

A Comparison of the Health Consequences of Fast Food Consumption in The United States and China

Zhoutong Zheng

Jericho Senior High School, 99 Cedar Swamp Rd, Jericho, NY, 11753, U.S.

Abstract: This paper compares the health consequences of fast-food consumption in the United States and China. Drawing on national surveillance, cohort studies, and experimental evidence, it first summarizes exposure patterns and trends, then reviews mechanisms—energy density, processing, and glycemic responses—that plausibly link fast food to excess energy intake and weight gain. The analysis highlights similarities in routine exposure across both countries alongside important contextual differences in retail environments, pricing, urbanization, and policy. Evidence from controlled feeding trials and prospective cohorts indicates that frequent fast-food intake contributes to positive energy balance, weight gain, and higher metabolic risk. Built-environment studies suggest that proximity and outlet density shape purchasing, especially near schools and high-traffic areas; socioeconomic factors and time constraints further condition who is most exposed. Policy implications include pairing upstream controls on exposure (e.g., zoning and school standards) with information and default changes (e.g., menu labeling, portion and combo redesign), supported by ongoing monitoring of dietary exposure and health outcomes. Overall, the review concludes that multi-level strategies—targeting process, place, and price—are more likely to reduce obesity and diabetes risks than single interventions, and that effective approaches will differ somewhat between the United States and China due to their distinct food systems.

Keywords: *Obesity, Fast Food Consumption, Food Environment, Socioeconomic Factors*

1. Introduction

Fast-food availability and consumption have expanded in both the United States and China. In the U.S., nationally representative data show that 36.6% of adults consume fast food on a given day (National Health and Nutrition Examination Survey, 2013–2016), underscoring how routine these foods have become in daily diets [1]. In China, research documents rapid growth of the fast-food sector—now numbering more than two million outlets—and rising consumption, particularly in urban areas and among youth [2]. Because fast-food meals tend to be energy-dense and highly processed, they are frequently linked to higher calorie intake and poorer diet quality; experimental and observational evidence indicates that such foods can drive excess energy intake and weight gain[3][1].

Against this backdrop, population health burdens remain high in both countries. In the U.S., about three-quarters of adults are overweight or have obesity (73.6% in 2017–2018), and 42.5% have obesity [4]; an estimated 11.6% of the population has diabetes [5]. In China, large recent surveys report roughly one in two adults living with overweight or obesity (e.g., 34.8% overweight and 14.1% obesity by Chinese BMI cutoffs) and diabetes prevalence around 11–13%, depending on diagnostic criteria [6][7]. These patterns motivate a structured comparison of how frequent fast-food intake relates to health outcomes across two different food environments and health systems. Specifically, this paper (1) summarizes prevalence and trends in fast-food consumption; (2) reviews mechanisms (energy density, processing, glycemic responses) and contextual factors (outlet density, price, urbanization); and (3) analyzes similarities and differences in obesity and type 2 diabetes outcomes, concluding with practical implications for communication and policy.

2. Literature Review

Research commonly situated fast food within the broader category of ultra-processed foods (UPFs), characterized by industrial formulations and additives that promote palatability and shelf life [8]. Experimental evidence shows that diets high in UPFs increase ad libitum calorie intake and body weight even when matched for macronutrients with minimally processed diets, a mechanism relevant to typical fast-food meals [3]. These findings help explain consistent links between fast food, excess energy intake,

and weight gain across observational studies[9].

National surveillance indicates that about 36–37% of U.S. adults consume fast food on a given day, with higher prevalence among younger adults [1]. In parallel, food-away-from-home spending surpassed food-at-home around 2010 and has continued to grow, underscoring how eating out—often at quick-service restaurants—shapes overall diet exposure [10][11].

Prospective U.S. cohort data (CARDIA) associate frequent fast-food intake with greater weight gain and insulin resistance over 15 years, suggesting higher risk for type 2 diabetes [12]. Systematic reviews similarly report positive associations between fast-food consumption, higher energy intake, and weight gain (Rosenheck, 2008). Together with controlled feeding evidence on UPFs, these studies support plausible causal pathways from frequent fast-food meals to adverse metabolic outcomes [3][9][12].

The food environment can shape behavior and risk. In U.S. data, having a fast-food restaurant within 0.1 miles of a school increased ninth-grade obesity by roughly 5%, and proximity to outlets near residences was linked to greater gestational weight gain [13]. Evidence for children and adolescents more broadly is mixed, but multiple reviews note that access and density can influence purchasing and intake [14]. In China, multilevel analyses also connect fast-food retail environments with overweight/obesity patterns, though relationships vary by subgroup and urbanicity [15].

Chinese studies document rising fast-food consumption—especially among children—and associations with higher odds of obesity [16]. Industry analyses describe rapid expansion of both Western and Chinese-style fast-food outlets, driven by income growth, urbanization, and changing lifestyles [2]. These shifts align with China’s broader nutrition transition toward more energy-dense, convenient foods [17] [18].

Economic literature explains why inexpensive, energy-dense foods—typical of many fast-food offerings—are disproportionately chosen under budget constraints [19]. Neighborhood-level studies show higher fast-food restaurant density in lower-income and minority areas, highlighting environmental inequities [20][21]. At the same time, national surveillance finds that on a given day, higher-income U.S. adults are more likely to report eating fast food than lower-income adults, illustrating how price, time, and access interact in complex ways [1].

Americans often value the convenience and taste of fast food even while viewing it as less healthy; systematic review evidence links positive perceptions (e.g., convenience, kid-friendliness) with higher purchase frequency [22]. Calorie labeling policies can raise awareness and modestly influence choices in some contexts, although population-level effects are mixed[23][24][25][26].

The U.S. reports high obesity prevalence (e.g., 42.5% in 2017–2018) and a diabetes prevalence near 11–12%, while China shows widespread overweight/obesity with adult obesity exceeding 14% in recent large datasets and diabetes prevalence around 11–13% in national surveys[27][5][6][7].These burdens provide context for concerns about fast-food diets within each country’s evolving food environment.

3. Analysis

3.1 Prevalence and exposure: similar behaviors, different contexts

National surveillance shows fast food is a routine part of U.S. diets: about 36–37% of adults report fast-food intake on a given day, with the highest exposure among younger adults [1]. In China, fast-food exposure has risen alongside rapid industry expansion and urbanization, especially for children and adolescents [2][16]. Although measurement systems differ (daily recall in U.S. NHANES versus variety of Chinese surveys), both countries now have large populations regularly exposed to energy-dense convenience foods. This convergence means that differences in context—built environment, pricing, and policy—likely explain cross-national differences as much as individual preferences.

3.2 Mechanisms: why fast food raises metabolic risk

Fast-food meals often fall within the broader category of ultra-processed foods (UPFs), which are engineered for palatability and convenience. In a controlled inpatient crossover trial, ultra-processed diets caused participants to eat more and gain weight despite being matched for macronutrients, sodium, sugar, and fiber with unprocessed diets—implicating processing characteristics (e.g., energy density, texture, speed of eating) rather than nutrients alone [3]. This experimental result aligns with cohort findings that frequent fast-food consumption predicts greater weight gain and insulin resistance over time [12] and

with reviews linking fast-food intake to higher energy intake and weight gain [9]. Taken together, these studies support a plausible causal chain from fast-food exposure to positive energy balance and elevated cardiometabolic risk in both countries [3][8].

3.3 Environments: proximity and density shape behavior

Where people live, work, and study affects what they eat. In U.S. natural experiments, having a fast-food outlet within 0.1 miles of a school increased ninth-grade obesity by roughly 1.7 percentage points versus a 0.25-mile counterfactual; proximity near residences has also been linked to greater gestational weight gain [13]. Evidence for children more broadly is mixed but suggests that density and access can shift purchasing and intake [14]. In China, multilevel studies similarly connect fast-food availability to overweight/obesity patterns, although the strength and direction vary by subgroup and urbanicity, reflecting heterogeneous retail mixes [15]. For policy, this implies that zoning around schools, transportation nodes, and high-footfall corridors could complement individual-level strategies in both countries.

3.4 Socioeconomics and price: who is most exposed and why

Economic work helps explain why energy-dense, convenient foods become default choices: under budget or time constraints, cheap calories dominate, and the relative affordability of fast food can drive selection [19]. U.S. neighborhood studies show greater fast-food density in lower-income and minority communities, pointing to environmental inequities [20][21]. At the same time, NHANES shows higher-income adults are more likely to report fast-food intake on a given day—likely reflecting different constraints (time, travel, work patterns) rather than simple price effects [1]. China's rapid urbanization and retail growth create a different set of trade-offs, with convenience and modernization narratives interacting with price and youth marketing [2]. The shared lesson is that exposure is structural: price, time, and place work together, and policy must address all three.

3.5 Health impact and policy implications: general lessons and country specifics

Both countries face high burdens of overweight/obesity and diabetes, which amplify the public-health stakes of fast-food diets [5][6][7][27]. Given the mechanistic and observational evidence, upstream levers are critical: (a) reduce exposure (e.g., zoning near schools, transit-hub density caps); (b) improve information (menu labeling raises awareness, though population-level effects are modest and context-dependent); and (c) nudge reformulation and defaults (smaller combo sizes, healthier sides as default). U.S. labeling studies show mixed but positive signals in some settings [23][24][25][26]. In China, where retail growth is rapid and urban diets are changing, pairing youth-focused policies (school canteen standards, marketing limits) with urban planning may be especially relevant [2][16]. For both countries, monitoring should combine dietary exposure (frequency, share of calories from fast food/UPFs) and outcomes (BMI, waist, HbA1c), with stratification by age, sex, income, and urbanity to target interventions.

4. Conclusion

This comparative review shows that frequent fast-food consumption is linked to higher energy intake and weight gain in the United States and China, even as the specific patterns differ across contexts. In the U.S., fast food is deeply embedded in everyday eating, with nearly two in five adults consuming it on a given day during 2013–2016 and adult obesity reaching about 42% by 2017–2018 [2][27]. In China, rapid urbanization and market expansion have driven a fast-growing fast-food sector alongside rising obesity and diabetes prevalence, especially in cities, although national rates remain lower than in the U.S. [2][6][7][16]. Across both countries, evidence suggests that fast-food meals—often highly palatable, energy-dense, and convenient—can promote excess calorie intake and weight gain; experimental and longitudinal studies help clarify that this impact is not only correlational but can be causal for energy overconsumption [3][12]. At the same time, the local food environment, price signals, and marketing shape exposure and choices, and the magnitude of their effects varies by place, age, and socioeconomic status[13][14][19].

Policy responses also differ. U.S. menu-labeling policies tend to yield small but measurable average calorie reductions, with mixed results depending on setting and consumer subgroups [23][26][28]. China's challenges are more tied to uneven urban development and rapid dietary transition, suggesting a

need to integrate nutrition education with urban planning, school-based standards, and industry reform [2][16]. For both nations, the most promising strategies appear to be multi-level: (1) improving the healthfulness of defaults and portions in quick-service settings; (2) adjusting price and promotion structures that favor energy-dense options; (3) expanding access to healthier offerings in neighborhoods and schools; and (4) using clear, comprehensible nutrition information that works for youth and adults. Because the determinants of fast-food consumption and weight gain operate across individual, environmental, and policy levels, single interventions are unlikely to be sufficient. Instead, coordinated actions—and continuous evaluation—can better address the shared downstream outcomes (obesity, diabetes, and related complications) that both countries increasingly face [6][7][27]. Future research should continue to compare policy mixes across contexts, track subgroup effects (by age, income, and urbanicity), and test scalable ways to reduce the energy gap associated with fast-food meals while respecting cultural preferences and economic realities.

Acknowledgement

I wish to express my gratitude to Professor Kenneth Bigel—Professor of Finance at Touro University and adjunct professor in the Social Impact programs at NYU Stern School of Business—for his thoughtful guidance on this cross-country review of fast-food consumption. His comments helped sharpen the U.S.–China comparison, link economic factors (price, time, and access) to diet patterns, and keep the policy discussion practical (menu labeling, school settings, and neighborhood food environments). He also encouraged clearer use of surveillance, cohort, and experimental evidence when interpreting obesity and diabetes outcomes.

References

- [1] Fryar, C. D., Hughes, J. P., Herrick, K. A., & Ahluwalia, N. (2018). *Fast food consumption among adults in the United States, 2013–2016 (NCHS Data Brief No. 322)*. National Center for Health Statistics. <https://www.cdc.gov/nchs/data/databriefs/db322-h.pdf>
- [2] Wang, Y., Wang, L., Xue, H., & Qu, W. (2016). *A review of the growth of the fast food industry in China and its potential impact on obesity*. *International Journal of Environmental Research and Public Health*, 13(11), 1112. <https://doi.org/10.3390/ijerph13111112>
- [3] Hall, K. D., Ayuketah, A., Brychta, R., Cai, H., Cassimatis, T., Chen, K. Y., ... Zhou, M. (2019). Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. *Cell Metabolism*, 30(1), 67–77.e3. <https://doi.org/10.1016/j.cmet.2019.05.008>
- [4] Fryar CD, Carroll MD, Afful J. Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018. NCHS Health E-Stats. 2020. <https://www.cdc.gov/nchs/data/hestat/obesity-adult-17-18/obesity-adult.htm>
- [5] Centers for Disease Control and Prevention. (2024, May 15). *National diabetes statistics report*. <https://www.cdc.gov/diabetes/php/data-research/index.html>
- [6] Chen, K., Shen, Z., Gu, W., Lyu, Z., Qi, X., Mu, Y., & Ning, Y.; Meinian Investigator Group. (2023). Prevalence of obesity and associated complications in China: A cross-sectional, real-world study in 15.8 million adults. *Diabetes, Obesity and Metabolism*, 25(11), 3390–3399. <https://doi.org/10.1111/dom.15238>
- [7] Li, Y., Teng, D., Shi, X., Qin, G., Qin, Y., Quan, H., ... Lai, X. (2020). Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: National cross-sectional study. *BMJ*, 369, m997. <https://doi.org/10.1136/bmj.m997>
- [8] Monteiro, C. A., Cannon, G., Levy, R. B., Moubarac, J.-C., Louzada, M. L., Rauber, F., ... Jaime, P. C. (2019). Ultra-processed foods: What they are and how to identify them. *Public Health Nutrition*, 22(5), 936–941. <https://doi.org/10.1017/S1368980018003762>
- [9] Rosenheck R. Fast food consumption and increased caloric intake: a systematic review of a trajectory towards weight gain and obesity risk. *Obes Rev*. 2008 Nov;9(6):535–47. <https://doi: 10.1111/j.1467-789X.2008.00477.x>. Epub 2008 Mar 14. PMID: 18346099.
- [10] U.S. Department of Agriculture, Economic Research Service. (2018). *America's eating habits: Food away from home (EIB-196)*. <https://www.ers.usda.gov/publications/pub-details/?pubid=90228>
- [11] Elitzak, H. (2018, October 30). *Food-away-from-home expenditures surpassed food-at-home expenditures in 2010*. U.S. Department of Agriculture, Economic Research Service. <https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=58328>
- [12] Pereira, M. A., Kartashov, A. I., Ebbeling, C. B., Van Horn, L., Slattery, M. L., Jacobs, D. R., Jr., & Ludwig, D. S. (2005). *Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-*

year prospective analysis. *The Lancet*, 365(9453), 36–42. [https://doi.org/10.1016/S0140-6736\(04\)17663-0](https://doi.org/10.1016/S0140-6736(04)17663-0)

[13] Currie, J., DellaVigna, S., Moretti, E., & Pathania, V. (2010). The effect of fast food restaurants on obesity and weight gain. *American Economic Journal: Economic Policy*, 2(3), 32–63. <https://doi.org/10.1257/pol.2.3.32>

[14] Jia, P., Luo, M., Li, Y., Zheng, J.-S., Xiao, Q., & Luo, J. (2021). Fast-food restaurant, unhealthy eating, and childhood obesity: A systematic review and meta-analysis. *Obesity Reviews*, 22(S1), e12944. <https://doi.org/10.1111/obr.12944>

[15] Zhang X, van der Lans I, Dagevos H. Impacts of fast food and the food retail environment on overweight and obesity in China: a multilevel latent class cluster approach. *Public Health Nutr*. 2012 Jan;15(1):88-96. <https://doi.org/10.1017/S1368980011002047>. Epub 2011 Sep 6. PMID: 21896233.

[16] Xue, H., Wu, Y., Wang, X., & Wang, Y. (2016). Time trends in fast food consumption and its association with obesity among children in China. *PLOS ONE*, 11(3), e0151141. <https://doi.org/10.1371/journal.pone.0151141>

[17] Wang, Z., Zhai, F., Zhang, B., Du, S., & Popkin, B.M. (2008). Dynamic Shifts in Chinese Eating Behaviors. *The FASEB Journal*, 22. <https://doi.org/10.6133/apjcn.2008.17.1.19>

[18] Zhai F, Wang H, Du S, He Y, Wang Z, Ge K, Popkin BM. Prospective study on nutrition transition in China. *Nutr Rev*. 2009 May;67 Suppl 1:S56-61. <https://doi.org/10.1111/j.1753-4887.2009.00160.x>. PMID: 19453679.

[19] Drewnowski, A., & Specter, S. E. (2004). Poverty and obesity: The role of energy density and energy costs. *American Journal of Clinical Nutrition*, 79(1), 6–16. <https://doi.org/10.1093/ajcn/79.1.6>

[20] Powell, L. M., Chaloupka, F. J., & Bao, Y. (2007). The availability of fast-food and full-service restaurants in the United States: Associations with neighborhood characteristics. *American Journal of Preventive Medicine*, 33(4 Suppl), S240–S245. <https://doi.org/10.1016/j.amepre.2007.07.005>

[21] Hilmers A, Hilmers DC, Dave J. Neighborhood disparities in access to healthy foods and their effects on environmental justice. *Am J Public Health*. 2012 Sep;102(9):1644-54. <https://doi.org/10.2105/AJPH.2012.300865>. Epub 2012 Jul 19. PMID: 22813465; PMCID: PMC3482049.

[22] Min, J., Jahns, L., Xue, H., Kandiah, J., & Wang, Y. (2018). Americans' perceptions about fast food and how they associate with its consumption and obesity risk: A systematic review. *Advances in Nutrition*, 9(5), 590–601. <https://doi.org/10.1093/advances/nmy032>

[23] Dumanovsky, T., Huang, C. Y., Nonas, C. A., Matte, T. D., Bassett, M. T., & Silver, L. D. (2010). Consumer awareness of fast-food calorie information in New York City after implementation of a menu labeling regulation. *American Journal of Public Health*, 100(12), 2520–2525. <https://doi.org/10.2105/AJPH.2009.174466>

[24] Elbel, B., Gyamfi, J., & Kersh, R. (2011). Child and adolescent fast-food choice and the influence of calorie labeling: A natural experiment. *International Journal of Obesity*, 35(4), 493–500. <https://doi.org/10.1038/ijo.2010.1>

[25] Roberto CA, Larsen PD, Agnew H, Baik J, Brownell KD. Evaluating the impact of menu labeling on food choices and intake. *Am J Public Health*. 2010 Feb;100(2):312-8. <https://doi.org/10.2105/AJPH.2009.160226>. Epub 2009 Dec 17. PMID: 20019307; PMCID: PMC2804627.

[26] Long, M. W., Tobias, D. K., Cradock, A. L., Batchelder, H., & Gortmaker, S. L. (2015). Systematic review and meta-analysis of the impact of restaurant menu calorie labeling. *American Journal of Public Health*, 105(5), e11–e24. <https://doi.org/10.2105/AJPH.2015.302570>

[27] Hales, C. M., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2020). Prevalence of obesity and severe obesity among adults: United States, 2017–2018 (NCHS Data Brief No. 360). National Center for Health Statistics. <https://www.cdc.gov/nchs/products/databriefs/db360.htm>

[28] Petimar, J., Zhang, F., Rimm, E. B., Simon, D., Cleveland, L. P., Gortmaker, S. L., ... Roberto, C. A. (2019). Estimating the effect of calorie menu labeling on calories purchased in a large restaurant franchise in the U.S. *BMJ*, 367, l5837. <https://doi.org/10.1136/bmj.l5837>