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Abstract: To enhance the rapid detection and accurate identification of radio signals, we propose using 

a deep learning method called YOLOv5s-CWMDSQ for signal identification. This method involves 

sending the waterfall map of a radio signal spectrum to an improved target detection network for 

classification. Our algorithm builds upon YOLOv5 by introducing improvements such as the CA attention 

mechanism to enhance the model’s accuracy in locating and identifying targets, and the boundary loss 

function WIOU to improve overall detector performance. We also replaced the MESwish activation 

function, utilized Decoupled Head to speed up network convergence, and incorporated the SPPFCSPC 

module to elevate the model’s receptive field and feature expression ability through multi-scale spatial 

pyramid pooling. Lastly, we integrated data enhancement to improve the diversity, robustness, and 

generalization ability of the model, achieving higher accuracy and performance. Experimental results 

exhibited an increase in the mAP value from 82.2% to 90.1% and detection speed of 44.488FPS in the 

dataset with 3,000 samples of 6 signal types, proving the model’s superior accuracy and real-time 

capabilities. 
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1. Introduction 

Early electrical signal detection was originally developed for military purposes and later applied to 

commercial communication [1-3]. Various methods can be used to achieve signal detection, including 

traditional tools such as oscilloscopes and spectrum analyzers as well as more advanced technologies 

like FPGA (Field-Programmable Gate Array) and DSP [4-5]. Additionally, incorporating artificial 

intelligence algorithms can improve the speed and accuracy of signal identification [6-12]. 

For instance, O’Shea T J et al. applied unsupervised and semi-supervised learning for radio signal 

recognition [13-16], while Kulin M et al. utilized an end-to-end neural network to detect signal spectrums 
[17].Other researchers proposed convolutional neural networks for signal identification, such as Selim A 

et al. for radar signals [18] and Maglogiannis V et al. for WiFi signals [19]. Image detection algorithms like 

R-CNN [20], YOLO [21] and SSD [22] also have applicable uses, with R-CNN using region extraction and 

detection classification and YOLO and SSD using end-to-end direct detection for location and 

identification. Li Xun et al. used the TensorFlow framework for broadcast signal identification using AI 

algorithms [23]. Meanwhile, Zhou Xin et al. utilized YOLOv2 algorithm with waterfall maps of radio 

signal spectrums as a dataset to identify signals [24], and Zhou Yuhang et al. employed the YOLO 

algorithm for signal spectrum detection and identification [25]. 

Based on these sophisticated approaches, we find the end-to-end direct detection method to be the 

most effective. In particular, YOLOv5 algorithm offers many advantages like small model size, high 

flexibility, and fast detection speeds. Therefore, we propose an improved YOLOv5s-CWMDSQ 

algorithm, which incorporates enhancements to the network structure and loss function for the 

identification and classification of six distinct signals. 

2. YOLOv5 Network Structure 

The YOLO algorithm can input signal spectrum waterfalls into the network and simultaneously 
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identify both target judgment and target recognition. The output consists of the position and category of 

the regression prediction frame. Based on its depth and width, YOLOv5 has four variations: YOLOv5s, 

YOLOv5m, YOLOv5l, and YOLOv5x. YOLOv5s has the smallest network parameters and the fastest 

training speed, making it the ideal choice as our basic network. 

The YOLOv5s model comprises four parts: Input Terminal, Backbone Network, Neck, and Prediction 

Terminal. The Input Terminal functions to preprocess the input data by applying adaptive image scaling, 

data enhancement, and adaptive anchor frame techniques. This step boosts the network’s generalization 

ability and robustness, making it more reliable for detecting signals. The Backbone Network extracts the 

feature information, which consists of Focus structure, C3 structure, CBL structure, and SPPF structure. 

Focusing on these structures enhances signal detection and improves target classification accuracy. The 

Neck employs the FPN+PAN (Feature Pyramid Network, Path Aggregation Network) feature extraction 

method. This operation significantly improves the model’s target detection capabilities, particularly in 

detecting small-sized target objects. Enhancing the network’s ability to fuse different feature maps. The 

Head is the YOLOv5’s head structure and outputs the prediction results of the network. There are three 

different types of feature maps (76×76, 38×38, and 19×19) generated by the Head. These maps are used 

to detect small, medium, and large objects, respectively. The detection results contain crucial information 

such as target positioning coordinates (x, y, w, h), object information (obj), and category information 

(cls). The YOLOv5 algorithm generates prediction frames based on the feature maps’ different sizes, 

performs non-maximum suppression on the prediction frames, and screens target frames. The algorithm 

deletes candidate frames with low confidence scores while retaining the candidate frames that have high 

scores as the final results. This detailed process effectively enhances the signal detection capabilities of 

the YOLOv5s-CWMDSQ algorithm. 

3. Improved Target Detection Algorithm 

By integrating deep learning with signal recognition, a neural network algorithm can recognize 

various signal types. Using the lightweight YOLOv5s as a basis, signal detection and recognition is 

achieved, resulting in the creation of the YOLOv5s-CWMDSQ model. The updated network structure is 

displayed in Figure 1, showcasing the new enhancements made to the network. 
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Figure 1: Improved network structure diagram 
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The YOLOv5s-CWMDSQ model incorporates improvements applied to the YOLOv5s basic model. 

These enhancements include: 

(1) The addition of a CA attention mechanism to the Backbone network. This mechanism reutilizes 

useful feature information, enhances location and channel information extraction, and improves target 

positioning accuracy. 

(2) The replacement of the original CIOU loss function with the WIOU loss function. In WIOU 

calculations, different relative positions of overlapping areas lead to variable weights of overlapping 

areas, and the pixel number is weighted based on frequency of occurrence to reduce the influence of 

incorrect samples on the dataset. The dynamic non-monotonic focusing mechanism improves the 

regression of low-quality samples, enabling WIOU to focus on ordinary quality anchor frames and 

significantly improving the overall performance of the detector. 

(3) The use of MESwish activation function over SiLU activation function. MESwish has a higher 

memory efficiency and computing speed than SiLU. 

(4) Decoupled Head is applied to enhance the accuracy of classification and positioning. This 

decoupling head realizes the coordinate regression of bounding box and object classification, which 

enhances the convergence speed and detection accuracy. 

(5) The SPPFCSPC module improves the model’s receptive field and feature expression via 

multivariate spatial pyramid pooling. This technique significantly enhances the model’s target detection 

capabilities. 

(6) Data enhancement techniques including image scaling, translation, flipping, mosaic, and cropping 

improve data diversity, enhance the generator’s robustness and generalization abilities, and significantly 

improve the model’s accuracy and performance. 

3.1. Improvement of Attention Mechanism 

The introduction of the CA (Coordinated Attention) module to the network structure comprises two 

parts: global information embedding part and coordinate attention generation part. The global 

information embedding part advances the network's receptive field and enables the network to focus on 

larger areas, solving the issue of large-scale variation in datasets. The coordinate attention generation 

part extracts critical features from the image, enhancing the feature extraction abilities of small targets. 

It improves the focus on essential features and facilitates improved target positioning, resulting in better 

model accuracy. Figure 2 illustrates the realization process of the CA attention mechanism. 
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Figure 2: Block diagram of CA attention mechanism implementation 
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The CA's attention mechanism fully concentrates on channel and spatial information. The feature 

map of the global receptive field is acquired by utilizing global average pooling in both width and height 

directions. Equations (1) and (2) represent the output formulas in the width and height directions, 

respectively. In Equation (1), xc denotes the input of the c-th channel, and the output of the c-th channel 

with height h is represented. In Equation (2), xc represents the input of the c-th channel, while the output 

of the c-th channel with width w is demonstrated. 

𝑧𝑐
ℎ(ℎ) =

1

𝑊
∑ 𝑥𝑐

0≤𝑖≤𝑊
(ℎ, 𝑖)                                                   (1) 

𝑧𝑐
𝑤(ℎ) =

1

𝐻
∑ 𝑥𝑐

0≤𝑖≤𝑊
(𝑗, 𝑤)                                                   (2) 

Subsequently, the characteristic images of width and height are concatenated, followed by a 

convolution operation utilizing a convolution kernel of 1×1. This process results in the channel width 

being reduced to C/R. After batch normalization, the resulting feature map, F1, undergoes a Sigmoid 

activation function. Formula (3) demonstrates the production of the final feature map, f. The symbols [,] 

and δ denote the concat and activated function operations, respectively, while F1 represents the output of 

the 1×1 convolution operation, and f represents the feature map. 

𝑓 = 𝛿(𝐹1([𝑧ℎ, 𝑧𝑤]))                                                                (3) 

Afterward, the feature map F undergoes two 1×1 convolution operations, namely, fh and fw, to produce 

Fh (the height feature map) and Fw (the width feature map). Next, gh (the height attention weight) and gw 

(the width attention weight) are generated through activation function calculations, as indicated in 

Equations (4) and (5). 

𝑔ℎ = 𝜎(𝐹ℎ(𝑓ℎ))                                                                        (4) 

𝑔𝑤 = 𝜎(𝐹𝑤(𝑓𝑤))                                                                       (5) 

Ultimately, the characteristic map of width and height is achieved through multiplication and weight 

calculations, as illustrated in Formula (6). 

𝑦𝑐(𝑖, 𝑗) = 𝑥𝑐(𝑖, 𝑗) ∗ 𝑔𝑐
ℎ(𝑖) ∗ 𝑔𝑐

𝑤(𝑗)                                                   (6) 

To enhance the effectiveness of location information extraction, the CA attention mechanism is 

integrated between the C3 layer and the SPPF layer in the backbone network of YOLOv5s. The 

introduction of the CA coordination attention mechanism facilitates efficient utilization of limited visual 

information processing resources. This mechanism emphasizes relevant attention candidate regions, 

while automatically filtering out unessential background and redundant information. As a result, it helps 

the model to better identify and locate targets. Experimental results demonstrate that of the four attention 

mechanisms tested, the CA attention mechanism shows the most significant improvement. Therefore, 

making it more advantageous for the CA attention mechanism. 

3.2. Improvement of Loss Function 

The loss function defines IOU as the intersection ratio between the predicted frame and the actual 

frame, which is depicted in Formula (7). Moreover, Formula (8) outlines the definition of the loss 

function. 

𝐼𝑂𝑈(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
                                                                     (7) 

𝐿𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈                                                                              (8) 

The original algorithm of YOLOv5 adopted the CIOU (Complete Intersection Over Union) loss 

function. CIOU incorporates the influence factor αv to DIOU (Distance Intersection Over Union), which 

augments the scale loss and the loss of length and width of the detection frame. This effectively results 

in the prediction frame aligning more closely with the actual frame. The loss function of CIOU is defined 

in Equations (9)-(12). 

𝐿𝐶𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 + 𝑅𝐶𝐼𝑂𝑈                                                          (9) 

𝑅𝐶𝐼𝑂𝑈 =
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣                                                          (10) 
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𝛼 =
𝑣

(1 − 𝐼𝑂𝑈) + 𝑣
                                                                   (11) 

𝑣 =
4

𝛱2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤

ℎ
)2                                                (12) 

However, CIOU has certain drawbacks and fails to consider the issue of balancing easy and difficult 

samples. To address this, the WIOU (Wise Intersection Over Union) loss function has been further 

developed. WIOU assigns different weights to overlapping regions based on their relative positions. 

Overlapping regions in close proximity to both the center of the predicted model frame and the actual 

target frame are provided with greater weighting, while those in other areas receive lesser weighting. By 

addressing the issue of low-quality examples overly emphasizing the bounding box regression, the focus 

can be shifted towards anchor boxes with ordinary quality to improve overall performance. Equations 

(13)-(15) provide the definition of the WIOU loss function. 

𝐿𝑊𝐼𝑂𝑈𝑣1
= 𝑅𝑊𝐼𝑂𝑈 ⋅ 𝐿𝐼𝑂𝑈                                                               (13) 

𝑅𝑊𝐼𝑂𝑈 = exp (
(𝑥 − 𝑥𝑔𝑡)

2
+ (𝑦 − 𝑦𝑔𝑡)

2

(𝑊𝑔
2 − 𝐻𝑔

2)
)                                              (14) 

𝐿𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈                                                                        (15) 

The WIOU loss function has replaced the original CIOU loss function, thereby reducing the impact 

of incorrect samples on the overall dataset and improving the performance of the object detector. 

Experimental results demonstrate that compared to other loss functions, the WIOU loss function offers 

the most significant improvement. Therefore, the integration of the WIOU loss function is considered to 

be more advantageous. 

3.3. Improvement of Activation Function 

Activation functions in neural networks play a significant role in determining whether signals should 

be transmitted and to what extent to the next neuron. Nonlinear activation functions are commonly used 

in neural networks, including Sigmoid, Tanh, ReLU, LReLU, PReLU, Swish and the Mish functions. 

The original YOLOv5 algorithm adopts the SiLU (Sigmoid-Weighted Linear Unit) activation 

function, expressed as Formula (16), where σ(x) represents the Sigmoid activation function displayed in 

Formula (17). This function enables the network to balance the trade-off between expressiveness and 

computation efforts. 

𝑆𝑖𝐿𝑈(𝑥) = 𝑥 ⋅ 𝜎(𝑥) = 𝑥 ⋅ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)                                                   (16) 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
                                                                             (17) 

MESwish (Memory Efficient Self-Gated Activation Function) is an improved version of the Swish 

activation function, designed for use in neural networks. MESwish augments the Swish function by 

adding forward propagation and backward propagation, resulting in reduced redundant computations, 

enhanced calculation speed, and reduced memory usage. Formula (18) depicts the definition of the Swish 

activation function, while Formula (19) portrays the MESwish activation function. The hyperparameter 

β is typically set to 1.15. 

𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥 ⋅ 𝜎(𝛽𝑥) = 𝑥 ⋅ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥)                                          (18) 

𝑀𝐸𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥 ⋅
1

1 + 𝑒−𝛽𝑥
                                                      (19) 

The original YOLOv5 algorithm relied on the SiLU activation function; however, it has been replaced 

with the MESwish activation function. Compared to SiLU, the gradient of MESwish is continuous, and 

it addresses the issue of vanishing gradients better while requiring minimal memory usage with high 

computational efficiency. In experimental studies, the MESwish activation function has been 

demonstrated to offer the most significant improvement, when compared to other activation functions. 

Thus, integrating MESwish activation function is considered more advantageous than other alternatives. 
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3.4. Improvement of Head 

In target detection, the original YOLOv5 algorithm employs a Coupled Head to output the 

classification results and frame position of the targets. The Coupled Head directly forwards the feature 

map output from the convolution layer to multiple fully connected or convolution layers, resulting in 

target position and category generation. However, this approach possesses certain drawbacks. It 

ultimately requires excessive parameters and computational resources, leading to over-fitting issues.  

To address these limitations, the Decoupled Head has been introduced to YOLOv5. The Decoupled 

Head processes target position and category information separately, learns from different network 

branches, and eventually fuses them to decouple a separate feature channel for positioning and 

classification tasks. This approach dramatically reduces the parameter quantity and computational 

complexity, accelerates the convergence speed, improves the detection accuracy, and enhances 

generalization ability and robustness of the model. The structure diagrams of both Coupled Head and 

Decoupled Head are illustrated in Figure 3. 

 

Figure 3: Structure diagram of coupling head and decoupling head 

In the figure, it can be observed that the input of the Decoupled Head undergoes a 1x1 convolution 

to adjust the channel dimension to 256, followed by two parallel 3x3 convolutions for classification and 

location purposes. Classification is more texture-centric, focusing on the central content area of the target, 

whereas localization emphasizes the edge information of the target, including predicted bounding box 

height, width, central coordinates, and confidence score. 

Replacing the Coupled Head with the Decoupled Head in YOLOv5's original algorithm has improved 

classification and location capabilities, avoiding conflicts of feature information, reducing computational 

overhead, accelerating the network's convergence speed, and achieving faster reasoning speed. 

Experimental results indicate that the Decoupled Head has the most significant improvement effect 

compared to other Coupled Heads, making it more advantageous to implement the Decoupled Head. 

3.5. Improvement of Spatial Pyramid Pooling 

The original algorithm of YOLOv5 uses SPPF (Spatial Pyramid Pooling-Fast) which is an 

enhancement of SPP (Spatial Pyramid Pooling) and faster than SPP, thus commonly called SPP-Fast. The 

SPPF structure involves the connection of three 5x5 MaxPool layers in series, equivalent to two 5x5 

convolution operations equal to a single 9x9 convolution operation, with three 5x5 convolution 

operations equal to one 13x13 convolution operation. Structural diagrams of SPP and SPPF are depicted 

in Figures 4 and 5, respectively. 
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Figure 4: Structure diagram of SPP 
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Figure 5: Structure diagram of SPPF 

SPPFCSPC (Spatial Pyramid Pooling Fully Connected Spatial Pyramid Convolution) is an 

improvement over SPPF, which enhances the speed while maintaining the same receptive field. The 

SPPFCSPC module pools the input feature map into a multi-scale spatial pyramid and enhances model 

receptive field and feature expression ability. It comprises two sub-modules: SPP module and FCSPC 

module. The SPP module pools the input feature maps into a multi-scale spatial pyramid, generating 

several feature maps with various scales. These feature maps capture different target sizes and scene 

information while improving the model's receptive field and feature expression ability. The FCSPC 

module convolves the feature map output from the SPP module, further enhancing feature expression 

capacity. The FCSPC module comprises several convolution kernels of different scales, each with a 

feature map of distinct scales, capturing target and scene information of various scales. 

In YOLOv5's original algorithm, SPPF was used, and it has since been replaced by SPPFCSPC, 

enhancing the receptive field and feature expression ability of the model through multi-scale spatial 

pyramid pooling and convolution operations. Experimental results demonstrate that SPPFCSPC is the 

most effective spatial pyramid pooling technique, making it more advantageous to introduce SPPFCSPC. 

The structural diagram of SPPFCSPC is depicted in Figure 6. 
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Figure 6: Structure diagram of SPPFCSPC 

3.6. Data Enhancement 

Data augmentation is an essential technique to enhance network generalization ability, particularly in 

cases of low data diversity or minimal training sets. Image scaling, translation, flipping, cropping, and 

mosaicking are common methods of data augmentation. Image scaling and translation improve model 

recognition ability for objects of varying sizes. Random flipping enhances the model's recognition ability 

for objects in different orientations. Random cropping enables better recognition of varying sized targets. 

Mosaic operation randomly selects four images and combines them into one picture, expanding the target 

dataset, particularly for the small target dataset, significantly enriching the dataset and enhancing network 

robustness. Mosaic operation also reduces GPU video memory usage, allowing for larger batch 

processing and faster training speed. 

These data augmentation methods enhance data diversity, model robustness, and generalization 

ability, improving model performance and accuracy. However, YOLOv5's original Mosaic operation 

randomly crops images, resulting in excessive cropping and the loss of valuable image information. Thus, 

the method of converting the original 4-picture mosaic to a 16-picture mosaic was adopted to reduce the 

probability of detection targets being cut out and improve model detection performance. Figure 7 shows 

a comparison chart before and after data augmentation and improvement. 
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(a) Original image                  (b) Improved image 

Figure 7: Comparison chart before and after data enhancement and improvement 

Experimental results indicate that data augmentation can significantly improve performance, 

demonstrating its advantage for model improvement through data enhancement. 

4. Experiment and Result Analysis 

4.1. Experimental Platform 

This experiment was conducted using the Windows10 operating system and PyCharm software. The 

experiment used the PyTorch1.8.0 framework and CUDA 11.1 environment and utilized an RTX3060 (8 

GB memory) GPU for model training and acceleration. In the experiment, the lightest version of 

YOLOv5s was employed, and an improvement was made on it. The input size was set to (640,640), with 

a batch size set to 16, and the iteration number (epoch) was set to 50. 

4.2. Spectrum Waterfall Dataset 

Deep-learning-based signal detection requires tagged training data, and the spectrum waterfall chart 

provides essential information for the network to recognize signals. By selecting the target signal's frame 

in the waterfall chart, the occupation of this signal in both time and frequency domains can be directly 

given, providing useful information in two dimensions and achieving high processing speed and real-

time performance.  

In this experiment, various signals were selected and used to construct a training database for the 

waterfall chart. The signals in the waterfall chart were manually calibrated. The original dataset in this 

work was obtained from the Spectrum Waterfall Chart Dataset on GitHub. An effective dataset was 

generated by data augmentation and signal classification, which was then divided into training and test 

sets at a ratio of 8:2 to provide data support for signal detection. The downloaded spectrum waterfall 

dataset was preprocessed as follows. Firstly, data augmentation techniques such as random rotation, 

translation, scaling, cropping, and Mosaic were applied to the existing signal waterfalls to generate the 

waterfall dataset. Secondly, the labeled waterfall charts were classified into six typical signal spectrum 

data types, such as Bluetooth radio signals, 2.4GHz wireless telephone signals, 312-512MHz ultrashort 

wave signals, microwave oven electromagnetic interference signals, Xbox360 remote control signals, 

FM broadcast long-lasting signals, etc. Finally, the labeled waterfall maps were divided into training and 

test sets at a ratio of 8:2 to generate an effective dataset. 

4.3. Evaluating Indicator 

The evaluation metrics used in this experiment include P (Precision rate), R (Recall rate), mAP (mean 

Average Precision), and the PR (Precision-Recall) curve. Precision, also called positive predictive value, 

is the proportion of correctly predicted positive samples to all samples predicted as positive. The positive 

prediction samples consist of TP (True Positive) and FP (False Positive). The formula for P is given in 

Equation (20), which captures the ratio of true positive samples to the total number of predicted positive 
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samples. 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                               (20) 

Recall rate, also referred to as sensitivity, captures the ratio of true positive samples to all samples 

that are actually positive. The original positive samples include TP (True Positive) and FN (False 

Negative). The formula for recall rate is defined in Equation (21), which measures the ability to identify 

the actual positive samples among all positive samples in the dataset. 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                             (21) 

Mean Average Precision measures the efficacy of a detection algorithm in recognizing various types 

of targets. A higher mAP value indicates better overall detection performance of the algorithm. mAP0.5 

represents the average category precision in detecting targets with an IOU (intersection-over-union) 

threshold of less than 0.5, while mAP0.5:0.95 represents the average category precision of all targets in 

the IOU range of 0.5 to 0.95. Here, APC denotes the AP (Average Precision) value of a specific category, 

N is the total number of categories that are classified, and the definition of mAP is given in Equation 

(22). 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝐶𝑁

0

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠
                                                   (22) 

The vertical axis of the PR curve represents precision, while the horizontal axis represents recall. The 

closer the curve is to the top-right corner, the better the detection effect of the model and the overall 

performance of the algorithm. Therefore, the goal is to achieve a PR curve that is as close as possible to 

the top-right corner in order to achieve optimal detection performance and algorithmic efficiency. 

4.4. Analysis of Experimental Results 

4.4.1. Experimental Results of Improved Model Before and After 

The experiment was conducted in a consistent experimental environment and under the same 

parameters. The experimental data for both YOLOv5s algorithm and its improved version were analyzed 

and compared. As presented in Table 1, the improved algorithm outperforms the original algorithm in 

terms of accuracy, recall, mAP0.5, and mAP0.5:0.95 with improvements of 10%, 21.8%, 7.9%, and 

10.1%, respectively. Therefore, the improved YOLOv5s algorithm demonstrates better detection 

performance compared to its original version. 

Table 1: Experimental data comparison table 

Algorithm model P R mAP0.5 mAP0.5:0.95 

YOLOv5 0.785 0.663 0.822 0.449 

YOLOv5- improvement 0.868 0.881 0.901 0.55 

Figure 8 depicts the comparison chart of the mAP before and after the improvement. 
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Figure 8: Comparison chart before and after mAP improvement 
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Figures 9(a) and 9(b) respectively illustrate the PR curves before and after the improvement. The 

curves of different colors on each PR graph correspond to different signal categories, and the mAP is 

obtained by calculating the curve and the area below it. Furthermore, Figure 10 displays the detection 

effect diagram for the model dataset. 

 
(a) Original PR curve                     (b) Improved PR curve 

Figure 9: PR curve before and after improvement 

 

Figure 10: Detection effect diagram of the model dataset 

4.4.2. Analysis of Experimental Results of Introducing Attention Mechanism 

Table 2 presents a comparison between the CA attention mechanism and three commonly used 

attention mechanisms. The CA mechanism is introduced and evaluated in this study. 

Table 2: Verification experiment of introducing CA attention mechanism 

Algorithm model P R mAP0.5 mAP0.5:0.95 

YOLO5s 0.785 0.663 0.822 0.449 

YOLO5s-CA 0.801 0.814 0.843 0.457 

YOLO5s-SE 0.743 0.782 0.819 0.447 

YOLO5s-CBAM 0.671 0.833 0.833 0.453 

YOLO5s-ECA 0.823 0.807 0.837 0.451 

The results in the table indicate that the introduction of the CA mechanism has the most significant 

promotion effect on the mAP. Thus, introducing the CA attention mechanism is advantageous. 

4.4.3. Analysis of Experimental Results with the Introduction of Loss Functions. 

Table 3 presents the experimental results obtained by introducing the WIOU loss function and 

comparing it with other commonly used loss function modules. 
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Table 3: Verification experiment by introducing WIOU loss function 

Algorithm model P R mAP0.5 mAP0.5:0.95 

YOLO5s 0.785 0.663 0.822 0.449 

YOLO5s-WIOU 0.859 0.865 0.879 0.509 

YOLO5s-DIOU 0.845 0.865 0.876 0.506 

YOLO5s-EIOU 0.839 0.862 0.875 0.511 

YOLO5s- GIOU 0.841 0.863 0.877 0.507 

The table indicates that all four loss functions result in a certain improvement in mAP. However, the 

WIOU loss function shows the most notable effect. Therefore, introducing the WIOU loss function in 

this model is more advantageous. 

4.4.4. Analysis of Experimental Results with the Introduction of Activation Functions. 

Table 4 displays the experimental results obtained by introducing the MESwish activation function 

and comparing it with other commonly used activation functions. 

Table 4: Verification experiment by introducing MESwish activation function 

Algorithm model P R mAP0.5 mAP0.5:0.95 

YOLO5s 0.785 0.663 0.822 0.449 

YOLO5s-MESwish 0.836 0.87 0.874 0.51 

YOLO5s-FReLU 0.837 0.844 0.859 0.489 

YOLO5s-HardSwish 0.85 0.854 0.873 0.503 

The table illustrates that all three activation functions result in an enhancement of mAP. However, the 

MESwish activation function demonstrates the most noticeable effect. Therefore, introducing the 

MESwish activation function is more advantageous for this model. 

4.4.5. Analysis of Experimental Results of Introducing Detection Head 

Table 5 displays the experimental results obtained by introducing Decoupled Detect and comparing 

it with other commonly used detectors. 

Table 5: Verification experiment by introducing decoupling head 

Algorithm model P R mAP0.5 mAP0.5:0.95 

YOLO5s 0.785 0.663 0.822 0.449 

YOLO5s-Decoupled Detect 0.845 0.867 0.879 0.515 

YOLO5s-ASFF Detect 0.855 0.852 0.873 0.509 

The table reveals that both types of header improvements lead to some improvement in mAP. 

However, the Decoupled Detect header, which decouples the regression and classification tasks, displays 

the most prominent improvement effect. Thus, introducing Decoupled Detect in this model is more 

advantageous. 

4.4.6. Analysis of Experimental Results by Introducing Spatial Pyramid Pooling 

In Table 6, we present the experimental results of comparing SPPFCSPC spatial pyramid pooling 

with other commonly used spatial pyramid pooling techniques. The introduction of SPPFCSPC has been 

thoroughly evaluated and analyzed in this study. 

Table 6: Introducing SPPFCSPC verification experiment 

Algorithm model P R mAP0.5 mAP0.5:0.95 

YOLO5s 0.785 0.663 0.822 0.449 

YOLO5s- SPPFCSPC 0.845 0.857 0.878 0.507 

YOLO5s-SPPCSPC 0.855 0.855 0.874 0.508 

YOLO5s-SimSPPF 0.856 0.851 0.876 0.507 

The table clearly indicates that all three spatial pyramid pooling approaches lead to some 

improvement in mAP scores. However, the highest degree of improvement is observed in the case of 

SPPFCSPC. Thus, incorporating SPPFCSPC in this model provides the most significant advantage over 

the other methods. 

4.4.7. Analysis of Experimental Results by Introducing Data Enhancement 

We compared the original YOLO5s model with its variant that incorporates data augmentation. Table 

7 presents the experimental results of this comparison. 
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Table 7: Introducing data enhancement verification experiment 

Algorithm model P R mAP0.5 mAP0.5:0.95 

YOLO5s 0.785 0.663 0.822 0.449 

YOLO5s-Data Enhancement 0.821 0.869 0.874 0.509 

Table 7 clearly indicates that data augmentation leads to a noticeable improvement in mAP scores. 

Thus, incorporating this technique in this model provides a significant advantage. 

4.5. Ablation Experiment 

This study introduces six proposed improved techniques, namely C (CA attention mechanism), W 

(WIOU loss function), M (MESwish activation function), D (Decoupled detection), S (SPPFCSPC) and 

Q (data enhancement). The experiment is conducted in two aspects. Firstly, only one module is added 

onto the YOLOv5s model at a time to verify its effectiveness. Secondly, one module is added sequentially 

until all the modules are accumulated and the overall effect of each improved method is evaluated. The 

experimental results are presented in Table 8. 

Table 8: Comparison table of ablation experimental data 

Algorithm model C W M D S Q P R mAP0.5 mAP0.5:0.95 

YOLOv5       0.785 0.663 0.822 0.449 

YOLOv5-C √      0.801 0.814 0.843 0.457 

YOLOv5-W  √     0.859 0.865 0.879 0.509 

YOLOv5-M    √    0.836 0.87 0.874 0.51 

YOLOv5-D    √   0.845 0.867 0.879 0.515 

YOLOv5-S     √  0.845 0.857 0.878 0.507 

YOLOv5-Q      √ 0.821 0.869 0.874 0.509 

YOLOv5-CW √ √     0.852 0.884 0.885 0.528 

YOLOv5-CWM √ √ √    0.852 0.884 0.891 0.53 

YOLOv5-CWMD √ √ √ √   0.857 0.886 0.9 0.545 

YOLOv5-CWMDS √ √ √ √ √  0.853 0.889 0.901 0.546 

YOLOv5-CWMDSQ √ √ √ √ √ √ 0.857 0.889 0.901 0.551 

Table 8 reveals that adding each of the six proposed techniques onto the YOLOv5s model leads to an 

increase in mAP, accuracy P, and recall rate R. Specifically, when only one method is added at a time, 

there is an observable improvement in the performance metrics. Additionally, when modules are added 

incrementally, the performance improves incrementally as well. 

5. Conclusions 

Traditional electric signal detection suffers from slow recognition speed and inaccurate recognition 

effects. Deep learning-based signal detection and recognition methods can overcome these issues and 

improve detection accuracy and real-time performance. This study proposes several improvements to the 

YOLOv5s model to enhance its performance. Firstly, the CA attention mechanism is introduced, followed 

by the replacement of the original CIOU loss function with the WIOU loss function, and the replacement 

of the SiLU activation function with the MESwish activation function. Next, the Decoupled Head 

decoupling detector is used for target prediction, and a multi-scale spatial pyramid pooling SPPFCSPC 

module is added. Finally, data diversity is enhanced through data augmentation, which increases the 

model's robustness and generalization ability, leading to improved performance and accuracy. The 

experimental results demonstrate that the proposed approach, YOLOv5s-CWMDSQ, improves accuracy, 

recall, mAP0.5, and mAP0.5:0.95 by 10%, 21.8%, 7.9%, and 10.1%, respectively. These improvements 

confirm the effectiveness and real-time performance of this approach for signal detection and 

classification. 
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