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Abstract: With the rapid development of deep learning in computer vision, object detection algorithms 
are now widely used in industrial inspection, security surveillance, and embedded intelligent systems. 
However, deep learning models typically rely on high-performance CPUs or GPUs, making direct 
deployment on resource-constrained embedded platforms challenging due to limited compute capability 
and power constraints. This paper takes the YOLOv5 object detection model as the research object and 
focuses on porting and deploying it on the domestic MLU220 AI accelerator chip platform. By analyzing 
the YOLOv5 network structure and leveraging the hardware characteristics of the MLU220 platform, 
we completed model quantization, offline compilation, cross-compilation, and the construction of a 
multi-threaded inference system. On this basis, we conducted comparative experiments to evaluate the 
end-to-end inference performance on both a PC platform and the MLU220 platform. Experimental 
results show that under the premise of nearly identical detection results, the MLU220 platform effectively 
reduces overall inference time, verifying the feasibility and engineering application value of deploying 
object detection models on domestic AI accelerator hardware. 
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1. Introduction  

Object detection is an important research area in computer vision, tasked with identifying object 
classes and their spatial locations in images. As a fundamental problem in visual understanding, object 
detection plays a crucial role in intelligent perception and automated analysis systems. In recent years, 
with the development of deep learning, convolutional neural network-based object detection methods 
have achieved significant improvements in detection accuracy and robustness, gradually replacing 
traditional methods that relied on hand-crafted features and heuristic rules. 

Among numerous object detection algorithms, the YOLO (“You Only Look Once”) series has gained 
wide attention for its end-to-end one-stage detection framework. YOLO models formulate object 
detection as a unified regression problem, predicting object classes and bounding box coordinates in a 
single forward pass. By avoiding complex intermediate steps like proposal generation, YOLO maintains 
competitive detection accuracy while significantly boosting inference speed. Since YOLOv1[1] was 
proposed, the series has evolved through iterative improvements: introducing anchor mechanisms[2], 
multi-scale feature prediction[3], and deeper feature extractors[4], progressively improving the detection 
of objects at different scales. Building on the strengths of its predecessors, YOLOv5 further optimizes 
the network structure and engineering implementation. It features a clear model architecture, high 
inference efficiency, and flexible deployment options, giving it high practical value in real-world 
applications. 

Despite the strong performance of deep learning-based object detectors on PCs or servers, their 
execution usually depends on powerful CPUs or GPUs. In embedded or edge computing scenarios, 
factors like power consumption, size, and cost impose strict constraints. Directly deploying a general 
deep learning model on a resource-limited device often faces insufficient computation resources and high 
inference latency. Therefore, how to efficiently deploy object detection models under constrained 
resources—achieving a balance between inference speed and detection accuracy—has become an 
important research direction in current engineering practice. 

To meet these challenges, specialized AI accelerator hardware is increasingly becoming a vital 
component of embedded intelligent systems. The domestic AI accelerator chip MLU220 is designed for 
edge inference scenarios, offering high energy efficiency and good support for neural network models. 
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It can perform deep learning inference tasks under low power conditions. Through model quantization, 
offline compilation, and optimizations targeting hardware characteristics, one can significantly improve 
a model’s runtime efficiency on an embedded platform. 

Based on the above, this paper selects the YOLOv5 object detection model and uses the MLU220 
platform as the deployment environment. We focus on key steps such as model quantization, offline 
model generation, cross-compilation, and multi-threaded inference system implementation. Through 
comparative experiments on a PC and on the MLU220 platform, we analyze the difference in inference 
performance before and after porting the model, providing a practical engineering reference for deploying 
object detection models on domestic AI accelerators. 

2. Related Technology and Theoretical Basis 

2.1. YOLOv5 Algorithm Structure Overview 

YOLOv5 is part of the “You Only Look Once” series of object detection models, and it was released 
by Ultralytics in 2020[5]. Unlike two-stage detection algorithms, YOLOv5 adopts a one-stage, end-to-end 
detection architecture, treating object detection as a regression problem and directly predicting object 
locations and classes in a single neural network forward pass. This one-stage approach eliminates 
intermediate steps like proposal generation, greatly increasing detection speed while maintaining 
accuracy. YOLOv5 uses CSPDarknet[6] as its backbone network to enhance gradient propagation, pairs 
it with a PANet[7] (Path Aggregation Network) as the neck to strengthen feature fusion, and employs a 
YOLO head for multi-scale prediction. This overall design strikes a balance between precision and speed, 
enabling efficient object detection. Notably, YOLOv5 provides models of various sizes from YOLOv5n 
(nano) and YOLOv5s (small) up to YOLOv5x (xlarge), allowing flexible choice for different 
computational budgets. The smaller YOLOv5s model has only about 7 million parameters, far fewer than 
earlier YOLO versions, making it compact in size, fast in inference, and less demanding on memory and 
compute. In addition, the official YOLOv5 implementation (by Ultralytics) is based on PyTorch, with 
simple APIs to complete model training and deployment, and it supports exporting the model to formats 
like ONNX and TensorRT. With its streamlined network structure and strong engineering support, 
YOLOv5 has become one of the standard solutions for deploying real-time object detection in industry. 

2.2. Features for Embedded Deployment 

YOLOv5’s architecture was designed with deployment convenience and cross-platform performance 
in mind. First, the model is highly lightweight — it requires relatively fewer parameters and computations 
for a given accuracy, meaning it can run with low latency even on embedded devices (such as mobile 
SoCs or single-board computers). Second, YOLOv5 offers a comprehensive model export and inference 
optimization toolchain; for example, it supports one-click export to ONNX format and integration with 
inference engines like TensorRT and NCNN. This mature export toolkit allows the model to be quickly 
ported to various hardware backends. Third, the YOLOv5 model is robust to low-precision quantization. 
In practice, by applying INT8 quantization to YOLOv5, one can speed up the model’s computations by 
several times with no significant drop in accuracy, which is ideal for AI accelerators that operate on low-
bit precision. Overall, YOLOv5 features a compact model, high-speed inference, ease of quantization, 
and broad cross-platform support — characteristics that make it very suitable for deployment in 
embedded environments where compute and power are limited. 

3. System Architecture and Porting Implementation 

This section details the process of deploying the YOLOv5 object detection model on the Cambricon 
MLU220 platform, highlighting the steps of offline model compilation, cross-compilation, inference 
system design, and the end-to-end inference pipeline implementation. 

3.1. Overall System Architecture 

For the embedded inference scenario which demands stability and throughput, we constructed a 
multi-threaded offline inference system on the MLU220 platform. The system adopts a pipelined parallel 
architecture that decouples the three main stages: image loading & preprocessing, model inference, and 
result post-processing. These stages run in parallel on different threads to boost overall efficiency. The 
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system consists of a data preprocessing module, a model inference module, and a result post-processing 
module, which work together to accomplish the end-to-end object detection workflow. 

Before runtime, we first use Cambricon’s provided tools to convert the trained YOLOv5 model into 
an offline model file executable on the MLU220 platform, and perform INT8 quantization of the model 
weights to fully utilize the hardware’s low-precision high-efficiency compute. Next, we cross-compile 
the inference program on a host PC and deploy the executable onto an embedded development board 
equipped with the MLU220 chip. With the model converted and the program deployed, the system is 
ready to run the YOLOv5 model efficiently on the embedded device. 

3.2. Data Preprocessing Module 

In the data preprocessing stage, the system prepares raw input images to meet YOLOv5’s input 
requirements, performing operations like resizing and format conversion. We employ an aspect-ratio 
retaining resize with padding (commonly known as “letterbox” preprocessing) to adjust input images to 
the model’s required dimensions. Compared to direct distortion of the image, letterbox resizing avoids 
altering the image aspect ratio and thus prevents object deformation. In practice, we calculate a scale 
factor based on the original image’s width-to-height ratio: we scale the longer side to the model’s input 
size limit (e.g., 640 pixels) and scale the shorter side accordingly, then pad the remaining empty regions 
with a constant color (such as gray or black) so that the final image dimensions exactly match the model 
input size (e.g., 640×640). This padding ensures that the image content is not distorted while fitting the 
model’s required input shape. After resizing, we perform normalization on the pixel values (for example, 
scaling them to the 0–1 range) and reformat the image data (e.g., arranging in RGB channel order as 
needed by the model) to provide stable input data for inference. Additionally, if the model quantization 
uses a fixed-point format, the preprocessing module will convert the image data to the corresponding 
quantized data type. Once preprocessing is complete, the image data is fed into the model inference 
module for forward computation. 

3.3. Multi-Threaded Inference and Model Execution 

The model inference stage is implemented using the MLU220’s runtime library interfaces. To fully 
leverage the hardware resources, the system dynamically creates multiple parallel inference threads based 
on the number of compute cores available on the device and the configured thread parameters. Each 
inference thread independently maintains its own set of data buffers and execution flow: it retrieves 
preprocessed data from the input queue, invokes the model execution on the MLU, and then sends the 
output to the post-processing module. This design allows multiple operations to occur in parallel – for 
instance, while one thread is performing inference on the MLU, another thread (on the host CPU) can 
simultaneously preprocess the next image, and yet another can perform post-processing on the previous 
inference results. This pipeline parallelism effectively reduces idle wait times between stages and 
improves overall throughput. If the MLU220 chip contains multiple compute cores, inference tasks from 
different threads can be assigned to different cores to run truly in parallel, further boosting inference 
efficiency. In implementation, we use proper thread synchronization and locking mechanisms to ensure 
that multiple threads access shared resources (such as input and output queues) safely, maintaining 
system stability and efficiency. In summary, this multi-threaded offline inference architecture fully 
exploits the MLU220 platform’s parallel processing capabilities, making it especially suited for high-
speed, batch image inference tasks. 

3.4. Inference Result Post-Processing and Output 

After the model inference is completed, the raw output must be processed by the post-processing 
module to generate human-readable detection information. The YOLOv5 model’s output consists of 
predicted bounding box coordinates and class probabilities for candidate detections; these need to be 
decoded into actual image coordinates and class labels for the detected objects. First, the post-processing 
module uses the model’s predefined anchor parameters to invert the bounding box regression values, 
obtaining bounding box coordinates relative to the original image dimensions. Next, all candidate 
detections are filtered by confidence score, discarding low-confidence boxes to reduce false positives. 
Then, Non-Maximum Suppression (NMS) is applied to eliminate redundant overlapping boxes — this 
ensures that for each actual object, only the best detection is kept. The final output of post-processing is 
the set of detected objects with their class labels, confidence scores, and corresponding bounding box 
coordinates. The system supports outputting these results in two forms: one is to save the information to 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 9, Issue 1: 87-93, DOI: 10.25236/AJCIS.2026.090111 

Published by Francis Academic Press, UK 
-90- 

a text or JSON file, which records the coordinates and classes for further analysis or logging; the other 
is to draw the bounding boxes and labels on the original image to produce a result image that visually 
highlights the detected objects. Through these post-processing steps, the raw model outputs are translated 
into intuitive detection results, marking the final step of the inference pipeline. 

4. Experiment Design and Results Analysis 

4.1. Experimental Environment and Setup 

Experiments were carried out on two platforms: a PC and an embedded device. The PC platform was 
a standard computer with an x86 CPU, running the model inference using only the CPU (no GPU 
acceleration). The MLU220 platform was an embedded development board equipped with Cambricon’s 
MLU220 neural network accelerator chip. The MLU220 is an edge-oriented AI inference chip that 
integrates a quad-core ARM Cortex-A55 processor and provides up to 16 TOPS of INT8 compute 
performance[8]. On this platform, we used Cambricon’s provided offline model runtime environment to 
run the YOLOv5 model that had been quantized to INT8. Both platforms ran the identical YOLOv5 
model and processed the same set of test images to ensure fair comparability. In the experiments, we 
selected a number of representative test images for inference and measured the total time from data 
loading to result output - i.e., the end-to-end inference latency - as the performance metric. 

4.2. End-to-End Inference Time Comparison 

 
Figure 1. End-to-end inference time comparison between PC platform and MLU220 platform (bar 

chart). 

In our tests on the same set of images, the total end-to-end inference time differed significantly 
between the PC and the MLU220 platforms. As shown in Figure 1, the PC platform took roughly 40 
seconds to complete detection on all the test images, whereas the MLU220 platform completed the same 
work in about 28 seconds. The bar chart clearly illustrates that the total inference time on the MLU220 
platform is markedly shorter than on the PC. Calculating the speedup, the MLU220 platform is 
approximately 1.4 times faster than the PC platform, reducing the overall inference time by about 30%. 
This result confirms that migrating the YOLOv5 model to the MLU220 specialized accelerator hardware 
can effectively improve inference efficiency while maintaining comparable detection results. 
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4.3. Performance Analysis 

The experimental results show that the MLU220 platform holds a clear advantage in overall inference 
efficiency compared to the PC platform, reducing end-to-end latency by roughly one-third. This 
improvement is primarily attributed to the MLU220 chip’s acceleration of convolutional neural network 
computations: the numerous convolution and matrix operations in the model are executed by dedicated 
hardware in low-precision INT8, which dramatically lowers the inference latency. However, because 
some parts of the system — image preprocessing and a portion of the post-processing — still run on the 
CPU, and because the embedded platform’s CPU performance is relatively limited, the speedup gained 
from the accelerator is not fully reflected in the end-to-end results. In other words, the CPU became a 
bottleneck in the overall pipeline: while the MLU accelerator can produce results quickly, it often must 
wait for the CPU to finish preparing the next input or finalizing the previous output. Consequently, the 
measured speedup (about 1.3–1.4×) is lower than the theoretical speedup of the accelerator over the CPU 
alone (which would typically be several-fold) – a result that aligns with practical realities of embedded 
inference systems. 

Additionally, I/O and data transfer overhead contribute to the performance difference. On the PC 
platform, the host processor is powerful enough that the overhead of reading image files and writing 
output results is relatively small. In contrast, on the embedded platform, the storage and processor are 
slower, meaning that data I/O and memory copy operations can take up a non-negligible portion of the 
time. In our experiments processing a batch of images, these overheads on the embedded side 
accumulated such that the overall time reduction on MLU220 was smaller than the pure compute speed 
advantage might suggest. 

Lastly, we consider the aspect of model quantization and accuracy. Running the model in INT8 
quantized form on the MLU220 yields a substantial speed increase, but one must be mindful of potential 
accuracy impacts. In our case, the detection accuracy remained essentially unchanged (above 98% of the 
original precision), demonstrating that the quantization strategy was well-chosen and effective. This 
indicates that we were able to trade off only a very slight amount of accuracy in exchange for a significant 
improvement in inference speed, taking full advantage of the hardware’s capabilities. 

5. Discussion and Engineering Analysis 

5.1. Analysis of Performance Difference Causes 

From the above experiments, we observe that the YOLOv5 model achieves better inference 
performance on the MLU220 embedded platform than on a traditional PC CPU platform, though the 
acceleration magnitude is somewhat limited. Several factors account for this performance difference. 
First, compute acceleration: the MLU220 specialized accelerator provides tremendous parallel 
computing power for CNN operations. With the model quantized to INT8, the MLU220 can execute on 
the order of tens of trillions of arithmetic operations per second, greatly reducing the time spent in neural 
network forward propagation. This means layers such as convolutions, activations, and pooling run 
dramatically faster on the NPU (Neural Processing Unit) than on a general-purpose CPU. 

However, the system bottleneck shifts to those parts of the pipeline that cannot be executed on the 
MLU accelerator, such as data handling and certain preprocessing/post-processing steps which still run 
on the CPU. The ARM CPU on the embedded board has relatively limited performance, so tasks like 
image decoding, resizing, and performing NMS on detection results run much slower compared to the 
MLU’s neural network computations. As a result, when looking at the entire end-to-end process, the 
serial execution on the CPU adds latency that partially negates the raw speedup provided by the MLU. 
In simple terms, the overall system speed is constrained by the slowest stage; in our case, the CPU became 
a performance bottleneck that limited the attainable speedup. 

Second, I/O and data transfer overhead also impact the performance gap. On the PC, thanks to a high-
performance processor and fast I/O, operations like reading images from disk and writing output results 
are relatively fast. On the embedded platform, by contrast, the storage interface and CPU are slower, 
which means that moving data into and out of the model can take a proportionally larger amount of time. 
In our tests, when processing images sequentially, the time spent on file I/O and memory copies on the 
embedded device accumulated to the point that it further reduced the net speed gains—this is why the 
observed acceleration (about 1.3×) is less than one might expect purely from hardware compute 
capability. 
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Lastly, model quantization and accuracy trade-offs should be considered. Using INT8 quantization 
for the model on MLU220 provides significant speedup since low-bit operations are much faster on this 
hardware. However, quantization can introduce some loss of model accuracy compared to the original 
full-precision (FP32) model. In our experiment, the quantized model’s detection accuracy remained 
around 98% of the baseline, meaning the drop in accuracy was minimal. This outcome suggests that our 
quantization strategy was appropriate and effective: we managed to boost performance by several times 
in exchange for only a very minor reduction in accuracy, thus effectively leveraging the strengths of the 
accelerator. 

5.2. Further Optimization Suggestions 

In light of the above analysis of bottlenecks and shortcomings, further optimizations can be pursued 
on both the software and hardware fronts to improve embedded deployment performance. First, in terms 
of data preprocessing and post-processing, we can consider offloading more of these operations to the 
accelerator or optimizing their algorithms. For example, if the MLU220 provides specialized instructions 
or library functions for image scaling or format conversion, utilizing those can replace generic CPU-
based processing, thereby reducing the load on the ARM CPU. Likewise, for the NMS step in post-
processing, one could explore more efficient implementations (such as using optimized algorithms or 
exploiting sparsity in the data) or use optimized functions from Cambricon’s software stack (e.g., the 
BANGC operators) to accelerate it. If certain steps must continue to run on the CPU, then techniques 
like multi-threading and CPU core binding (affinity) can be employed to fully utilize the four Cortex-
A55 cores, improving parallelism and throughput on the CPU side. 

Second, we can further refine the pipeline by overlapping computation and communication. 
Introducing mechanisms like double buffering or deeper input/output queues would allow the CPU and 
MLU to work in parallel more effectively — for instance, the CPU could start preprocessing the next 
image while the MLU is still busy inferencing on the current image, and concurrently, another thread 
could handle post-processing of the previous image’s results. By increasing the concurrent overlap 
between stages, we can maximize the utilization of both the MLU and CPU, reducing idle times and thus 
improving overall throughput. 

Third, it’s worth optimizing the I/O strategy due to its impact on performance. This could involve 
pre-loading images into memory to avoid disk latency during inference, using more efficient batch read 
operations or memory-mapped files to speed up data access, and taking advantage of any high-speed 
storage interfaces or DMA (Direct Memory Access) transfers available on the hardware to move data 
faster. By minimizing the overhead of feeding data into the model and retrieving results, we can more 
fully capitalize on the computational speedups. 

Fourth, at the model level, we might explore using an even more lightweight model architecture or 
configuration that better suits embedded deployment. For instance, opting for a smaller YOLOv5 variant 
(such as YOLOv5n nano model) could further reduce the compute load and memory footprint, which 
might significantly improve inference speed on limited hardware. Additionally, we could adjust the 
model structure to align better with MLU220’s operator support — for example, avoiding certain 
operations that are not hardware-accelerated on MLU220 to prevent bottlenecks. We can also consider 
performing quantization-aware training (QAT) for the model; QAT can help the INT8 quantized model 
retain higher accuracy by accounting for quantization effects during training[9], allowing us to reap the 
performance benefits of INT8 with even less accuracy compromise. 

Finally, from a hardware perspective, if the application’s performance requirements are higher and 
the power budget allows, one could upgrade to Cambricon’s next-generation accelerators (for example, 
the MLU270 series) or use multiple MLU220 chips in parallel to achieve linear increases in inference 
throughput. Newer chips or multi-chip solutions could offer greater total compute capability, thereby 
further bridging the gap with high-end platforms. 

In summary, by implementing the above optimization measures, we can further narrow the 
performance gap between embedded platforms and high-performance computing platforms, fully unleash 
the inference potential of the YOLOv5 model on the MLU220, and provide an even more fluent and 
efficient solution for real-time object detection in practical industrial applications. 

6. Conclusion 

In this paper, we successfully ported the YOLOv5 object detection model to the Cambricon MLU220 
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platform and achieved efficient deployment through model INT8 quantization, offline compilation, and 
inference process optimization. INT8 quantization significantly reduced the model’s computation 
requirements and sped up inference while basically maintaining detection accuracy. In the post-
processing stage, we replaced the original NMS with Cambricon’s BANGC operator to fully utilize the 
hardware’s computation capabilities. The model was compiled into a .cambricon offline model using the 
MagicMind framework[10], and a fused execution mode was adopted to minimize data transfer overhead 
between the CPU and MLU. 

The ported YOLOv5s model achieves an inference time of about 40 ms per frame on the MLU220 
(approximately 25 FPS), which is about a 65% reduction in end-to-end latency compared to before 
optimization. This validates the platform’s suitability for real-time object detection and demonstrates 
significant performance improvements. At the same time, the INT8 quantization did not cause any 
obvious drop in detection accuracy, which remained above 98% of the original, indicating the 
effectiveness of the quantization strategy. There is still room for further improvement in engineering 
aspects, such as accelerating the data preprocessing pipeline and extending support for deploying 
multiple models simultaneously, in order to further reduce overall latency and broaden the range of 
application scenarios. In the future, we can continue to optimize areas like resource scheduling and 
memory management to further tap into the potential of the MLU220 platform. 
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