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Abstract: Skeleton-based action recognition has attracted increasing attention due to its compact data 
representation and robustness against appearance variations. Although Graph Convolutional Networks 
(GCNs) have demonstrated strong performance by modeling spatial dependencies among joints, they 
still face challenges in capturing long-range interactions and multi-scale temporal dynamics. To address 
these limitations, we propose a novel framework, DAA-GCN (Dynamic Adaptive Attention Graph 
Convolutional Network), which comprises two core modules: the Spatio-Temporal Adaptive Feature 
Extractor (STAFE) and the Multi-Perspective Fusion Graph Attention (MPFGA). STAFE integrates 
long-range spatio-temporal graph convolutions with multi-branch temporal convolutions to effectively 
capture both short-term and long-term motion patterns, while MPFGA enhances feature representations 
by combining global self-attention with local additive attention, thereby balancing global context with 
local structural information. We evaluate the proposed DAA-GCN on two benchmark datasets, NTU 
RGB+D 60 and NTU RGB+D 120, under both cross-subject and cross-view/setup protocols. 
Experimental results show that DAA-GCN consistently outperforms state-of-the-art methods, and 
ablation studies further confirm the effectiveness of each module in the overall architecture. In summary, 
DAA-GCN presents a robust and scalable solution for skeleton-based action recognition, with promising 
applications in human-computer interaction, video surveillance, and healthcare monitoring. 
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1. Introduction 

As one of the core tasks in the field of computer vision, human skeleton based action recognition has 
important application value in human-computer interaction, intelligent monitoring and medical 
assistance. Early research methods mainly relied on manually designed features, such as joint motion 
trajectories, relative positions of joint points, and temporal dynamic descriptors. Although these methods 
have achieved some results, their feature expressiveness is limited due to manual design constraints and 
a lack of robustness to viewpoint changes and noise interference[1].  

The rise of deep learning has revolutionized this field, and convolutional neural networks (CNNs) 
have shown significant advantages in spatio-temporal feature extraction of skeleton sequences through 
end-to-end learning. Representative works such as ST-GCN introduced spatial-temporal graph modeling 
to joint association coding for the first time, and subsequent studies captured multi-scale motion patterns 
through hierarchical CNN architectures[2]. However, CNNs exhibit inherent limitations when processing 
non-Euclidean data. Their underlying assumptions, which rely on grid-like (rasterized) input structures, 
are fundamentally misaligned with the graph-based topology of human skeletal data[3]. In order to adapt 
CNN input requirements, researchers have to pre-process the skeleton data with rasterization, resulting 
in distorted anatomical topological relationships and weakened geometric invariance[4].  

Graph Convolutional Networks (GCNs) provide a theoretical framework to solve the above problems. 
By modeling the human skeleton as graph-structured data with joints as nodes and skeletal connections 
as edges, GCN can directly preserve its topological integrity and achieve adaptive learning of spatial 
dependencies based on local spectral filtering[5]. Compared to traditional methods, skeleton-based action 
recognition approaches leveraging GCNs offer three significant advantages: (1) the capability to 
explicitly encode anatomical priors through a learnable adjacency matrix; (2) effective integration of 
structural information via hierarchical graph propagation mechanisms; and (3) seamless modeling of 
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spatiotemporal dynamics by incorporating temporal convolutional modules[6]. In recent years, the 
discriminative power of GCN-based models has been further enhanced through the introduction of 
attention mechanisms, multi-scale feature aggregation strategies, and other advanced techniques[7]. These 
improvements have led to state-of-the-art performance on widely used benchmark datasets, such as NTU 
RGB+D and Kinetics-Skeleton[8].  

Nevertheless, several critical challenges remain in the current approach. First, joint occlusions in 
complex scenes frequently disrupt the continuity of feature propagation paths. Second, the large spatial 
distances between certain joint pairs hinder effective information exchange, thereby reducing action 
recognition accuracy[9]. Third, there is an inherent trade-off between computational efficiency and 
recognition performance, particularly in real-time deployment scenarios[10]. 

In this study, a novel skeleton behavior recognition model called Dynamic Adaptive Attention Graph 
Convolution Network (DAA-GCN) is proposed, which aims to fully exploit the spatio-temporal features 
of human skeleton sequences and enhance the dependencies between long-distance skeleton nodes. 
Experiments show that the method has some improvement over the existing models on the NTU-RGB+D 
dataset[11].  

2. Methods 

2.1 DAA-GCN Framework 

The network mainly consists of Spatio-Temporal Adaptive Feature Extractor (STAFE) and Multi-
Perspective Fusion Graph Attention (MPFGA) modules with global Pooling and Fully Connected Layer 
for classification. As shown in Fig. 1, the input skeleton sequence is first processed by three stacked 
STAFE modules, followed by the MPFGA attention module. The alternate arrangement of STAFE and 
MPFGA layers allows progressive integration of local and global information. 

 
Figure 1: Overview of the DAA-GCN architecture. STAFE: Spatio-Temporal Adaptive Feature 

Extractor; MPFGA: Multi-Perspective Fusion Graph Attention; FC: Fully Connected Layer; GAP: 
Global Average Pooling. 

The dimensions of the input data are 𝐶𝐶𝑖𝑖𝑖𝑖 × 𝑇𝑇 × 𝑁𝑁 ,where 𝐶𝐶𝑖𝑖𝑖𝑖  represents the number of input 
channels, 𝑇𝑇 denotes the number of frames per input sequence, and 𝑁𝑁 denotes the number of human 
joints. The output of the model is a probability distribution over action categories, obtained through a 
softmax activation function applied to the fully connected layer. 

After the skeleton data are preprocessed, the features are firstly learned by the STAFE module, which 
adopts a GCN-based approach to model the skeleton topology and extract spatio-temporal features by 
combining the information of the temporal dimension. For the three-part STAFE module in the network 
architecture, the number of channels is set to 64, 128, and 256, respectively. The first five layers of the 
network, STAFE, are mainly used for local feature extraction to enable the model to recognize short time-
series action patterns; subsequently, the MPFGA module is inserted into the network to enhance the 
correlation between different skeleton nodes and optimize the feature representation. This module 
employs a multi-view attention mechanism to fuse information from different scales of the skeleton 
graph,thus enhancing the model's ability to perceive complex behaviors. 

After MPFGA, the network continues to stack STAFE layers to further learn the fused global features. 
The design of this alternating structure enables the model to integrate information at different layers and 
fully utilize the long and short-term dependencies. In addition, MPFGA employs an adaptive attention 
mechanism to dynamically adjust the weights among different nodes, thus optimizing the spatial 
representation capability of skeleton features. 

Finally, after a series of STAFE and MPFGA processing, the features are downscaled by Global 
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Average Pooling (GAP) to reduce redundant information, and fed into Fully Connected (FC) layer for 
classification. The classification results are used to output the category probability distribution through 
the softmax layer to finally predict the behavioral categories. 

2.2 Spatio-Temporal Adaptive Feature Extractor (STAFE) 

2.2.1 Motivation 

One of the core challenges in the task of Skeleton-based Action Recognition (SAR) for the human 
skeleton lies in how to effectively model the spatial relationships between joints and the dependency of 
long time-series information[12]. Currently, GCN-based methods have made significant progress in spatial 
modeling, but the following problems still exist[13].  

The first is the insufficient modeling of remote joint point relationships14]. [For traditional GCNs, 
information propagation is usually based on the predefined topology of the human skeleton, which can 
only capture the dependencies of local neighboring joints, but cannot effectively model the interactions 
between remote joints, such as the synergistic movements of the hand and the leg[15].  

Secondly, the ability to model temporal information is limited. Existing methods tend to process 
temporal information through single-scale temporal convolution or temporal pooling, which lacks the 
ability to capture behavioral patterns at different time scales, leading to insufficient long-time 
dependency modeling. 

Aiming at the above problems STAFE is used to enhance the modeling capability of long-range joints 
dependencies under the GCN framework, and at the same time improve the capturing effect of long time-
series information. The module consists of Long-Range Enhanced Spatio-Temporal Graph Convolution 
(LREST-GC) and Temporal Convolution Module (TCM).LREST-GC enhances the remote joints 
dependency modeling by introducing adaptive LREST-GC enhances the information interaction between 
remote joints by introducing an adaptive adjacency matrix, while TCM adopts a multi-scale temporal 
convolution structure to realize the fusion modeling of short-time dependence and long-time dependence. 
The overall structure is shown in Fig. 2. In Fig. 2, the input features are processed in two branches: the 
upper branch corresponds to LREST-GC, responsible for spatial modeling, and the lower branch is the 
TCM block designed for multi-scale temporal modeling. 

 
Figure 2: Architecture of the STAFE module. The module consists of LREST-GC (Long-Range 

Enhanced Spatio-Temporal Graph Convolution) and TCM (Temporal Convolution Module) branches. 

The STAFE module achieves efficient spatio-temporal modeling of human skeleton data by 
combining the capabilities of LREST-GC and TCM. LREST-GC enhances the relationship between 
remote joints by using adaptive adjacency matrix and adopts a dual-path feature extraction strategy, 
which achieves effective combination of local and global information. Conversely, TCM leverages a 
multi-scale temporal convolutional framework to effectively model human skeletal motion over both 
short and long temporal ranges, while a multi-branch fusion mechanism is incorporated to further enrich 
temporal information representation. Skeleton motion patterns are modeled from short-time and long-
time perspectives, and the expression ability of temporal information is enhanced with the help of a multi-
branch fusion mechanism. The whole STAFE module can be optimally trained in an end-to-end 
framework, and ensures stable propagation of gradients through batch normalization and residual 
concatenation. 
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2.2.2 Long-Range Enhanced Spatio-Temporal Graph Convolution (LREST-GC) 

LREST-GC is mainly used to enhance the spatial feature modeling capability of skeleton data, 
breaking through the limitation that traditional GCN can only deal with local neighboring nodes, making 
the model able to capture the spatial association information of key joints in the global scope. Its structure 
is shown in Figure 3. In Fig. 3, the top path uses 1×1 Conv and temporal pooling to capture local joint 
features. The bottom path applies Deformable Graph Convolution (DGC), guided by a Dynamic 
Adjacency Matrix (DAM), to enhance long-range joint interactions. The refined features are then passed 
through a tanh activation followed by a refinement block. 

 
Figure 3: Illustration of the LREST-GC module, which includes dual-path processing, adaptive graph 

learning, and feature enhancement steps. 

Adaptive long-range modeling approach: the DGC module is employed to model the association 
weights between remote joints in a learnable manner. Specifically, we break the limitation of predefined 
topology by constructing DAM to compute remote dependencies using feature similarity. 

Dual-Path Feature Extraction Method:LREST-GC uses a dual-path structure for feature extraction. 
Path 1 uses 1×1 convolution (Conv 1×1) + Temporal Pooling to enhance the representation of local joint 
point information. Path 2 adopts Deformable DGC for dynamically adjusting the adjacency matrix so 
that information between remote joints can be efficiently interacted. 

Nonlinear Transformation and Feature Enhancement Methods: After extracting the features by DGC, 
we introduce the hyperbolic tangent (Tanh) activation function to enhance the nonlinear expression 
ability of the features, and refine the features by RefineA module to make the information propagation 
more robust. 

For the input skeleton data 𝑋𝑋 ∈ ℝ𝐶𝐶in×𝑇𝑇×𝑁𝑁 where 𝐶𝐶in is the number of input channels, 𝑇𝑇 is the 
time step, 𝑁𝑁 is the number of nodes, LREST-GC propagates the information through the adaptive 
adjacency matrix 𝐴𝐴𝑑𝑑𝑑𝑑𝑖𝑖 with the following equation: 

H = σ�∑  K
k=1 𝐀𝐀dyn

(k) XW(k)�                         (1) 

Where, 𝐾𝐾 denotes the extended neighborhood size of the graph convolution, 𝑊𝑊(𝑘𝑘) is the learned 
weight matrix, 𝜎𝜎(⋅) is the activation function, 𝑊𝑊1,𝑊𝑊2 are learnable parameters used to dynamically 
compute the similarity between nodes. The adaptive neighbor matrix 𝐴𝐴𝑑𝑑𝑑𝑑𝑖𝑖 is computed by. 

𝐀𝐀dyn = Softmax(XW1W2
TXT)                         (2) 

2.2.3 Temporal Convolution Module (TCM) 

TCM aims to enhance the temporal modeling capability of skeleton data to avoid information loss in 
the temporal dimension. To capture behavioral patterns at different time scales, we designed the Multi-
scale TCM architecture, as shown in Fig. 4. In Fig. 4, the upper left branch captures short-term patterns 
using a dilation=1 convolution. The second branch, to its right, targets long-term patterns via dilation=2. 
The third branch (bottom left) performs temporal max pooling, while the final branch (bottom right) is a 
shortcut connection for preserving original features. 
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Figure 4: Temporal Convolution Module (TCM) with four branches: short-range, long-range, temporal 

pooling, and residual shortcut. 

Short-time dependency modeling branch: 1×1 convolution + 5×1 dilation convolution (Dilation=1) 
is used to capture behavioral changes over a short time span. 

Long time dependent modeling branch: 1×1 convolution + 5×1 dilation convolution (Dilation=2) is 
used to capture motion patterns over longer time spans. 

Time Pooling Branch: 1×1 Convolution + 3×1 Maximum Pooling is used to reduce the redundancy 
of information in the time dimension and improve the temporal modeling capability of the model. 

Shortcut connection branch: 1×1 convolution is used to directly transfer the original feature 
information to avoid the information loss caused by long time-series modeling. 

Given the input feature 𝐻𝐻 ∈ ℝ𝐶𝐶mid×𝑇𝑇×𝑁𝑁, the TCM is computed as follows. 

H′ = ∑  4
i=1 Wi ∗ Hi                               (3) 

Where ∗ denotes the convolution operation, 𝑊𝑊𝑖𝑖 represents the weight of each branch, and 𝐻𝐻𝑖𝑖 is the 
feature output of the corresponding branch. Eventually, we use fusion to integrate the outputs of all 
branches in order to form the final temporal feature representation. 

2.3 Multi-Perspective Fusion Graph Attention (MPFGA) 

In skeleton-based human behavior recognition tasks, GCNs are widely used for feature extraction 
from skeleton data due to their advantages in spatial domain modeling. However, traditional GCNs 
mainly rely on local neighbor information for feature aggregation, which leads to limitations in capturing 
long-distance node relationships and makes it difficult to effectively model global dependency 
information over long distances. 

To address this problem, we propose a Multi-Perspective Fusion Graph Attention (MPFGA) 
mechanism, which combines Global Self-Attention (GSA) and Graph Additive Attention (GAA), which 
combine GSA and GAA for modeling global dependencies and local fine-grained features, respectively. 
In this way, MPFGA can take into account feature interactions between long-distance nodes while 
preserving local neighborhood information, thus enhancing the representation of skeleton features. 

Given a skeleton sequence denoted as Figure 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) where 𝑉𝑉 is the set of skeleton joints, 𝐸𝐸 
shows the connection relationship between joints, and the input feature matrix is 𝑋𝑋 ∈ ℝ𝑁𝑁×𝐶𝐶 where 𝑁𝑁 
is the number of joints and 𝐶𝐶  is the feature dimension. In order to effectively capture remote 
dependencies and local structure information, we define the MPFGA mechanism as follows: 

H = α ⋅ GSA(X) + β ⋅ GAA(X)                          (4) 

Among them, 𝛼𝛼 and 𝛽𝛽 are learnable parameters that control the contribution of GSA and GAA, 
respectively, enabling the network to dynamically adjust the weighting of global and local information 
according to the needs of different scenarios during the training process. 

GSA implements global dependency modeling by calculating the attention weights between all nodes 
as follows: 

GSA(𝑋𝑋) = softmax �𝑄𝑄𝐾𝐾
𝑇𝑇

�𝑑𝑑𝑘𝑘
� 𝑉𝑉                           (5) 
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Where 𝑄𝑄 = 𝑊𝑊𝑞𝑞𝑋𝑋,𝐾𝐾 = 𝑊𝑊𝑘𝑘𝑋𝑋,𝑉𝑉 = 𝑊𝑊𝑣𝑣𝑋𝑋  are the query matrix, key matrix and value matrix 
respectively, 𝑊𝑊𝑞𝑞 ,𝑊𝑊𝑘𝑘 ,𝑊𝑊𝑣𝑣 are the learnable parameters, and 𝑑𝑑𝑘𝑘 is the scaling factor for stabilizing the 
gradient. 

GAA is mainly used for the aggregation of local neighborhood information and learns local structural 
information by explicitly computing the importance scores of neighboring nodes as follows: 

eij = σ�Wa[Xi ∥ Xj]�                             (6) 

αij =
exp (eij)

∑  k∈𝒩𝒩(i) exp (eik)
                              (7) 

𝐺𝐺𝐴𝐴𝐴𝐴(𝑋𝑋) = ∑  𝑗𝑗∈𝒩𝒩(𝑖𝑖) 𝛼𝛼𝑖𝑖𝑗𝑗𝑋𝑋𝑗𝑗                            (8) 

Where 𝑊𝑊𝑎𝑎  is the learnable weight, ∥ denotes feature splicing, 𝜎𝜎(⋅) is the nonlinear activation 
function, and 𝒩𝒩(𝑖𝑖) denotes the set of neighbors of node i. The GAA is able to explicitly model the local 
neighborhood information, enabling the model to focus on the feature interactions between closer joints 
in the skeleton structure. 

MPFGA combines GSA and GAA to balance remote dependencies and local structural features in 
skeleton behavior recognition. GSA enables the model to capture features of remote joints, compensating 
the limitation that traditional GCNs can only deal with local neighborhoods, whereas GAA enhances the 
modeling of local information through additive attention to ensure the integrity of local skeleton 
relationships. By introducing learnable parameters, the model can dynamically adjust the weight of 
global and local information fusion to adapt to different types of behavioral patterns. This design not 
only improves the model's ability to capture long-distance features, but also avoids the interference of 
irrelevant information that may be introduced by global attention, which improves the recognition 
accuracy and generalization performance, and provides a more robust feature modeling capability for the 
recognition of complex human behaviors. 

3. Experimental Results And Analysis 

3.1 Datasets 

NTU-RGB+D 60 and its extended version NTU-RGB+D 120 are large-scale datasets for human 
movement recognition. The original dataset, NTU-RGB+D 60, contains 56,800 motion sequences 
covering 60 different motion categories, and each skeleton data consists of 25 3D joints. In contrast, the 
extended dataset NTU-RGB+D 120 is further enlarged in size, containing 113,945 motion sequences and 
extending to 120 motion categories. Additionally, the data sources of NTU-RGB + D 120 are more 
diverse, covering 106 subjects and offering three camera views, while the original NTU-RGB + D 60 
dataset only has two views. 

In data partitioning, both datasets adopt X-Sub (Cross-Subject Split), which trains and tests on 
different subjects. NTU-RGB+D 120 further incorporates X-Set (Cross-Setup Split), which splits data 
based on camera setups, to boost diversity and challenge. These features make NTU-RGB+D 60 and 
NTU-RGB+D 120 two of the most widely used benchmark datasets in human action recognition research. 

3.2 Training Details 

The proposed model in this study is implemented using the PyTorch 1.9.1 deep learning framework 
and runs on a high-performance computing platform. The platform is equipped with a CUDA 11.1 
computing environment with NVIDIA RTX 4090 GPUs to provide powerful computational capabilities 
and efficient deep learning training support.  

In the training process, we use the Stochastic Gradient Descent (SGD) optimization algorithm 
combined with Nesterov momentum with the momentum parameter set to 0.9. Backpropagation typically 
uses the Cross-Entropy loss function. The Cross-Entropy loss function serves as the objective function 
to measure the model’s classification performance. Meanwhile, in order to prevent overfitting, we 
introduce the Weight Decay mechanism and set its hyperparameter to 0.0004.  

In terms of data processing and training strategy, we divide the dataset into small batches with a Batch 
Size of 16 for training, with a total of 65 batches. The initial value of the learning rate is set to 0.1, and 
Learning Rate Decay is performed during the training process. The specific strategy is: at the 35th and 
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55th batches, the learning rate is multiplied by a decay factor of 0.1 to improve the convergence and 
stability of the model.  

Each sample contained a maximum of 300 frames and each sample in the dataset contained a 
maximum of two human individuals. For samples containing only a single individual, we use Zero 
Padding to complete the data to ensure uniformity of data input and effective training of the model. 

3.3 Comparative Experiments 

DAA-GCN was tested against other models and the results were compared by the metrics of NTU-
RGB+D 60 and NTU-RGB+D 120 as shown in Tables 1 and 2. 

Table 1: Comparison of accuracy (%) on NTU-RGB+D 60 dataset under X-Sub and X-View settings. 

Model NTU-RGB+D 60  X-Sub(%) NTU-RGB+D 60  X-View(%) 
ST-GCN 84.2 90.5 
Pe-GCN 85.5 93.6 

Js-AGCN 85.7 93.4 
Bs-AGCN 86.5 94.1 

STGR-GCN 86.9 93.8 
AS-GCN 87.8 94.2 
2s-AGCN 89.2 95.3 

DGNN 90.1 96.2 
CTR-GCN 91.4 96.5 

DAA-GCN (ours) 91.8 97.2 

Table 2: Comparison of accuracy (%) on NTU-RGB+D 120 dataset under X-Sub and X-Setup settings. 

Model NTU-RGB+D 120  X-Sub(%) NTU-RGB+D 120  X-Set(%) 
ST-GCN 79.3 81.1 

2s-AGCN 82.9 84.9 
Js-AGCN 84.4 86.8 
Bs-AGCN 85.3 87.2 

STGR-GCN 87.2 88.1 
MS-G3D 86.9 88.4 

MST-GCN 87.5 88.8 
Info-GCN 88.5 89.7 
CTR-GCN 88.9 90.6 

DAA-GCN (ours) 89.6 91.3 

3.4 Ablation Experiment 

Table 3: Ablation results showing the contribution of LREST-GC (A), TCM (B), and MPFGA (C) 
modules. 

Model NTU-RGB+D 60  X-Sub(%) 
A 73.5 
B 72.1 
C 69.4 

A+B 83.2 
A+C 84.5 
B+C 81.6 

A+B+C 91.8 
We conducted ablation experiments to assess the contribution of each module to model performance. 

Key modules including the LREST-GC graphical convolution module, the TCM temporal convolution 
module, and the MPFGA attention module were systematically removed or replaced. Comparative 
analysis of the results identified the specific role and performance impact of each module in skeletal 
behavior recognition. For a fair comparison, all experiments were conducted on the same dataset, NTU-
RGB+D 60, with identical training settings and hyperparameter conditions. Some of the modules 
removed from the experiments were processed with 1×1 convolutional modules instead. The 
experimental results are shown in Table 3, where the LREST-GC module is A, the TCM module is B, 
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and the MPFGA module is C. 

4. Conclusions 

This paper proposed DAA-GCN, a skeleton-based action recognition model that integrates STAFE 
and MPFGA modules to capture both local and long-range spatio-temporal dependencies. Experiments 
on NTU-RGB+D 60 and 120 show that DAA-GCN outperforms existing methods. Ablation studies 
confirm the effectiveness of each component. The model offers a robust and efficient solution for 
skeleton-based action recognition. Future work will aim to improve computational efficiency and adapt 
the model to more complex real-world scenarios. 
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