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Abstract: In this paper, a multimodal random forest method is proposed to solve the problem that the 

traditional linear method has low accuracy in predicting the icing of generator blade. This paper uses 

the random forest algorithm to model and analyze the icing event of wind turbine blades, and describes 

in detail the process of using the C4.5 algorithm to generate a decision tree, and then randomly selecting 

samples and sample features to train to generate a random forest. The effectiveness of the method in this 

paper is experimentally verified by SCADA data, and the results show that the multi-modal random forest 

algorithm reduces the error rate to 1.97% in wind turbine blade icing prediction, which is more accurate 

than the traditional method. 
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1. Introduction 

Wind power generation accounts for a large proportion of global new energy. It is still on the rise [1], 

and wind turbines are installed in large numbers in areas with abundant wind resources, and it is essential 

to obtain stable wind power generation. Many unfavorable factors can lead to unstable wind power 

generation and waste of resources. The more profound impact is the icing of wind turbine blades. When 

the blades of wind turbines freeze, the load on the blades becomes more extensive, which causes a large 

part of the wind energy to be wasted on the rotation of the dragging blades. In addition, the icing of the 

blades causes a burden for subsequent maintenance. The current method to solve this problem is to 

manually observe whether the blade is icing or an external icing condition monitoring-based system [2]. 

These methods are usually that the blade icing has occurred and cannot effectively solve the waste of 

resources and staffing in a timely and effective manner. Therefore, finding a timely and accurate 

prediction method for wind turbine blade icing is significant. 

In recent years, the detection of icing on wind turbine blades based on mechanism models has 

emerged. For example, a technology based on passive thermal infrared is used to detect ice on wind 

turbine blades [3]. The temperature of the blades is determined by collecting thermal infrared images of 

the wind turbine blades. And the vibration frequency to predict whether the fan blade is icing, and the 

piezoelectric ceramic patch is installed on the blade of the fan to record different wavelet packet energy 

(WPE). Then the icing of the blade is analyzed, and the temperature of the blade is recorded by a fiber-

optic sensor Change to identify and freeze time [5]. However, most of the analysis mentioned above of 

the event mechanism of blade icing has some inevitable shortcomings: high cost, complicated 

interpretation of test results, reference standards are required, test operators need to be trained, etc. 

Therefore, it is essential to establish a concise and reliable non-mechanical model to explain blade icing. 

With the development of artificial intelligence, data-driven technology is widely used [4], [8], [16]. 

There are many algorithms to solve the classification problem. Tian et al. applied K-Nearest Neighbor 

(KNN) algorithm to detect motor-bearing faults by extracting fault features [6]. Bodla et al. used the 

logistic regression method for early fault detection on the condition of wind turbines [7]. The classifiers 

established by these algorithms are all linear classifiers with simple structure and low complexity, but 

they cannot mine the nonlinear relationship between variables. 

In order to dig deeper into the nonlinear relationship between variables, we should build a binary 

classifier that can learn the nonlinear relationship. There are many algorithms to choose from. For 

example, support vector machines (SVM) can dig the nonlinearity between variables. Laouti et al. use 
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periodic sampling to detect wind turbine failures based on SVM [9]. Another classifier decision tree (DT) 

based on a tree structure can also mine the nonlinear relationship between variables. Abdallah et al. 

implemented DT based on Apache Hadoop and Spark to detect damage and failure of wind turbines [10]. 

Although these algorithms can mine complex correlations between variables, a single classifier often 

makes unavoidable errors when solving multimodal relationships. Therefore, it is necessary to find a way 

to comprehensively solve this multimodal classification problem. 

However, a multi-modal learning classification model based on ensemble learning is proposed based 

on the DT to solve the classification problem in one mode. There are two major categories of boosting 

and bagging. Boosting is an algorithm that promotes a weak learner to a strong learner. When each sub-

learner is generated, it focuses on learning the previous error samples, thereby reducing the skewness of 

the model. Bagging uses self-service sampling to produce multiple sub-learners in parallel, and the results 

are decided by voting. It mainly reduces the variance of the model. Que et al. used extreme gradient 

boosting (XGBoost) to realize fault detection and remaining life prediction of steam turbines [11]. 

However, the boosting category model is relatively high in complexity and sensitive to abnormal data. 

The bagging model has the same level of complexity as a single classifier and can automatically generate 

training and test sets. The representative random forest (RF) of bagging generates multiple training 

samples by randomly sampling feature variables and samples to learn nonlinear relationship mining 

between variables in multiple modes. Through the above discussion, in order to solve the shortcomings 

of traditional methods in blade icing detection, feature variables related to wind turbine blade icing will 

be extracted, and sample data will be collected for self-sampling to generate multiple sub-classifiers in 

parallel to construct RF. The difference between each sub-learner is used to improve the generalization 

ability of the model to realize the detection of blade icing. 

2. Concept and Approach 

Since random forests are constructed using decision trees that have not been pruned as sub-learners, 

an indispensable part of studying random forests is to find a suitable method to generate decision trees. 

In this paper, multiple training samples are generated by the self-sampling method and random selection 

of attributes. The C4.5 algorithm based on the information gain rate to select the root node and the 

intermediate node is introduced to generate a decision tree a random forest with classification function 

is integrated. 

As a classic machine learning algorithm, the decision tree model can be regarded as a recursive 

process when constructed [12]. First, an attribute is selected in the sample set D to be split. At this time, 

the node generated by the attribute is called the root node. After such an attribute test, the set D is divided 

into several subsets, and then each subset can be split by an attribute test. The node generated at this time 

is called an internal node. If an attribute test is performed, the samples of the node are all the same 

category, or all samples have the same category on all attributes. Then mark the node as a leaf node, 

where the category with the most contained samples is taken as the node's category. If there is no sample 

set on the node, mark the node as a leaf node, its category is that the category of the node is the same as 

the category of its parent node. Through such multiple splits and the labeling of leaf nodes, a classifier 

with a tree structure is produced, and the generalization ability of the decision tree largely depends on 

the optimal choice of attributes at the time of splitting and a division principle based on information gain 

rate is introduced below. 

Information entropy is used as a measure of sample purity [13]. Suppose there are k classes in sample 

D, and the proportion of each class in the total sample is 𝑝𝑖 (i=1,2, 3....k). Then the definition of 

information entropy is expressed as: 

𝐻(𝐷) = − ∑ 𝑝𝑘
𝑘
𝑖=1 log2 𝑝𝑘 (1) 

If the value of H(D) is larger, the purity of the sample is greater. When we select attribute A in the 

sample as the root node to split, D can be divided into several subsets{𝐷1, 𝐷2, 𝐷3, … 𝐷𝑛}. Split the 

information entropy of the Sample D as: 

𝐻(𝐷)𝐴 = − ∑
|𝐷𝑗|

|𝐷|
𝐻(𝐷𝑗)𝑛

𝑗=1  (2) 

Therefore, the information gain of taking attribute A as the root node is defined as: 

𝐺(𝐷, 𝐴) = 𝐻(𝐷) − 𝐻(𝐷)𝐴 (3) 

In the early decision tree generation, the classic ID3 algorithm uses attributes with large information 
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gain as the root node, and this often results in a tilt towards attributes with many values, so the C4.5 

algorithm that uses information gain as an index can avoid this preference [14], the information gain rate 

is defined as: 

𝐺𝑅(𝐷, 𝐴) =
𝐺(𝐷,𝐴)

𝑃(𝐴)
 (4) 

where 𝑃(𝐴) can be expressed as: 

𝑃(𝐴) = − ∑
|𝐷𝑗|

|𝐷|

𝑛
𝑗 log2

|𝐷𝑗|

|𝐷|
 (5) 

Gradually select the attribute with a large information gain rate as the node split and finally reach the 

leaf node through the recursive method. 

In the random forest, two random ideas, including bagging and random selection of feature variables, 

are used to generate multiple decision trees. The final result is output by voting when solving the 

classification problem. Suppose that multiple decision trees {𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑁} are generated by the 

above method, and each sub-learner outputs a mark in the category set {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛} We input 

sample X into each sub-learner 𝑇𝑖 and the output obtained is {𝑇(𝑋)𝑖
1, 𝑇(𝑋)𝑖

2, 𝑇(𝑋)𝑖
3, … , 𝑇(𝑋)𝑖

𝑛}, where 

𝑇𝑖
𝑗
 represents the output of 𝑇𝑖 on category 𝐶𝑗, and the integrated learner uses the voting method to 

output the final classification result. The principles of voting law are: 

𝑅(𝑋) = arg max
𝑗

∑ 𝑇𝑖
𝑗𝑁

𝑖=1  (6) 

We describe the construction process of the random forest in Fig. 1. 

 

Figure 1: Random Forest construction process 

Since about 37% of the samples are not selected during bagging [15], these unselected samples can 

be used as the test set to evaluate the performance of the model after the construction of the random 

forest. 

3. Experiment and Discussion 

Supervisory Control and Data Acquisition (SCADA) system can detect and collect industrial field 

data in real-time to realize automatic remote control of the local industrial field and comprehensively 

monitor the execution of the production process to provide necessary data support for production and 

management. In this paper, the operating status data of each wind turbine in the wind farm monitored by 

the SCADA system is used as support to verify the advantages of the random forest model for wind 

turbine blade icing detection compared to other single-mode linear models. 

Based on the data collected by SCADA, each piece of data is time-stamped data. That is, each piece 

of data contains the detection of multiple continuous variables of the wind turbine at the moment, 

including 26 variable parameters, as shown in Table 1. We used 300 pieces of data to train the model, in 

which the sample data was marked as normal operation or icing, and multiple blade icing failures 

appeared in the data set, and the normal operation data and the data when the blades were icing were 

randomly mixed together. After the model training is completed, the past 1263 pieces of training data are 

used to evaluate and analyze the model training results. 
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Table 1: Process variables 

Variable name Variable name Variable name 

Wind_speed Pitch3_angle Environment_tmp 

Generator_speed Pitch1_speed Int_tmp 

Power Pitch2_speed Pitch1_ng5_tmp 

Wind_direction Pitch3_speed Pitch2_ng5_tmp 

Wind_direction_mean Pitch1_moto_tmp Pitch3_ng5_tmp 

Yaw_position Pitch2_moto_tmp Pitch1_ng5_DC 

Yaw_speed Pitch3_moto_tmp Pitch2_ng5_DC 

Pitch1_angle Acc_x Pitch3_ng5_DC 

Pitch2_angle Acc_y  

Among them, Logistic Regression (LR) model, Naive Bayes (NB), K-Nearest Neighbor (KNN), 

Support Vector Machine (SVM), Decision Tree (DT) are selected to compare with the Random Forest 

(RF), and make the error rate, precision rate, recall rate, F1 score of each model in the test set to evaluate 

the effect of each model in detecting blade icing, the test results of each model in each index are given 

in Table 2. The error rate of each model is visualized as shown in Figure 1, where the lower the error rate, 

the better the model classification effect. The precision rate indicates how much data of the units that the 

model considers to be in normal operation is really normal data, while the recall rate indicates how much 

data of the units that the model classifies as normal data. Finally, the F1 score combines the accuracy rate 

and the recall rate. To evaluate the model, the larger the three values, the better the classification effect 

of the model. The visualization results are shown in Figure 2. At the same time, the receiver operating 

characteristic (ROC) curve and area under curve (AUC) value of each model are plotted to observe the 

advantages of the multi-modal integration algorithm, as shown in Figure 3. 

Table 2: Results of different models 

Model Error rate Precision rate Recall rate F1-score 

RF 1.97% 96.24% 100% 98.08% 

SVM 4.82% 91.41% 99.84% 95.44% 

LR 4.35% 92.45% 99.53% 95.86% 

NB 12.41% 80.30% 100% 89.07% 

KNN 4.35% 92.57% 99.37% 95.85% 

DT 2.61% 96.33% 98.59% 97.45% 

It can be seen from Table 2 and Figure 1 that the error rates of linear classifiers such as KNN, LR, 

and Naive Bayes are as high as 4.35%, 4.35%, and 12.41% incorrectly distinguishing the working state 

of wind turbines, while the non-linear classifiers, the error rate of DT and SVM is 2.61% and 4.82%. 

Compared with linear classifiers, the error rate has decreased, but due to the limitation of single mode, 

the effect is still not ideal. However, the error rate of the random forest model of the integrated learning 

algorithm reached 1.97%, its classification effect shows superiority compared with other models. 

 

Figure 2: Different model error rate 
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Figure 3: Different models score under each indicator 

Combining Table 2 and Figure 3, it can be seen that the precision, recall, and F1 scores of the random 

forest model have reached 96.24%, 100%, and 98.08%, respectively. The scores of the three evaluation 

indicators are very advantageous compared to other classification models. On the whole, the random 

forest model has the best effect on the icing detection of wind turbine blades. 

 

Figure 4: ROC curve and AUC value of different models 

The closer each model in the ROC curve to the upper left corner of the coordinate plane and the more 

it deviates from the 45-degree diagonal, the better the classification effect of the model, and the AUC 

value represents the area under the ROC curve, and the larger the area, the better the effect of the model. 

Observing the ROC curves and AUC values of various models in Fig. 4, it can be clearly seen that the 

random forest model under ensemble learning has advantages in processing wind turbine blade icing 

detection compared with other models. 

4. Conclusion 

Aiming at the problem of blade icing faults of wind turbines in high altitude areas, a multimodal 

random forest algorithm is proposed to solve the detection and prediction of blade icing faults. The 

random forest model is obtained by using SCADA data to train and predict it on the test set and compared 

with support vector machine, logistic regression model, naive Bayes, KNN, decision tree under the same 

data set. The experimental results show that compared with the traditional methods, the random forest 

algorithm is more effective in detecting leaf icing. The error rate is reduced to 1.97%, which is 

significantly lower than other models (the error rates are 4.82%, 4.35%, 12.41%, 4.35%, and 2.61%, 

respectively), which produces better prediction accuracy and has practical application value. 
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