. The first approach is Bayesian filter-based LiDAR SLAM, which uses motion 
and observation equations to predict and update the state of observed data. For instance, Gmapping 
utilizes the Rao-Blackwellized Particle Filter (RBPF) algorithm to separate the localization process 
from the mapping process, resulting in accurate map construction in small-scale environments. 
However, the accuracy of map construction diminishes in large-scale environments due to the 
accumulation of instability over time, as the filter algorithm relies on estimates from previous time 
steps[1-3]. 

The second approach is graph-based LiDAR SLAM, which involves building and optimizing maps. 
The map is constructed using poses as nodes and constraints between nodes as edges. Map optimization 
aims to refine these constraints. Hector SLAM, for example, solves pose increments by establishing 
constraints between two adjacent frames and maps the poses to complete map construction. 

Cartographer[4] is a graph-based LiDAR SLAM algorithm. The mapping process of Cartographer 
can be divided into two parts: front-end map construction and back-end loop detection and optimization. 
The implementation of Cartographer is illustrated in Figure 1 below. 
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Figure 1: Flowchart of the cartographer algorithm implementation 

The radar data in Cartographer is processed in the front-end using the Adaptive Speed-up Filter for 
scanning and matching. The pose prediction is provided by the pose extrapolator, which combines 
odometry data and inertial measurement unit data. In the absence of sensor data other than radar, a 
uniform motion model is used to infer the pose. Once the scanned and matched data is obtained, motion 
filtering is applied to refine the results, including obtaining the time stamp and pose information. 
Afterward, constraint calculations are performed, and the sparse map is efficiently optimized by 
incorporating global measurement data. Finally, the maps from different scans are stitched together to 
complete the entire SLAM process[5]. 

In the front-end module of Cartographer, the pose extrapolator is responsible for predictive pose 
matching between the point cloud and submap. However, the accuracy of the pose prediction using the 
uniform motion model is often insufficient for practical applications. The original version of 
Cartographer used the untraced Kalman algorithm to fuse radar data, IMU, and odometry data. 
Unfortunately, in real-world scenarios, the algorithm did not effectively align the timestamps of the 
multi-sensor data. Another approach, described in literature[6], involves caching sensor data in a 
double-ended queue and representing pose transformations using a tracker. This method enables fusion 
of radar matching data, IMU, and wheeled odometry data but requires significant computational 
resources for pose calculations. In another study[7-8], the pose fusion algorithm in the original algorithm 
was improved by incorporating velocity pre-integration, which helped improve pose accuracy. 
However, this method still relied on wheeled odometry data during the pose calculation process. To 
address the issue of low accuracy in the front-end pose algorithm of the Cartographer algorithm, this 
paper proposes a front-end map construction method based on laser odometry. The method utilizes 
NDT registration to determine the relative positions' pose within a specific time window. Additionally, 
IMU pre-integration is employed to correct radar motion distortion. Both NDT registration and IMU 
pre-integration are jointly optimized to obtain a precise initial pose value. This improvement aims to 
enhance the matching quality between frames and submaps. 

2. Relate works 

The current pose of a frame in the global coordinate system can be determined using laser 
rangefinder and wheel odometry data. However, laser data alone is sparse and vulnerable to motion 
interference, leading to reduced accuracy in laser odometry under degraded conditions. To improve the 
precision of laser odometry, data from an Inertial Measurement Unit (IMU) can be fused with laser 
odometry. 

There are currently two methods for this fusion. The first method is loosely coupled, where the 
IMU and laser odometry are estimated separately. While this method may result in some data loss, it 
has a lower computational load. For instance, in the LOAM[9], high-frequency low-precision scan-scan 
matching is used for localization, while low-frequency high-precision scan-map matching is employed 
for map construction. In this approach, the odometry utilizes IMU data as a prior for orientation and 
estimates pose transformation with a constant velocity motion model, without directly fusing laser and 
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IMU data. By using high-frequency localization and low-frequency mapping, the computational load is 
reduced while maintaining mapping accuracy. 

Another method is known as the tightly coupled fusion method, which involves predicting the state 
using IMU data and then correcting the predictions using measured values. This fusion method is 
commonly referred to as Lidar Inertial Odometry (LIO). LIO_mapping[10] was the first to propose the 
tightly coupled method of fusing IMU data and laser odometry, optimizing both the IMU and Lidar 
data jointly. The main advantage of this method is that it can maintain good accuracy even in situations 
where the Lidar data is degraded. 

In other implementations such as LIOM[11], laser inertial odometry fuses laser rangefinder data and 
IMU data using an error state Kalman filter (ESKF), resulting in low drift and robust pose 
estimation.MC2SLAM[12],on the other hand, optimizes point cloud distortion compensation and point 
cloud matching, improving accuracy by utilizing IMU preintegration for pose estimation. LIO-SAM[13] 
takes a unique approach by using factor graph optimization to treat laser odometry as one module in 
SLAM (Simultaneous Localization and Mapping) for pose estimation and mapping. By tightly 
coupling multiple sensors, the motion estimation results become more robust. The joint optimization of 
multiple sensors in a tightly coupled process improves mapping accuracy, making the system more 
resilient as it does not rely solely on a single sensor. Taking inspiration from references [13], this paper 
utilizes laser odometry to provide high-precision initial values and constructs a reliable local map to 
optimize the cartographer system. 

3. Implementation and Mapping of Laser Odometry 

3.1. Localized Submap-based Algorithm Framework 

This paper focuses on optimizing the front-end of the algorithm. It achieves this by tightly coupling 
radar data with IMU data to provide an initial pose estimation. Subsequently, the point cloud is 
matched with a submap, resulting in the generation of a localized map. The implementation process is 
illustrated in Figure 2. 

 
Figure 2: Local Submap Algorithm Framework 

3.2. Implementation of Laser Odometry 

In reference [13], a feature-based method is utilized for constructing maps, which involves the 
extraction and matching of lidar data features. However, this approach leads to lower efficiency. In 
contrast, this paper proposes a direct matching method for map construction that utilizes lidar data 
directly. This approach improves the efficiency of map construction by eliminating the need for feature 
matching between point clouds and overcoming associated problems. The paper achieves this by 
obtaining the relative pose of adjacent frames through NDT matching. This eliminates the necessity of 
feature matching between point clouds and mitigates challenges related to such matching. The local 
properties of point clouds are described using the normal distribution probability density function, 
enabling accurate and rapid computation since all derivatives can be calculated analytically. During the 
NDT matching process, adjacent point clouds are divided into two grids in order to facilitate efficient 
matching.Grid }x,...,x,{x N21=Χ ,grid }y,...,y,{y N21=Υ .The matching process can be defined as 
follows. 
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iN is the representation of the number of point clouds in a grid representation of the number of 

point clouds in a grid, μ represent of mean of gridΧ .σ is the representation of grid covariance. Of 
gridΧ , The Gaussian distribution modeling of point clouds can be achieved using formulas (1) and (2). 
The matching between two grids can be represented using the following formula: 

tRyT(p,y)y ii +==′                        (3) 

iy′ is representation to project point clouds y onto point clouds x , p is a pose transformation 

relationship involved in the projection process. R is representation of the rotation relationship , t
represents the translation relationship. 

Frequency of radar data is lower than the frequency of IMU data. Therefore, between two 
consecutive radar data frames, there are multiple IMU data points. IMU preintegration is performed 
between adjacent radar data frames to correct the relative motion between point clouds. The motion 
model of the IMU can be represented as: 
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represents the estimated value of the gyroscope. ta represents the estimated value of the 

acceleration. ωtb represents the actual measurement of the gyroscope. atb  represents the bias of the 

acceleration.  an represents the noise of the acceleration, ωn represents the noise of the gyroscope. 
Both the accelerometer noise and gyroscope noise follow Gaussian distribution. The accuracy of the 
IMU will be influenced by these factors, and they will be taken into account in the calculation process. 
The pose increment between two frames can be defined as: 

)
2
1(

)(

2
ijijiij

T
iij

ijij
T

iij

j
T

iij

tgtvppRp

tgvvRv

RRR

∆−∆−−=∆

∆−−=∆

=∆

                  (5) 

ijΔR  represents the rotational change between the frames. ijΔv represents the change in velocity 

between the frames. ijΔp represents the change in position between the frames. g represents the 
gravitational constant. In reference [14], the transformation between visual frames is utilized to rectify 
the biases in the IMU, thereby achieving data synchronization. Building upon this approach, the 
correction of IMU biases can be defined based on the pose estimated through NDT matching.This 
process can be represented by the following equation: 
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is the minimum value of IMU bias, represents the that represents the rotational 

relationship between adjacent frames, represents quaternions multiplication, and
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represents the transformation of pose between NDT matches. By solving for the minimum IMU bias, it 
allows for the coupling between radar data and IMU to be achieved. 

3.3. Construction of local maps 

The goal of the front-end is to simultaneously construct high-precision local submaps, which can be 
achieved through the matching between point clouds and submaps. The error of the matching between 
point clouds and submaps can be represented as. 
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)(•M is the probability of matching with a voxel map, )(•iT represents the pose transformation 
between the point cloud and the submap. The optimal matching effect can be achieved by finding the 
minimum value of ξ



 

3.4. Loop detection 

In local SLAM, the process of estimating poses often introduces errors due to factors such as map 
resolution and sensor noise. This is because pose estimation relies on the accumulation of translations 
and rotations, and point clouds are only matched with a subset of the map that includes the most recent 
scans. As the distance traveled increases, drift errors become more pronounced. To address this, 
Cartographer implements a loop detection method based on branch and bound. A loop is considered 
detected when the calculated pose of a point cloud yields a matching score above a predefined 
threshold. The relative pose associated with the loop is then added as a constraint to the nonlinear least 
squares  

4. Experiment 

The experiment utilized the KITTI dataset, which consists of data collected by a data collection 
platform equipped with two grayscale cameras, two color cameras, one Velodyne 64-line 3D LiDAR, 
four optical lenses, and one GPS navigation system. The experimental testing platform was based on 
the Ubuntu 16.04 operating system with Robot Operating System (ROS) installed. 

           
a                                         b 

Figure 3: Illustrates a comparison of the mapping results between the improved algorithm and the 
original algorithm on the KITTI dataset. In this figure, (a) represents the point cloud map constructed 

by the improved algorithm, while (b) represents the map constructed by Cartographer. 

Upon comparing Figure 3 (a) and Figure 3(b), it can be noted that in sections 1 and 2, the original 
algorithm exhibits a tilted road, while this problem has been addressed in the improved algorithm. 
Furthermore, in section 3, the map constructed by the original algorithm shows overlapping, however, 
this issue has been resolved in the improved algorithm. 

The trajectory generated using Evo evaluation is presented in Figure 4. By examining the generated 
trajectory map, it becomes apparent that the improved algorithm produces trajectories that are more 
consistent with the ground truth when compared to the original algorithm. Additionally, the generated 
poses are more accurate as well. 
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Figure 4: Trajectory map evaluated using Evo 

5. Conclusions 

This article aims to enhance the pose generation algorithm of the Cartographer algorithm by 
incorporating laser odometry, thereby improving the overall effectiveness and accuracy of the mapping 
process. The experimental results showcase the success of the optimized algorithm in addressing the 
issue of low accuracy in pose calculation, as well as rectifying motion distortion and map drift 
problems encountered in the original algorithm. This research introduces a promising new avenue for 
optimizing pose estimation within the Cartographer framework. 
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