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Abstract: This paper proposes an improved Transformer-based model MVTformer for multivariate time 
series forecasting tasks. The model introduces a sparse self-attention mechanism and a time series 
feature extraction module to improve the modeling capabilities of cross-variable dependencies and long-
term dynamic features. MVTformer implemented on the PyTorch platform has good computational 
efficiency and scalability, and is suitable for complex industrial time series data scenarios. The 
experiment was carried out on a real wind power dataset. Compared with mainstream models such as 
LSTM, GRU, TCN and standard Transformer, MVTformer performed best in multiple evaluation 
indicators, fully verifying its accuracy and robustness in sequence prediction. 

Keywords: Machine Learning; Deep Learning; Time Series Modeling; Transformer Architecture; Self-
Attention Mechanism; Wind Power Forecasting; Sequence Learning 

1. Introduction 

With the widespread application of renewable energy, especially the rapid development of wind 
energy, modern power systems are facing unprecedented challenges in stability and reliability [1]. Since 
wind energy is intermittent and volatile, accurate short-term wind power forecasting is of great 
significance for achieving efficient scheduling, economic operation and safe operation of power grids 
[2]. Traditional statistical methods (such as ARIMA, autoregressive smoothing models, etc.) are often 
difficult to effectively model the complex time series dependencies of high-dimensional, multivariate, 
and strongly nonlinear wind power data [3]. 

In recent years, deep learning methods (such as recurrent neural networks (RNNs), long short-term 
memory networks (LSTMs), and temporal convolutional networks (TCNs) have achieved remarkable 
results in time series forecasting. However, these models have certain limitations, such as insufficient 
ability to model long-term dependencies and low model training efficiency. The Transformer architecture 
was originally used for natural language processing tasks. Its self-attention mechanism and high 
parallelism make it show great potential in capturing long-term dependencies and complex time series 
patterns, and it has gradually been introduced into time series forecasting tasks [4]. 

This paper proposes a multivariate time series prediction model based on an improved Transformer, 
named MVTformer, which is specifically used for wind power prediction tasks. The model introduces a 
feature selection mechanism and an enhanced attention module in its structure, which can effectively 
extract the nonlinear relationship between input variables such as wind speed, wind direction, 
temperature, and blade angle [5]. Through empirical analysis on a real wind power dataset, this paper 
compares the proposed model with a variety of mainstream prediction methods. The results show that 
MVTformer is superior to existing methods in terms of prediction accuracy and generalization ability, 
and has good engineering practicality and deployment prospects [6]. 

2. Related Work 

With the continuous increase in the installed capacity of wind farms, wind power prediction has 
gradually become a research hotspot in smart grids and new energy access systems. The current 
mainstream prediction methods can be roughly divided into three categories: physical models, statistical 
models, and data-driven models. The physical model relies on meteorological parameters and wind 
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turbine structure information. Although it has a certain theoretical basis, it is limited by the difficulty in 
obtaining external data and the high computational complexity. Statistical models such as ARIMA and 
support vector regression (SVR) are suitable for short-term predictions, and the modeling process is 
relatively simple. However, when faced with high-dimensional, nonlinear, and strongly coupled wind 
power time series data, the prediction performance is often difficult to meet actual needs [7]. 

With the development of deep learning, data-driven methods have gradually become mainstream. 
Among them, recurrent neural networks (RNNs) and their variants, such as long short-term memory 
networks (LSTMs) and gated recurrent units (GRUs), are widely used in time series modeling. Structures 
such as LSTM have improved the model's memory capacity to a certain extent and can handle 
dependency problems with longer time spans. However, due to its inherent "sequential calculation" 
characteristics, it has problems with low computational efficiency and difficulty in parallelization. In 
addition, when faced with multi-variable inputs, the model has limited ability to model the interaction 
relationship between variables [8]. 

In order to further improve the prediction accuracy and model efficiency, the Transformer 
architecture has been introduced into the field of time series prediction in recent years. This structure can 
effectively capture long-distance time series dependencies through the self-attention mechanism and has 
good parallel computing capabilities. Improved versions such as Informer, Autoformer, FEDformer, etc 
[9]. have further improved performance by introducing sparse attention, trend decomposition, frequency 
domain enhancement and other mechanisms. This type of method has achieved remarkable results in the 
fields of power load forecasting and traffic flow forecasting. Some studies have also applied it to wind 
power forecasting, showing good development potential [10].  

However, there are still some shortcomings in the current Transformer-based wind power forecasting 
research. For example, most models directly use the original multivariable inputs, do not model the 
importance of the variables, and easily introduce redundant information; at the same time, some methods 
have complex structures and high training costs, which are not conducive to deployment in actual wind 
farms. Therefore, designing a Transformer prediction model with a simple structure, strong modeling 
capabilities, and suitable for multivariate wind power data is still a problem with practical significance 
and research value [11]. 

3. Proposed Method 

In order to solve the problems of long-term dependency modeling and insufficient variable coupling 
expression in wind power time series forecasting, this paper proposes an improved Transformer model 
structure, named MVTformer (Multi-Variable Time-series Transformer) [12]. Before introducing the 
structure of this model, this paper first reviews the traditional Transformer architecture and analyzes its 
limitations in time series modeling [13]. 

3.1 Traditional Transformer Structure 

 
Fig.1 Transformer original structure diagram 
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Transformer was first proposed by Vaswani et al. in the field of natural language processing, and its 
typical structure is shown in Figure 1. The model mainly consists of modules such as Multi-Head 
Attention, Feed Forward Network, and Add & Norm. After the input sequence passes through the 
embedding layer and position encoding, it is processed by the encoder and decoder networks in turn, and 
finally outputs the prediction result [14]. 

Although this architecture performs well in modeling long text contexts in natural language, it has 
the following problems when directly applied to wind power prediction tasks: Redundant calculation 
problem: The computational efficiency of the fully connected self-attention mechanism is low when 
processing long sequences; Insufficient feature fusion: The original structure does not explicitly consider 
the coupling relationship between multiple variables; Weak generalization ability: Faced with the 
problems of high noise and periodic instability in wind power data, the original Transformer lacks 
targeted design [15]. 

3.2 Model Overview 

In order to improve the accuracy of wind power prediction, MVTformer introduces multivariate 
embedding, feature selection module and sparse attention mechanism based on the traditional 
Transformer, which effectively enhances the model's time series modeling ability and feature expression 
ability. The overall architecture of the model is shown in Figure 2. 

 
Fig.2 MVTformer structure diagram 

3.3 Input Representation 

Let the multivariate time series be denoted as: 

 1 2{ , , , } T d
TX x x x ×= … ∈                         (1) 

Where T is the length of the time series (number of time steps), and d is the number of input features 
at each time step (e.g., wind speed, wind direction, temperature, blade angle, etc.). 

Each input vector 𝑥𝑥𝑡𝑡 is first projected into a common latent space of dimension 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 using a 
linear transformation: 

 , modelT d
t e t eE W x b E ×= + ∈                         (2) 

To preserve temporal order information, we add a learnable positional encoding to the embedded 
sequence: 

 0Z E P= +                                 (3) 

This final embedded representation 𝑍𝑍0 is then fed into the subsequent Transformer encoder layers 
for temporal modeling and feature extraction. 
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3.4 Enhanced Transformer Encoder 

The standard Transformer relies on global self-attention to compute dependencies between all time 
steps, resulting in a quadratic computational complexity of O(𝑇𝑇2) , where T is the sequence length. To 
improve efficiency and adapt the architecture to time series forecasting, we introduce a sparse self-
attention mechanism, inspired by the Informer architecture, which preserves only the top-k attention 
scores. 

 Attention( , , ) softmax Topk
k

QKQ K V V
d

  
 =      



                  (4) 

Here, the query Q ,key K, and value V matrices are computed as: 

 , ,Q K VQ ZW K ZW V ZW= = =                          (5) 

To stabilize training and preserve feature propagation, we apply residual connections and layer 
normalization after each attention and feedforward block: 

 1 LayerNorm( Attention( ))l l lZ Z Z+ = +                        (6) 

 1 1 1LayerNorm( FeedForward( ))l l lZ Z Z+ + += +                      (7) 

In our architecture, we also include a temporal feature extraction module before the attention block, 
which enhances the model's ability to capture short-term patterns and multiscale dependencies. 

By integrating sparse attention, residual learning, and temporal enhancement, the encoder is able to 
capture both local and global dependencies more efficiently and effectively, even in high-dimensional 
wind power time series data. 

3.5 Forecasting Head 

After passing through the Transformer encoder layers, the final hidden representation at the last time 
step 𝑍𝑍𝑇𝑇 is fed into a fully connected layer for regression to obtain the wind power prediction for the 
next H time steps. 

 1:ˆ MLP( )t t H Ty Z+ + =                             (8) 

For multi-step forecasting scenarios, the output is a sequence of predicted values: 

 1 2
ˆ ˆ ˆ ˆ{ , , , }t t t HY y y y+ + += …                           (9) 

To improve the model’s forecasting ability, we optionally adopt a recursive or direct prediction 
strategy. In the recursive approach, the output of each time step is fed back as part of the input for the 
next prediction. In the direct approach, the model is trained to predict all HHH future steps 
simultaneously. 

3.6 Loss Function 

To optimize the forecasting performance, we adopt the Mean Squared Error (MSE) as the primary 
loss function, which measures the average squared difference between the predicted and actual wind 
power values over the prediction horizon H. The loss function is defined as: 

 ( )2

1

1 ˆ
H

MSE t i t i
i

y y
H + +

=

= −∑                              (10) 

This loss function penalizes large deviations more heavily and encourages the model to make accurate 
multi-step predictions. During training, the model parameters are updated via backpropagation using 
gradient descent–based optimizers such as Adam. 
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4. Experiments and Results 

4.1 Dataset Description 

In this study, we utilize real-world operational data collected from a wind farm located in northern 
China. The dataset spans over 12 months and consists of high-frequency time series measurements 
related to wind turbine performance and environmental conditions. Each data point represents a 10-
minute interval, resulting in over 50,000 timestamped records. 

The dataset contains both meteorological variables and turbine operating parameters. These variables 
are used as input features to predict the future wind power output. Table 1 summarizes a portion of the 
dataset structure. 

Table 1 Main Variables and Descriptions 
Timestamp Wind 

Speed (m/s) 
Wind 

Direction (°) 
Temperature 

(°C) 
Blade 

Angle (°) 
Historical 

Power (kW) 
Target Power +1h 

(kW) 
2023-05-01 00:00 5.24 198.3 16.2 3.5 302.6 355.1 
2023-05-01 00:10 4.97 202.7 16.0 3.7 310.8 360.3 
2023-05-01 00:20 5.18 205.2 15.9 3.6 328.2 374.0 

... ... ... ... ... ... ... 
In order to improve the generalization ability and convergence of the model, all input features are 

normalized to zero mean and unit variance. The dataset is divided into training set, validation set and test 
set according to the ratio of 8:1:1. 

4.2 Experimental Setup 

All experiments were conducted using Python 3.10 and the PyTorch 2.0 deep learning framework on 
a workstation equipped with an Intel Xeon Gold 5218 CPU, NVIDIA RTX 3090 GPU (24GB), and 
128GB RAM running Ubuntu 20.04. The input sequence length was set to T = 36 (6 hours of historical 
data), and the prediction horizon was H = 6 (1 hour ahead). All models were trained using the Adam 
optimizer with early stopping based on validation loss. 

Table 2 shows the parameter settings of the model. 

Table 2 Hyperparameters and training settings 

Parameter Value 
Input sequence length (T) 36 

Forecast horizon (H) 6 
Batch size 64 

Learning rate 0.001 
Optimizer Adam 

Number of epochs 100 
Hidden dimension 128 
Transformer layers 2 

Attention heads 4 
Dropout rate 0.1 

Positional encoding Learnable 
Early stopping patience 10 epochs 

We adopted the following commonly used metrics to assess the model performance: 

Mean Absolute Error (MAE): 

 
1

1 ˆMAE
H

t i t i
i

y y
H + +

=

= −∑                              (11) 

Root Mean Squared Error (RMSE): 

 ( )2

1

1 ˆRMSE
H

t i t i
i

y y
H + +

=

= −∑                          (12) 

Mean Absolute Percentage Error (MAPE): 
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These metrics collectively reflect the average prediction error, the severity of large deviations, and 
the relative accuracy across different scales of wind power output. 

4.3 Experimental Results and Analysis 

To evaluate the effectiveness of the proposed MVTformer model, we compare it against several 
commonly used baselines, including traditional machine learning and deep learning approaches. These 
include ARIMA, LSTM, GRU, TCN, and a standard Transformer. All models were trained on the same 
dataset with identical input-output configurations for fairness. 

We summarize the quantitative prediction results on the test set in Figure 3. Our proposed 
MVTformer outperforms all baseline models in terms of MAE, RMSE, and MAPE, demonstrating 
superior accuracy and stability. 

 
Fig.3 Performance comparison of different models on the test set 

To better illustrate the forecasting performance, we visualize the predicted wind power versus the 
actual ground truth on several randomly selected time windows. As shown in Figure 4, MVTformer 
yields more accurate and smoother predictions with reduced lag and overshooting, especially during 
rapid fluctuations. 

 
Fig.4 Prediction curve visualization 

We also evaluate how the forecast accuracy changes with longer forecast horizons. As shown in 
Figure 5, MVTformer maintains lower MAE and RMSE at longer forecast steps (e.g., 1 to 6 steps ahead), 
indicating its stronger long-term modeling capability compared to the baseline method. 
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Fig.5 Multi-step forecast error trend chart 

5. Conclusion 

This paper proposes a new Transformer model for multivariate time series forecasting, MVTformer, 
which performs structural optimization on the strong multivariate dependency and time series 
characteristics in wind power forecasting. Compared with the traditional Transformer structure, 
MVTformer introduces a sparse self-attention mechanism and a time series feature extraction module, 
which significantly improves the modeling ability of local time series changes and long-term dependency 
patterns, and has stronger sequence feature learning capabilities. 

In terms of implementation, MVTformer is developed based on the PyTorch deep learning framework, 
has a good modular structure and parallel computing capabilities, and is compatible with multi-GPU 
training environments. The design of the entire model fully reflects the scalability and efficiency of 
modern neural network engineering, and provides a generalizable reference architecture for complex 
industrial time series modeling. 

Through experimental evaluation on a real wind farm dataset, MVTformer outperforms benchmark 
methods such as LSTM, GRU, TCN, and standard Transformer in terms of MAE, RMSE, and MAPE. 
Especially in multi-step forecasting tasks, the model shows a smoother error growth trend and stronger 
robustness, effectively alleviating the drift problem of traditional methods in long-term forecasting, and 
verifying its adaptability in actual complex scenarios. 

In future work, we will further expand the capabilities of MVTformer, including introducing external 
meteorological information, enhancing the model's online learning capabilities to adapt to real-time 
deployment scenarios, and exploring model compression and distillation methods to adapt to edge 
deployment. These directions will promote the implementation and development of the Transformer 
structure in key applications such as smart grids and industrial control. 
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