
Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 6, Issue 12: 45-49, DOI: 10.25236/AJCIS.2023.061205 

Published by Francis Academic Press, UK 
-45- 

Accelerated Single-Molecule Microscopy Image 
Reconstruction Algorithm Based on TensorRT 

Qinfang Zhang1,a,* 

1School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, China 
azqf19991223@163.com 
*Corresponding author 

Abstract: The effectiveness of deep learning-based high-density localization techniques in expediting 
applications of single-molecule localization microscopy is well-acknowledged. However, existing 
methods within this domain grapple with speed limitations, particularly when confronted with extensive 
raw data sets. To address this challenge, this study introduces a high-density localization approach 
founded on TensorRT, incorporating an enhanced U-shaped network for the swift reconstruction of raw 
images. Experimental verification conducted on a dataset featuring microtubule proteins illustrates that 
the proposed algorithm significantly amplifies the overall pace of reconstruction without compromising 
the precision of image reconstruction. This not only showcases a noteworthy advancement in speed but 
also establishes a practical technical remedy for the swift and high-fidelity reconstruction of fluorescence 
single-molecule microscopy images. 
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1. Introduction 

Single Molecule Localization Microscopy (SMLM)[1] is an emerging super-resolution imaging 
technique, holding significant promise as a reconstruction method in the field of super-resolution 
fluorescence microscopy. It can achieve a spatial resolution of 20-30 nm using a simple optical device. 
However, the imaging speed is relatively low, typically ranging from tens of seconds to minutes. This is 
attributed to the necessity for expensive equipment and the requirement for thousands of raw images in 
the reconstruction process of super-resolution images using the SMLM method. Consequently, this 
limitation restricts the speed of live cell imaging. 

Currently, three primary approaches are employed to enhance the imaging speed of Single Molecule 
Localization Microscopy (SMLM): image restoration, fast image acquisition, and high-density 
localization. Image restoration involves correcting images by inputting downsampled low-density images 
into a trained model to infer a restored image. The ANNA-PALM method[2], introduced in 2018, marked 
the initial presentation of this technique. In contrast, fast image acquisition achieves the rapid 
reconstruction of super-resolution images by diminishing the overall acquisition time through a reduction 
in the camera exposure time for each raw image. For instance, Sara[3] achieves a fivefold acceleration, 
albeit potentially accompanied by signal-to-noise ratio degradation and photobleaching issues. On the 
other hand, high-density localization aims to decrease the total number of raw images without 
compromising the total number of fluorescent molecules employed for super-resolution image 
reconstruction. This is achieved by enhancing the density of emitters in each raw image, consequently 
reducing the overall number of raw images. In 2018, Nehme et al.[4] introduced Deep-STORM, a high-
density localization method grounded in super-resolution convolutional neural networks (SRCNNs). 
This method enables swift and accurate image reconstruction from a high-density image. These 
methodologies present distinct approaches to augmenting the imaging speed of SMLM, each carrying its 
own set of advantages and limitations. 

In order to further improve the data processing speed of SMLM, this paper proposes an image 
reconstruction acceleration method based on the combination of TensorRT and deep neural networks. 
The specific work of this research is mainly in the following two aspects: 

1) The deep neural network is combined with the graph fusion function of TensorRT to further 
accelerate the model inference process. 

2) In the inference process, the sum of the localized images is processed directly on the GPU, reducing 
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the time of data replication. 

Experiments demonstrate that the method presented in this paper significantly accelerates the single-
molecule reconstruction speed and exhibits excellent performance in the experimental dataset. It achieves 
real-time data processing of 2D high-density SMLM, which is crucial for disease diagnosis, drug 
development, and optimization of treatment protocols in biomedical research. 

2. Methods 

To further expedite the reconstruction inference process of deep neural networks, this paper builds 
upon prior work and makes additional improvements based on the literature [5]. The paper introduces a 
novel high-density localization method, accelerated by TensorRT. It leverages U-networks to directly 
extract features from low-resolution raw images. The method incorporates TensorRT's image fusion 
functionality, facilitating the deployment of the model onto the TensorRT inference framework for 
enhanced inference speed. Simultaneously, an approach of directly summing N-frame localization 
images on the GPU is employed to minimize data copying time from the GPU device to the host. This 
approach results in additional speedup, ultimately generating a reconstructed image. This operation 
significantly enhances overall reconstruction speed without compromising image reconstruction 
accuracy. 

The outlined strategy aims to significantly enhance the reconstruction inference process of deep 
neural networks. It represents a continued advancement upon previous work. The proposed high-density 
localization method exhibits notable efficiency through TensorRT acceleration. This efficiency is 
achieved by utilizing U-networks for feature extraction from low-resolution images and harnessing 
TensorRT's capabilities for model deployment, contributing to a more rapid inference speed. 
Additionally, the GPU-based summation of N-frame localization images efficiently reduces data transfer 
times, providing a more streamlined process for information exchange. The culmination of these 
improvements manifests in a reconstructed image that demonstrates enhanced overall reconstruction 
speed without sacrificing accuracy. 

The implementation of this approach injects new vitality into the reconstruction inference process of 
deep neural networks. It achieves a balance between speed and accuracy, providing a promising solution 
for the reconstruction inference of deep neural networks. This research offers feasible insights for further 
exploration and application in the field. 

 
Figure 1: Overall network structure diagram 

3. Experimental Procedures 

3.1 Dataset preparation 

The experimental approach of this study involved the utilization of a training dataset (Figure 2), 
generated randomly through the ThunderSTORM[6] plugin in Image J[7]. This generation aimed to 
simulate imaging conditions similar to those encountered in the experimental data under evaluation. 
Subsequently, the images and their corresponding position lists from the training dataset were imported 
into MATLAB.To expand the training set, 500 randomly selected 26×26 pixel subregions were chosen 
from each frame's simulated image pairs. These subregions then underwent an 8-fold upsampling process. 
Simultaneously, the position coordinates of these subregions were projected onto a high-resolution grid. 
This process resulted in a dataset that encompasses 10,000 pairs of low-resolution and corresponding 
high-resolution regions, each measuring 208×208 pixels. 
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To mitigate overfitting, the dataset was partitioned into 7,000 samples for training and 3,000 samples 
for validation. For the test dataset, a simulated microtubule dataset from the EPFL·SMLM Challenge 
website[8] was employed to assess the performance of the algorithm proposed in this paper. Through this 
meticulous approach to data processing and segmentation, the quality and reliability of the experimental 
data were ensured, providing robust groundwork for an objective evaluation of the proposed algorithm's 
performance. 

 
Figure 2: Simulation of dense fluorescence signal. (a) image of noiseless fluorescence signal; (b) 

image of noisy fluorescence signal; (c) image of localized fluorescence signal 

3.2 Experimental environment and training details 

During the training process, a normalization step was applied to the images, aiming to enhance the 
convergence speed of the neural network. Normalizing the images aids in preventing issues related to 
varying scales among features, thereby facilitating a more efficient training process. By standardizing 
the input data, the neural network can converge more quickly, leading to improved training performance 
and potentially better generalization on unseen data. In the experiments, simulation-generated images 
served as inputs to the network. The input size was set to 208 × 208 × 1, and the network was trained for 
100 epochs with a batch size of 16 samples per batch. The loss function L is defined as: 
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Where x represents the network reconstruction result, x represents Ground Truth. K is a 
predefined training set consisting of pairs of 2D images. The training is performed using the Adam[9] 
backpropagation algorithm, the learning rate is set to 1×10-4 , the model is built based on the Tensorflow 
framework[10] , and the whole experiment is performed on a standard workstation equipped with 43 GB 
of RAM, a 9-core Intel(R) Xeon(R) Platinum 8350C 2.60GHz CPU, and a 24 GB video memory NVidia 
GeForce RTX 3090 GPU for training and evaluation on a standard workstation. 

3.3 Evaluation metrics 

Normalized Mean Square Error (NMSE) is used to evaluate the quality of the image reconstruction. 
A smaller NMSE value indicates less error and better reconstruction, with NMSE=0 signifying an 
identical reconstructed image to the real image. The expression for NMSE is as follows: 
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The Peak Signal-to-Noise Ratio (PSNR) serves as a metric for estimating the difference between two 
images relative to the peak signal amplitude of the predicted image. PSNR is typically calculated in 
decibels, where higher scores indicate better image quality. 
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4. Experimental Results & Analysis 

4.1 Visualization Assessment 

After completing model training, we used the simulated microtubule dataset (361 frames of sample 
images) from the EPFL·SMLM website [8] as a validation set for reconstruction experiments. The 
experiments involved CEL0 [11], FALCON [12], Deep-STORM [4], and the algorithm proposed in this 
paper.All networks underwent reconstruction on a grid with a resolution of 12.5nm. They were then 
thoroughly compared and analyzed against the original high-resolution images (Ground Truth), as 
depicted in Figure 3.To precisely assess the reconstruction accuracy of each algorithm, this study 
conducted evaluations from both subjective and objective perspectives, considering the quality of the 
reconstructed high-resolution images. 

In terms of subjective visual assessment, we observed instances of discontinuity in the recovery of 
certain microtubules in images reconstructed by CEL0, FALCON, and Deep-STORM algorithms. This 
led to less precise restoration of edge details. In contrast, our proposed algorithm demonstrated a 
reduction in pseudo-peaks and noise between two microtubules in high-density regions, resulting in a 
more accurate distinction of adjacent and closely spaced microtubules and showcasing a higher level of 
reconstruction accuracy. 

 
Figure 3: Simulated microtubule dataset reconstruction results. (a) 361 frames of original wide-field 

image; (b) Ground Truth; (c) CEL0; (d) FALCON;(e) Deep-STORM; (f) Ours 

4.2 Objective Assessment 

In this paper, the reconstruction accuracy and inference speed of the four methods are evaluated based 
on the three criteria of NMSE, PSNR and single-frame execution time, respectively, and the specific 
results are shown in Table 1.Compared with the CEL0, FALCON and Deep-STORM algorithms, the 
proposed algorithm's NMSE is reduced by 3.35%, 3.19%, and 6.49%, and the PSNR is improved by 
0.95dB, 0.5dB , 1.09dB, and single-frame execution time is accelerated by 4×103 times, 26 times, and 
0.63 times, respectively, which indicates that the proposed algorithm can not only achieve better results 
in terms of localization accuracy, and be able to rebuild a better image quality to a greater extent, but 
also achieve faster speed in terms of reconstruction time. 

Table 1: Comparison of objective evaluation indicators of reconstruction results  

Methods NMSE(%) PSNR(dB) ms/frame 
CEL0 37.67 22.47 51736.8 

FALCON 40.81 22.33 337.95 
Deep-STORM  37.51 22.92 20 
literature [5] 34.32 23.42 16.6 

Ours 34.65 23.29 12.3 
In summary, the algorithm proposed in this paper excels in effectively separating the microtubule 
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structure from the background region, thereby achieving a more precise high-resolution reconstruction 
image. Notably, it outperforms several algorithms previously proposed in the literature, showcasing a 
substantial enhancement in reconstruction speed. This demonstrated superiority establishes a robust 
foundation for research and practical applications in the field of deep learning image processing. 
Specifically, the algorithm provides valuable insights into optimizing microtubule reconstruction, 
enhancing image clarity, and expediting the overall process. Moreover, it serves as a valuable reference 
for future work in this domain, offering a roadmap for further exploration and expansion of deep learning 
techniques in the context of image processing. 

5. Conclusion 

This paper tackles the speed bottleneck inherent in deep learning for reconstructing single-molecule 
localization microscopy images. A novel acceleration approach is introduced, integrating TensorRT with 
deep neural networks to optimize the image inference process. The method leverages the acceleration 
capabilities of TensorRT and GPU. Experimental findings reveal that the proposed method not only 
achieves higher-quality images, as indicated by clearer recovery of microtubule structure edge contours 
and textures resembling the original high-resolution images, but also demonstrates significant 
improvements in objective evaluation metrics and reconstruction speed. Specifically, [insert specific 
metrics and speed improvements]. This achievement successfully meets the objective of enhancing 
reconstruction speed without compromising image quality. Consequently, it is anticipated that this 
method will contribute to increased efficiency and quality in microscopic image reconstruction, holding 
paramount significance for the advancement of related fields.  
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