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Abstract: With the accelerated advancement of global digitalization, information interconnectivity has 
become a fundamental characteristic of modern society. During this transformative process, the security 
vulnerabilities of traditional identity authentication systems have become increasingly prominent: 
current systems primarily rely on physical credentials and multi-factor password mechanisms. These 
static verification methods not only suffer from inherent weaknesses such as susceptibility to loss and 
forgery but may also lead to severe personal privacy breaches and societal security risks due to 
information leakage. In the face of increasingly sophisticated cybersecurity threats, the development of 
novel identity authentication technologies has become an urgent necessity for ensuring digital security. 
As a critical direction in identity authentication, biometric technology verifies identity by analyzing 
individuals' unique physiological or behavioral characteristics. Among these, iris recognition technology 
demonstrates significant technical superiority and broad application prospects due to its liveness 
detection capability, contactless acquisition, high uniqueness, long-term stability, and inherent anti-
counterfeiting properties. However, existing iris recognition technologies still face major challenges in 
practical applications: not all scenarios can provide sufficient computational resources or deployment 
space. To address this critical issue, this study innovatively proposes a longitudinal gray-scale 
integration-based iris segmentation method. This approach can operate efficiently on miniaturized PCs 
or embedded processors while achieving precise center localization, thereby providing a reliable 
foundation for subsequent iris texture recognition.  

Keywords: Machine Vision, Gray-Scale Integration, Iris Segmentation, Hamming Distance, Iris 
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1. Related work 

Since the 1960s, biometric technology has evolved significantly and achieved commercial application 
by the 1990s[1]. Biometric characteristics can be classified into physiological and behavioral features, 
which have become a secure and reliable means of identity authentication due to their uniqueness and 
resistance to counterfeiting. Among these, iris recognition is considered one of the most secure biometric 
technologies owing to its high accuracy, contactless operation, and strong anti-spoofing capabilities, 
finding widespread applications in identity verification, access control systems, and related fields[2-3]. 

However, the key technical challenge lies in iris localization, primarily affected by the following 
factors: physiological interference, imaging conditions, user cooperation, and hardware limitations of 
capture devices[4]. Current iris localization methods are mainly divided into two categories: traditional 
vision algorithms and deep learning approaches[5]. Although neural networks demonstrate superior 
accuracy, their reliance on large-scale training data and high computational costs make them difficult to 
deploy efficiently on low-power devices[6]. Therefore, traditional vision methods remain competitive in 
scenarios demanding real-time performance or operating under resource constraints. Future research will 
focus on developing iris recognition algorithms that simultaneously achieve high precision, low power 
consumption, and strong robustness[7]. 

In the field of iris segmentation, Daugman's classical algorithm employs differential integral 
operators to achieve precise localization, but it suffers from a cubic time complexity bottleneck[8] 
Subsequently, Wildes proposed an improved approach that combines edge detection in raw images with 
a parameter-space voting mechanism based on circular Hough transform, optimizing time complexity 
while maintaining localization accuracy[9]. Huang's team introduced a multi-scale hierarchical search 
strategy, effectively reducing localization time through a progressive precision enhancement 
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mechanism[10]. Liu's team explored the application of the Canny edge detector in accelerating Hough 
transform-based localization[11] Sung's team proposed a bisection method for inner iris boundary 
localization, combined with histogram equalization and statistical feature analysis to construct the outer 
contour[12]. Feng's team developed an improved solution targeting the performance limitations of 
traditional iris segmentation algorithms[13] however, due to high computational complexity, segmentation 
accuracy significantly degrades in complex scenarios involving eyelid occlusion, lens reflection, or pupil 
deformation. 

2. Principle of Iris Outer Boundary Localization 

The longitudinal gray-scale integration method employed in this study operates by preserving a local 
mask pattern determined relative to the pupil center. The pupil boundary exhibits symmetry about the x-
axis, and since the outer iris boundary approximates a concentric circle with the pupil, it inherits this 
geometric property. As illustrated in Figure 1, the annular outer iris boundary undergoes adaptive 
thresholding via mean-value processing during cropped iris image analysis. This operation converts the 
image into a binary format while suppressing transitional zones through black-level assignment. 

 

Figure 1 Schematic diagram of the transition zone 

The selector subsequently determines the search area. Since the transition zone in this binary image 
forms an incomplete but still annular structure symmetric about the x-axis, its slope varies progressively 
along the x-axis. The grayscale integral accumulation reaches its maximum (manifesting as a wave 
trough) where the slope is steepest (i.e., when the tangent is perpendicular to the x-axis). Based on 
circular geometry, when setting the circle center as the origin, the maximum slopes occur at the junctions 
of quadrants I/IV and II/III. The line connecting these two points represents the diameter, allowing 
determination of the pupil's diameter through their x-coordinate spacing. This data subsequently 
identifies the circle center and completes segmentation, as illustrated in Figure 2. 

 
Figure 2 Schematic diagram of longitudinal gradient integral scanning principle 

The algorithm employs vertical gradient integration scanning along the x-axis, where distinct vertical 
lines represent the scanning paths. Given the preserved circular characteristics in the transition zone, the 
grayscale accumulation during integration progressively increases from the outermost boundary (marked 
by green lines), reaches a peak at the transition zone center (indicated by red lines), then gradually 
decreases toward the innermost boundary (denoted by blue lines). The center position of the transition 
zone is determined by detecting the trough within a specified search range in the gradient histogram. 

3. Implementation of Iris Localization and Segmentation Algorithm 

3.1 Overall algorithm design 

Iris segmentation processing is a technical procedure that accurately extracts the iris and pupil regions 
by eliminating visual interferences such as the sclera, eyelid occlusion, and light spots. Its essence 
involves segmenting the pupil edge , segmenting the outer iris boundary, and locating their center points. 
The segmentation algorithm designed in this paper integrates edge detection, Hough circle transform, 
dynamic threshold segmentation, grayscale histogram analysis, and other methods. It achieves iris region 
localization and segmentation in eye images by combining threshold-based extraction with adaptive iris 
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edge localization. The implementation workflow is illustrated in Figure 3. 

  
Figure 3 Algorithm implementation flow chart 

3.2 Image preprocessing 

For more effective extraction of light spots in the pupil area, image inversion followed by binarization 
processing can directly render the light spots as black void points. 

 
Figure 4 Image inversion and binarization 

In the binarized image shown in Figure 4, both the pupil region and eyelash artifacts are visible, with 
the latter containing fine noise points. The presence of these artifacts may adversely affect subsequent 
light spot removal. By performing contour detection followed by hole-filling operations on all identified 
contours, this procedure aims to preliminarily delineate the circular pupil area while simultaneously 
closing any contained light spot regions. 

By performing the Hough circle transform, we can further screen out circular regions that cover the 
pupil area without interference from other connected regions, as demonstrated in Figure 5. 

 
Figure 5 Hough circle transformation and gray filling 

After the above operations, we have initially obtained the pupil boundary, but it is only roughly 
circular at this stage. By applying the Hough circle transform based on the existing contour, we further 
refine and accurately determine the pupil region. 

3.3 Iris segmentation and extraction algorithm 

In the iris segmentation process, the outer iris boundary is located based on the center and radius of 
the pupil circle, utilizing the property that the pupil and iris circles are approximately concentric[14]. 
Through the aforementioned steps, we have completed the detection of the pupil boundary and stored its 
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center coordinates and radius data. Based on this data, since we adopt a grayscale-based approach to 
locate the outer iris boundary, eyelash interference in the original captured image can significantly affect 
the grayscale values. 

Finally, the edge localization is achieved through vertical grayscale integral projection. A vertical 
grayscale integral projection is performed on the binary image by calculating the sum of grayscale values 
for each column. The previously stored pupil center coordinates and radius information are retrieved to 
classify the search range for the outer iris boundary. 

Based on the defined search interval, the integral projection values within this range are extracted. 
The column indices corresponding to the minimum integral projection values within the left and right 
intervals are identified and marked on the preprocessed image. These troughs are determined to represent 
the outer iris boundary. 

After obtaining the column positions of the outer iris edges in the horizontal direction (i.e., 
determining the diameter of the iris circle), we set the pupil center coordinates as (x0, y0). The horizontal 
coordinates of the outer iris edge columns are designated as p1 (corresponding to the right peak) and p2 
(corresponding to the left peak). From these values, we calculate the iris center coordinates I(x1, y1) and 
radius r1 using the following formulas: 

�
𝑟𝑟1 = 𝑝𝑝2−𝑝𝑝1

2

𝑥𝑥1 = 𝑝𝑝2+𝑝𝑝1
2

 
𝑦𝑦1 = 𝑦𝑦0

                              (1) 

Based on Equation 1, the center coordinates and radius corresponding to the outer iris boundary can 
be calculated. We plot these parameters on the original image and store the resulting data. The final 
output is shown in Figure 6. 

 
Figure 6 Final result of iris segmentation and pupil segmentation 

4. Implementation of iris recognition matching algorithm 

After achieving precise localization and segmentation of the iris region in ocular images, the core 
challenge of the entire iris recognition system lies in efficiently extracting the rich textural features 
embedded within. Simultaneously, it is essential to select appropriate distance metric functions tailored 
to different feature extraction methods to accurately quantify their similarities.The phase information 
extracted by Gabor filters is represented in binary form.  

Considering matching efficiency, the Hamming distance is adopted as the similarity metric to 
conveniently compute the similarity between multiple feature encodings [15]. Originally applied to error-
control coding in data transmission, this distance metric measures the number of differing character 
positions between two strings - i.e., the minimum substitutions required to transform one string into 
another. For binary strings a and b, their Hamming distance equals the count of '1's in their XOR operation 
result. The corresponding formula for iris binary codes is as follows: 

ℎ{𝑅𝑅0,𝐼𝐼𝑚𝑚} =  sgn{𝑅𝑅0,𝐼𝐼𝑚𝑚} ∬ 𝐼𝐼𝜌𝜌𝜌𝜌 (𝜌𝜌,𝜃𝜃)𝑒𝑒− sgn(𝜃𝜃0−𝜃𝜃)𝑒𝑒−(𝑟𝑟0−𝜃𝜃) 2
𝑒𝑒2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌               (2) 

Here, I(p,θ) represents the iris image. The 2D Gabor filter is formed by the composition of a Gaussian 
filter and a sinusoidal function. Although this transformation sacrifices some global frequency-domain 
resolution, it exhibits excellent local spatial responsiveness[16] The output of this filtering method is a 
complex number. Based on the quadrant distribution characteristics in the complex plane, the 
transformation results are encoded into four binary combinations: [0 0], [0 1], [1 0], and [1 1]. The 
corresponding quadrant-to-encoding mapping is illustrated in Figure 7. 
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Figure 7 Two dimensional gabor filtering coding map corresponding to different quadrants 

We can observe that the essence of this filtering transformation is to convert iris features into binary-
code-based feature vectors. This approach is inherently compatible with computer binary computation 
and facilitates subsequent encoding matching. Denoting the final result as code, its mathematical 
formulation is presented below: 

code =  (B1, B2, B3, . . . Bj. . . Bk )                           (3) 

Thus, depending on which quadrant of the complex plane the result falls into, the corresponding iris 
feature encoding Bj is determined by the following formula: 

⎩
⎨

⎧
ℎ𝑟𝑟 > 0,ℎ𝑖𝑖 > 0
ℎ𝑟𝑟 > 0,ℎ𝑖𝑖 < 0
ℎ𝑟𝑟 < 0,ℎ𝑖𝑖 > 0
ℎ𝑟𝑟 < 0,ℎ𝑖𝑖 < 0

⇒

⎩
⎪
⎨

⎪
⎧𝑏𝑏𝑗𝑗 = 11
𝑏𝑏𝑗𝑗 = 10
𝑏𝑏𝑗𝑗 = 01
𝑏𝑏𝑗𝑗 = 00

                      (4) 

We conducted similarity detection based on Hamming distance for two distinct databases: one 
containing the target iris and another excluding it. With a threshold set at 0.35, each test group comprised 
100 images. After systematically comparing all images in the test groups against the target image, the 
visualization results display: (1) the test iris image, (2) its corresponding normalized iris image, and (3) 
the image with the highest similarity score from the traversal process. These comparative results are 
presented in Figures 8 and Figures 9, respectively. 

 
Figure 8 Match to target iris image 

 
Figure 9 The target iris image is not matched 
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5. Experimental Process and Results Analysis 

5.1 Experimental Process 

To validate recognition accuracy, we simulated iris acquisition scenarios using images from the JLU 
Iris Database developed by the Biometrics and Information Security Research Laboratory at Jilin 
University. The simulated images replicate raw iris images captured by embedded acquisition systems 
for accuracy testing. To achieve optimal performance, we fine-tuned specific algorithm parameters. All 
experimental samples (n=100) were sourced from the JLU-2.0 Iris Database. 

The experiment conducted a comparative analysis with the traditional Daugman algorithm, evaluating 
algorithm performance through accuracy metrics. The comparison results are presented in Table 1. 

Table 1 Comparison table of accuracy between this algorithm and traditional Daugman algorithm 

Serial Number name ACC(%) 
1 Daugman 93 
2 Ours 99 

5.2 Experimental Process 

To validate the effectiveness of the image preprocessing stage, this section specifically designs an 
ablation experiment targeting this module. We perform iris localization and segmentation on both 
preprocessed and non-preprocessed images, then compare their accuracy. For intuitive demonstration, 
we intentionally select images with significant interference for comparison. The comparative results 
with/without preprocessing are shown in Figure 10. 

  
Figure 10 Preprocessed (left) vs. raw (right) image contour extraction comparison 

As observed, the non-preprocessed images yield inaccurate results when performing Hough circle 
transform for contour detection. We randomly selected 100 images and divided them into two groups 
(with/without preprocessing) for localization and segmentation. The accuracy comparison results are 
presented in Table 2. 

Table 2 Comparison table of accuracy between this algorithm and traditional Daugman algorithm 

Serial Number Pretreatment ACC(%) 
1 Yes 99 
2 No 94 

The results demonstrate that the preprocessing stage significantly improves localization accuracy. 
Through verification, we found that non-preprocessed images achieving accurate localization typically 
contained concentrated highlight regions that did not intersect with pupil boundaries. Conversely, 
localization failures occurred when highlights approached, intersected, or overlapped with pupil 
boundaries, thereby disrupting the Hough circle transform's voting accuracy. Preprocessing effectively 
eliminates this interference through grayscale inpainting, enabling consistent and accurate localization 
and segmentation. 

6. Conclusion 

Experimental results demonstrate that compared to conventional methods, the proposed approach 
exhibits superior adaptability to various environmental interferences (e.g., eyelashes, light spots). 
Additionally, a Gaussian-weighted method for generating mask images is introduced to accommodate 
gradually varying illumination in captured images, further enhancing usability. 

In summary, the proposed segmentation algorithm combines dynamic threshold extraction with iris 
edge localization through grayscale integration. It leverages the relatively easier-to-locate pupil edge via 
Hough circle transform for precise initial positioning, which subsequently facilitates indirect calculation 
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of the iris center through grayscale integration of both iris edges. 

To address potential Hough transform inaccuracies caused by edge light spots, a preprocessing 
grayscale inpainting technique was implemented. Furthermore, a physiologically constrained classifier 
based on pupil information effectively mitigates false peaks/valleys caused by excessive iris search 
ranges. These solutions collectively ensure both accuracy and generalizability. 
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