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Abstract: Fog computing facilitates the placement of data at the network’s edge for processing, which 
effectively reduces energy consumption and enhances efficiency. However, the limited resources inherent 
in fog computing render it vulnerable to extensive volumes of high-dimensional anomalous traffic. This 
study proposes a novel feature selection algorithm called filtered interaction maximum relevance 
minimum redundancy, which incorporates feature interaction to enable effective intrusion detection in 
fog computing. Through feature selection, the algorithm downscales the high-dimensional data captured 
in the fog nodes to reduce redundant features. The experimental results show that the parsimonious 
feature set obtained using the algorithm in this paper improves the classification accuracy while 
reducing the execution time compared to the original dataset. 
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1. Introduction 

The emergence of the Internet of Things (IoT) paradigm has gained wide adoption, facilitating data 
sharing among interconnected computing devices and sensors over the Internet. This seamless 
connectivity aims to address diverse challenges and offers new services without requiring human 
intervention. However, the inherent vulnerabilities of IoT networks, coupled with limitations in hardware 
properties, expose them to security threats, which increases the risk of attacks [1]. One of the key issues 
is the heterogeneous and distributed nature of IoT networks, which makes it challenging to deploy 
previous security mechanisms in a distributed IoT environment. This includes resource scarcity, high 
latency, high bandwidth consumption, and degradation of quality of service. To address these challenges, 
distributed learning methods based on fog computing have proven more effective [2]. 

Fog computing, an extension of cloud computing, focuses on managing data from sensors and edge 
devices. It decentralizes data, data processing and applications in devices at the edge of the network 
rather than relying entirely on cloud data centers. It extends cloud services to the IoT edge to minimize 
data transfer overhead and save processing time and communication resources [3]. This concept was 
proposed to address the challenges in IoT applications that require low latency, geographic remoteness, 
and high mobility [4]. However, most end devices in fog nodes, such as smart appliances, smartphones, 
and VR devices, are resource-constrained. Networks with these characteristics are susceptible to threats 
such as denial of service, man-in-the-middle, malicious gateways, privacy leakage, and service 
manipulation. Integrating an intrusion detection system (IDS) into fog computing infrastructures can 
effectively mitigate these security threats [5].  

The concept of IDS originated in April 1980 and evolved into intrusion detection ex-pert systems 
(IDES) in the mid-1980s. By 1990, IDS was further divided into network-based IDS and host-based IDS. 
The network intrusion detection system (NIDS) is a com-monly used tool for detecting network 
intrusions by collecting data on the current network operational status and analyzing network traffic using 
the system's pre-built algorithms and historical experience [6]. Intrusion detection systems can be 
categorized into misuse-based intrusion detection systems (MIDS) and anomaly-based network intrusion 
detection systems (AIDS) based on their engine detection mechanism. The MIDS is based on the de-
tection of known signatures, and it is effective in identifying attacks in the signature base. However, the 
MIDS struggles with identifying unknown and variant attacks, such as zero-day attacks, resulting in a 
lower overall detection rate. The AIDS is used to classify traffic by learning the network traffic behavior 
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and offers flexibility, robustness, and scalability in detecting unknown attacks, which makes it suitable 
for dynamic intrusion detection systems [7]. Also, the application of machine learning (ML) in intrusion 
detection systems further enhances optimal and accurate recognition results. 

However, the limited resources in fog computing make it vulnerable to an extensive volume of high-
dimensional anomalous traffic. Traditional IDS methods, when applied to process multi-featured data, 
not only consume time but also lack accuracy. This study proposes a maximum correlation minimum 
redundancy feature selection algorithm (FI-mRMR) that incorporates feature interaction for effective 
intrusion detection in fog compu-ting. Through feature selection, the high dimensional data captured in 
the fog node is downscaled to reduce the redundant features. 

The main contributions of this study are as follows: 

(1) Previous algorithms have primarily focused on correlation and redundancy. Howev-er, the 
proposed FI-mRMR feature selection method considers not only the maximum correlation and minimum 
redundancy but also the interaction between features, which enhances the traditional approach; 

(2) Experiments conducted on the NSL-KDD and CICIDS-2017 dataset show that the FI-mRMR 
greatly outperforms existing algorithms such as mRMR, MRI, CCMI and GFS in terms of classification 
precision and accuracy; 

(3) The performance of different classifiers was evaluated on the NSL-KDD dataset using the filter 
feature selection method. 

2. Related Works 

Feature selection can be defined as the process of removing irrelevant and redundant features to 
enhance the efficiency of models [8-10]. The filtering-based approach deter-mines the importance of the 
features by scoring and ranking them based on their score size. Classical feature selection algorithms, 
such as information gain (IG) and mutual in-formation maximization (MIM), remove irrelevant features 
using mutual information be-tween the features and class labels. While these methods are simple and fast, 
they often ignore redundancy between features. 

Priscilla [11] et al. proposed a two-stage feature selection method using mutual in-formation in the first 
stage and recursive feature elimination (RFE) in the second stage to eliminate redundant features. Pashaei 
[12] et al. used minimum redundancy maximum relevance (mRMR) as a first-level filter and then 
introduced simulated annealing and crossover operators into a binary arithmetic optimization algorithm 
to select the mini-mum set of informative genes. To address the limitations in mutual information, Zhou 
[13] introduced the maximum mutual information coefficient to measure the correlation and redundancy 
between features and labels. Qing [14] et al. proposed a Correlation and Conditional Mutual Information 
(CCMI) algorithm that combines two components: the im-proved Pearson correlation coefficient and the 
improved conditional mutual information measure. Wang [15] et al. proposed a Max-Relevance and Max-
Independence (MRI) algorithm. They assembled newly provided and retained information that is 
negatively correlated with redundant information. In the new terminology, redundant and new infor-
mation are properly harmonized and treated equally. 

Nguyen et al. also used an improved feature selection algorithm based on mRMR, Generic Feature-
Selection (GFS), and they considered the combination of the feature correlation feature selection (CFS) 
metric with the mRMR algorithm. Whereas in this paper, conditional interaction of features is realized 
through conditional mutual information by considering feature relevance, i.e., changing one feature based 
on the value of another feature [16]. 

In the context of NIDS, Wang [17] et al. proposed an optimized neural network hyperparameter using 
an improved particle swarm optimization algorithm with a loss function as population localization. Once 
the optimal parameters were obtained, a scaled convolutional neural network was constructed, and the 
model was trained through back-propagation. Saksham Mittal [18] et al. applied supervised class machine 
learning algorithms to classify different types of attacks using four mathematical models on datasets 
CICIDS2017 and BotIot. Ananthi [19] et al. used the RFE algorithm for feature selection on dataset 
KDD99 and deployed a deep neural network for binary classification after selecting the necessary 
features through RFE. 

Most of the existing studies of feature selection methods consider correlation and redundancy factors; 
they often focus on dependencies between individual features and the target class. However, a feature 
may exhibit an average correlation with the target class but may lose relevance when interacting with 
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other features. Therefore, this study proposes an FI-mRMR algorithm that considers feature interactions 
for a more comprehensive feature selection approach. 

3. FI-mRMR Algorithm Design 

In the feature selection process, the mRMR (max-relevance and min-redundancy) algorithm plays an 
important role. It operates on the principle of identifying the features in the original feature set that exhibit 
the highest relevance to the final output (max-relevance) while maintaining the least relevance among 
the features (min-redundancy). The objective of feature selection is to identify a subset S of features with 
m features that exhibit maxi-mum dependence on the target classification c. The formula can be 
expressed as follows: 

max ( , ), ( , 1,..., ; )iD S c D I x i m c= =                      (1) 

The maximum correlation formula can be expressed as follows: 

1max ( , ), ( ; )
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The minimum redundancy formula can be expressed as follows: 
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where Xi is the ith feature, c is a category variable, and S is a subset of features. 

Combining maximum relevance D with minimum redundancy R results in the mRMR algorithm 
defined by the operator Φ(D, R). This can be expressed in the simplest additive integration method as 
follows: 

max ( , ),D R D RΦ Φ = −                            (4) 

In practice, incremental search methods are used to identify near-optimal features. Assuming an 
existing feature set Sm-1, the goal is to find the mth feature from the remaining features X-Sm-1 and 
maximize Φ(D, R) through feature selection. The incremental algorithm optimization formula can be 
expressed as follows: 
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While the mRMR algorithm only considers correlation and redundancy, the feature set obtained 
through the maximum correlation formula depicts the dependency between individual and target features. 
However, some individual features may only exhibit aver-age or lower dependencies. If these features 
are combined, i.e., after feature interaction, a high dependency on the target feature is created. By 
introducing feature interaction, the proposed algorithm identifies redundant features by calculating the 
degree of interaction between features through conditional mutual information. Then, the combined 
redundant features are filtered again using the minimum redundancy formula. 

In this study, the proposed algorithm extends the mRMR algorithm by introducing feature interaction, 
hence named feature interaction max-relevance and min-redundancy (FI-mRMR). In the FI-mRMR 
algorithm, let X=x1,x2,...,xm be the feature set of the dataset K with n instances. The algorithm aims to 
generate a subset F of H features, where H≤m and F⊆X. As shown in Equation (6), the algorithm was 
initiated using the maximum relevance formula to obtain a feature set Fmax, which is an ordered set of 
mutual information be-tween the input and target features from high to low. The Fmax set considers only 
the correlation between individual features and the target feature but not the interactions between features. 
The formula can be expressed as follows: 

max max
max
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Next, the feature-feature interactions in Fmax are computed through conditional mutual information. 
By subtracting the conditional mutual information from the mutual in-formation, a feature set Ffi, 
representing feature interactions, was obtained. In this case, a positive interaction indicates that the 
dependency of the interacting feature on the target feature is higher than the dependency of the individual 
feature on the target feature, and vice versa for negative interactions. Thus, Ffi is a set of positively 
interacting feature sets and can be expressed as follows: 

max{ , }, ( , )fi fi i j i jF F x x x x F= ∪ ∈
                      (7) 

( ; | ) ( ; ) 0i j iI x c x I x c− >
                           (8) 

Finally, the algorithm filters redundant features in Ffi using the minimum redundancy formula to 
obtain the feature set F. The formula can be expressed as follows: 
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The FI-mRMR algorithm can be written as follows: 

FI-mRMR Algorithm 
Input:Feature set X={x1,...,xm},class labels C={y1,...,yn},number of features to be selected H,H≤m 

Output: Selected feature subset F, F X⊆  
1. //Load processed dataset 
2. train_df = pd.read_csv("process_train.csv")     
3. train_df = train_df.sample(2000)//sample 
4. train_df = train_df.astype(int)//Converting data types to integers  
5. train_x = train_df.drop(['labels'], axis=1)        
6. train_y = train_df['labels'].values 
7. //Feature selection 
8. features_num = train_x.shape[1]//Number of features 
9. selected_features = set()//Using collections to avoid duplicate features          
10. //Calculate and rank the mutual information between each feature and the target variable 
11. mi_list = mutual_info_classif(train_x, train_y) 
12. mi_indices_sorted = np.argsort(mi_list)[::-1]     
13. Ffi = set() 
14. F = set()  
15. //   Select top features_num/2 features as Ffi based on mutual information       
16. for index in mi_indices_sorted[:features_num // 2]:           
17.     Ffi.add(index) 
18. //Compute conditional mutual information for each feature and select 
19. for i in Ffi:   
20.    for j in Ffi: 
21.         if j <= i:// Avoiding double counting 
22.            continue 
23.         mic = drv.information_mutual_conditional(train_x.iloc[:, i].values, train_x.iloc[:, 
j].values, train_y)  
24.        if mic > mi_list[i] and mic > mi_list[j]: 
25.             F.add(j) 
26. if not F: 
27.     F.add(mi_indices_sorted[0]) 
28. print("Selected features based on mutual information and conditional mutual information:") 
29. print(sorted(list(F))) 

4. Experimental Results and Analysis 

4.1. Experimental Equipment 

The experiments were conducted using a laptop (Model: LAPTOP-6QBDGDR4) equipped with an 
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AMD Ryzen 5 5600H processor @ 3.30 GHz (single processor), 16GB RAM, 64-bit operating system, 
and 512GB hard disk. Feature selection was executed using PyCharm and Python 3.6, while graphs were 
generated using Origin. 

4.2. Dataset and IDS Model 

4.2.1. Dataset and Data Preprocessing 

The NSL-KDD [20, 21] dataset is a widely used intrusion detection benchmark that represents a revised 
version of the original KDDCUP99 dataset [22]. It addresses the limitations of KDDCUP99 by eliminating 
redundant records, rationalizing the number of in-stances, and maintaining the diversity of samples [23]. 
Each record in the dataset contains 43 features, with 41 pertaining to the traffic input and the last two 
denoting labels (normal or attack) and scores (severity of the traffic input itself). Tables 1 and 2 present 
the types of attack and data distribution for the NSL-KDD dataset. 

The presence of redundant features not only affects the training results but also re-duces the training 
speed of the model. Therefore, it is necessary to downscale the irrelevant dimensions of the original 
dataset [24]. At the same time, filtering out the features that have less impact on the results can effectively 
reduce computational overhead and prevent the interference of irrelevant features. Upon the application 
of the feature selection method proposed in this study, the 41 features in the NSL-KDD dataset were 
reduced to approximately 13, as shown in Table 3. Among them, DOS attack refers to making the tar-get 
network hosts or applications inaccessible or unusable; Probe attack refers to probing the target network, 
hosts, or applications to obtain information about their topology, ser-vices, or vulnerabilities; U2R attack 
refers to obtaining super-user access to local hosts by exploiting the vulnerabilities of the target hosts; 
R2L attack refers to accessing the information and resources of the attacked system from outside the 
network by taking ad-vantage of the deficiencies of the network security mechanism. 

The CIC-IDS-2017 dataset [25, 26], a collaborative project between the Communica-tions Security 
Establishment (CSE) and the Canadian Institute for Cybersecurity (CIC), evaluates 11 datasets that have 
been available since 1998 and shows that most of them (e.g., the classic KDDCUP99, NSLKDD, etc.) 
are outdated and unreliable. Some of these datasets lack traffic diversity and capacity, some do not cover 
a wide range of known attacks, while others anonymize packet payload data, which does not reflect 
current trends. Some also lack feature sets and metadata.  

It has data collected up to 5 p.m. on Friday, July 7, 2017, for a total of five days. Mon-day was a 
normal day and includes only normal traffic. The realized attacks include Brute Force FTP, Brute Force 
SSH, DoS, Heartbleed, Web Attacks, Exfiltration, Botnets, and DDoS. They were executed on Tuesday, 
Wednesday, Thursday, and Friday mornings and afternoons, respectively, as shown in Table 4. Among 
them GoldenEye, Slowloris, hulk, Slow-HTTPTest, LOIC, HOIC are security testing tools used to 
simulate Dos attacks. The number of features in CIC-IDS-2017 dataset after using the algorithm of this 
paper is reduced from 80 to 10 as shown in Table 5. 

Table 1: Types of attacks on the NSL-KDD dataset. 

Classes: DoS Probe U2R R2L 
Sub-

Classes: apache2 ipsweep Buffer_overflow ftp_write 

 back mscan loadmodule guess_passwd 
 Land nmap perl httptunnel 
 neptune portsweep ps imap 
 mailbomb saint rootkit multihop 
 pod satan sqlattack named 
 processtable  xterm phf 
 smurf   sendmail 
 teardrop   Snmpgetattack 
 udpstorm   Spy 
 worm   snmpguess 
    warezclient 
    warezmaster 
    xlock 
    xsnoop 

Total: 11 6 7 15 
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Table 2: Data distribution of the NSL-KDD dataset. 

Dataset Number of Records: 
Total Normal DoS Probe U2R R2L 

KDDTrain+20% 25192 13449(53%) 9234(37%) 2289(9.16%) 11(0.04%) 209(0.8%) 
KDDTrain+ 125973 67343(53%) 45927(37%) 11656(9.11%) 52(0.04%) 995(0.85%) 
KDDTest+ 22544 9711(43%) 7458(33%) 2421(11%) 200(0.9%) 2654(12.1%) 

Table 3: Dataset after feature selection (NSL-KDD). 

Feature Name: Description Type Value Type 

Duration Length of time duration of the 
connection Continuous Integers 

Protocol-Type Protocol used in the connection Categorical Strings 
Service Destination network service used Categorical Strings 

Flag Status of the connection – Normal or 
Error Categorical Strings 

Src-Bytes 
Number of data bytes transferred from 

source to destination in single 
connection 

Continuous Integers 

Dst-Bytes 
Number of data bytes transferred from 

destination to source in single 
connection 

Continuous Integers 

Land 
If source and destination IP addresses 
and port numbers are equal then, this 

variable takes value 1 else 0 
Binary Integers 

Wrong-Fragment Total number of wrong fragments in 
this connection Discrete Integers 

Hot 

Number of “hot” indicators in the 
content such as: entering a system 
directory, creating programs and 

executing programs 

Continuous Integers 

Num-Failed-Logins Count of failed login attempts Continuous Integers 

Logged-In Login Status : 1 if successfully logged 
in; 0 otherwise Binary Integers 

Num-Compromised Number of “compromised” conditions Continuous Integers 

Is-Guest-Login 1 if the login is a “guest’’ login; 0 
otherwise Binary Integers 

Data preprocessing stands as the most time-consuming and fundamental step in da-ta mining, 
considering that real data often originates from different platforms and may exhibit noise, redundancy, 
incompleteness, and inconsistency [27]. Therefore, it is important to convert the raw data into a format 
suitable for analysis. The preprocessing steps include data filtering, data numericalization, and data 
discretization. 

(1) Data filtering: Given the heterogeneous nature of the platform, the raw data inevitably contains 
anomalies and redundant instances that can negatively affect classification accuracy. To address this 
issue, it is important to remove these records from the dataset before the commencement of 
experimentation. We can achieve the purpose of data filtering by removing unwanted content such as 
labels, special symbols, numbers, etc. from the data through techniques such as regular expressions, 
string matching and filtering; 

(2) Data numericalization: Eliminating differences in data scale and size is essential to ensure 
comparison occurs under uniform scales or orders of magnitude. Numericalization ensures that data with 
larger values do not disproportionately influence the model’s convergence in machine learning. This 
makes numercalization essential in handling data with different attributes on a single platform that 
contains both numeric and non-numeric values [28]. For instance, features such as "protocol type", "flag", 
and "service" in the NSL-KDD dataset are non-numeric. Through numercalization, the non-numeric 
features were transformed using a unique thermal encoding, which converts the original 41-dimensional 
features of the NSL-KDD dataset into 122-dimensional features [29]. We can use min-max normalization 
to numericalize the data. For each attribute, let minA and maxA be the minimum and maximum values 
of attribute A. An original value x of A is mapped to a value x' in the interval [0,1] by min-max 
normalization with the formula: new data = (original data - minimum value)/(maximum value - minimum 
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value). Numericization of data allows the values of indicators to be at the same order of magnitude, thus 
facilitating comprehensive analysis and comparison of indicators in different units or orders of magnitude; 

(3) Data discretization: This involves mapping a finite number of individuals in an infinite space to a 
finite space. The process helps to conserve computational resources, improve computational efficiency, 
and enhance the stability and accuracy of the model [30]. Also, data discretization is essential for 
continuous data: it converts data value distribution from continuous attributes to discrete attributes, which 
generally contain two or more value domains [31]. The result of discretization of continuous data can be 
classified into two categories, classification of continuous data into sets of specific intervals and 
classification of continuous data into specific classes. We can achieve discretization of continuous data 
using methods such as quantile method, distance interval method, frequency interval method, clustering 
method and chi-square filtering. The distribution of the data value domain will change from continuous 
to discrete attributes after processing. 

Table 4: CIC-IDS-2017 Dataset Record Date and Attack Type. 

Date of Recording Type of Attack 
Thursday-01-03-2018 Benign, Infiltration(permeability) 

Friday-02-03-2018 Benign, Bot(botnet attack) 

Wednesday-14-02-2018 Benign, SSH-Bruteforce, FTP-BruteForce, (BruteForce- violent 
attack) 

Thursday-15-02-2018 Benign, DoS-GoldenEye, DoS-Slowloris 
Friday-16-02-2018 Benign, DoS attack-hulk, DoS attacks-SlowHTTPTest 

Thuesday-20-02-2018 Benign, DDoS attacks-LOIC-HTTP, DDoS-LOIC-UDP 
Wednesday-21-02-2018 Benign, DDOS-LOIC-UDP,DDOS-HOIC 
Wednesday-21-02-2018 Benign, Brute Force -Web, Brute Force -XSS, SQL Injection 

Friday-23-02-2018 Benign, Brute Force -Web, burte Force -XSS, SQL Injection 
Wednesday-28-02-2018 Benign, Infiltration 

Table 5: Dataset after feature selection (CIC-IDS-2017). 

Feature Name: Description 
fl_dur Flow duration 

tot_fw_pk Number of packets in the positive direction 
tot_bw_pk Number of packets up in reverse 

tot_l_fw_pkt Total forward packet size 
fw_pkt_l_max The maximum size of the package is positive 
fw_pkt_l_min Package in positive upward minimum size 
fw_pkt_l_avg The average size of packets in the forward direction 
fw_pkt_l_std Size of the forward standard deviation of data packets 
bw_urg_flag Number of times the URG flag is set in the reverse packet  
bw_hdr_len The total number of bytes used for backward-oriented packet headers 

4.2.2. IDS in Fog Nodes 

Figure 1 shows how the modules function in the fog node for feature selection. The working principle 
can be described as follows: 

(1) Attribute extractor: This module is responsible for capturing network traffic, where large amounts 
of high-dimensional traffic data are transmitted from IoT devices to this module in the fog node. This 
involves storing traffic information as features that describe the behavior of the ongoing network 
activities, resulting in a primitive feature dataset; 

(2) Feature selection: Feature dimensionality reduction of the original feature set using a feature 
selection algorithm to obtain a subset of features that are highly correlated with the input target; 

(3) Attack classifier: This module is responsible for identifying attack traffic in IoT net-works and 
performing classifier attack detection on the filtered feature set. 
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Figure 1: Fog node intrusion detection model. 

4.3. Performance Analysis 

To evaluate the performance of the IDS using the proposed FI-mRMR feature selection algorithm, a 
preliminary comparison was conducted between the proposed feature selection method and the original 
method without feature selection. Tables 6 and 7 show the detection results using the original dataset and 
the parsimonious dataset on the NSL-KDD dataset, respectively. Tables 8 and 9 present the detection 
results using the original dataset and the parsimonious dataset on the CIC-IDS-2017 dataset. 

Table 6: Detection results for each classifier using the original dataset (NSL-KDD). 

Classifier: Accuracy(%) Precision(%) Recall(%) Response Time (S) 
RF 92.35 94.16 93.83 19.34 
DT 94 94.8 93.68 10.86 

KNN 95.19 95.37 95.12 54.29 
XGB 95.35 95.56 95.22 23.77 
MLP 96.9 96.93 96.63 37.51 

Table 7: The results of each classifier after reduced algorithm were detected(NSL-KDD). 

Classifier: Accuracy(%) Precision(%) Recall(%) Response Time(S) 
RF 96.67 95.87 97.61 7.71 
DT 96.35 95.95 95.26 3.11 

KNN 97.57 96.65 96.55 12.75 
XGB 97.61 96.89 96.94 9.79 
MLP 97.95 97.36 98 20.36 

Table 8: Detection results for each classifier using the original dataset(CIC-IDS-2017). 

Classifier: Accuracy(%) Precision(%) Recall(%) Response Time (S) 
RF 96.16 99.47 80.87 1018 
DT 98.22 95.05 95.61 194 

KNN 95.65 87.9 90.43 1351 
XGB 95.88 92.96 93.12 1487 
MLP 96.26 95.34 94.81 1550 

Table 9: The results of each classifier after reduced algorithm were detected(CIC-IDS-2017). 

Classifier: Accuracy(%) Precision(%) Recall(%) Response Time (S) 
RF 96.2 99.56 81.19 447 
DT 98.38 95.39 96.84 23 

KNN 98.74 96.63 98.35 210 
XGB 97.84 94.62 95.12 397 
MLP 98.12 98.27 97.97 445 
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The comparative analysis of Tables 6, 7 and 8, 9 shows that the FI-mRMR algorithm pro-posed in 
this paper selects features with high relevance and low redundancy, which im-proves the accuracy and 
precision of the evaluation indexes. This proves the effectiveness of the proposed feature selection 
method. For the dataset NSL-KDD, the number of features is reduced from 41 to 13. For the dataset 
CICIDS-2017 the number of features is reduced from 80 to 10. The time required for feature selection 
using the FI-mRMR proposed in this paper is reduced by more than 45% compared to the original method, 
which greatly re-duces the response time of the classifier and thus reduces the overall time cost. The 
effectiveness of the algorithm in this paper is demonstrated. 

Subsequently, the performance of the FI-mRMR algorithm was compared with three alternative 
feature selection techniques: mRMR, CCMI, MRI and GFS. The approximated dataset was used as input 
to the classifier to compare the detection accuracy, precision, and classifier response time of each 
algorithm across different classifiers. 

 
Figure 2: Comparison of the accuracy of the algorithms on different classifiers. 

 
Figure 3: Comparison of the precision of the algorithms on different classifiers. 

Figure 2 shows that across the same classifiers, the proposed FI-mRMR algorithm model consistently 
outperforms other feature selection algorithm models, achieving up to 98% accuracy in the MLP classifier. 
Additionally, Figure 3 shows that the precision of the FI-mRMR algorithm surpasses that of other 
algorithms, except for the RF classifier, which is slightly lower than that of the CCMI algorithm. The 
MLP classifier achieves the highest precision of approximately 97.4%. These comparisons prove the 
efficiency of the proposedalgorithm and validate the proposed IDS. Therefore, the FI-mRMR algorithm 
exhibits superior performance compared to other feature selection methods. 
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Figure 4: Response time for each classifiers. 

Fig. 4 shows that the response time of the proposed algorithm on the first four classifiers is lower 
than that of the mRMR algorithm and MRI algorithm, but it is still worse compared to the CCMI, GFS 
algorithms. On the MLP classifier, all algorithms have longer response times, with the FI-mRMR 
algorithm having the longest response time. Although the FI-mRMR algorithm obtained higher accuracy, 
further optimization is needed to im-prove the response time. 

5. Conclusions 

This study proposed a novel FI-mRMR feature selection algorithm that incorporates feature 
interaction to eliminate the inaccuracies and time-consuming processes involved in detecting intrusion 
in fog computing. The algorithm considered not only correlation and redundancy but also the 
combination between features. By integrating the maximum correlation minimum redundancy feature 
selection with feature interaction into the mRMR algorithalgorithm, intrusion detection in fog computing 
was achieved, which im-proved the precision and accuracy of the detection. In the future, we will focus 
on further reducing the classifier response time while maintaining precision and accuracy. Striking a 
balance between these factors will contribute to the broader applicability and efficiency of the proposed 
intrusion detection system in real-world fog computing scenarios. 
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