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Abstract: The core challenge in time series forecasting lies in effectively modeling long-term
dependencies and multi-scale patterns. Although the NHITS model has made progress in long-term
forecasting through its multi-scale framework, its core multilayer perceptron (MLP) building blocks have
limitations in feature representation capability, making it difficult to jointly capture local fine-grained
patterns and global longterm dependencies. To address this, this paper proposes an improved model
architecture, with its core innovation being the design of a novel Multi-Scale Fusion Block (MSFB) to
enhance multi-period feature representation. This module explicitly models local temporal patterns and
global dependencies through parallel multi-scale 1D convolutions and block-sparse attention
mechanisms, respectively, and introduces a learnable dynamic fusion gating mechanism to adaptively
integrate heterogeneous feature streams. Experiments were conducted on four benchmark datasets—
ETTm2, Traffic, Weather, and Exchange—for training, validation, and testing. The results show that the
improved model achieved average reductions of 11.20% and 7.79% in MAE and MSE metrics,
respectively, compared to the original NHiTS model, and significantly outperformed mainstream
comparative models such as TimesNet, Autoformer, and FEDformer. This validates the effectiveness of
the proposed module in enhancing temporal representation learning and improving forecasting accuracy.
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1. Introduction

Time series forecasting, as a core task in data analysis, plays a crucial role in key fields such as power
load forecasting, meteorological prediction, and financial market analysis ['-1. Real-world time series data
often contain complex multi-scale temporal patterns (e.g., daily, weekly, and seasonal variations) and
non-stationary dynamic characteristics, posing severe challenges to forecasting models: they must
simultaneously possess high sensitivity to local fine-grained patterns, robust modeling capabilities for
long-term trends and dependencies, and high efficiency in practical deployment.

In recent years, deep learning models, leveraging their powerful nonlinear fitting capabilities, have
become mainstream methods for time series forecasting. Architectures represented by Transformer [*'and
Temporal Convolutional Networks (TCN)Shave demonstrated advantages in long-range dependency
modeling and local pattern extraction, respectively. However, these models often face issues of high
computational complexity or severe error accumulation when dealing with extremely long forecasting
horizons. To address this, the NHiTS model proposed by Challu et al®l. constructs an efficient pyramid
analysis framework through multi-scale!’”! hierarchical sampling and interactive downsampling
mechanismsf®l. It achieves a good balance between forecasting accuracy and computational efficiency in
long-term forecasting tasks.

Nevertheless, the core building block of the NHiTS model—the Multilayer Perceptron (MLP)—has
inherent limitations in feature representation capability!®: it struggles to effectively capture fine-grained
intra-period patterns; it inefficiently establishes long-range dependencies by stacking multiple network
layers, which can lead to gradient-related problems; and its feature transformation is simplistic, failing
to adaptively balance local details and global contextual information.

To address the limitations of the MLP block, researchers have explored methods to enhance temporal
feature extraction from different perspectives. For instance, Convolutional Neural Networks (CNN) [10-
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1, with their local receptive fields and weight-sharing mechanisms, have been proven effective in
capturing local patterns and multi-scale features in time series. Sparse or localized attention
mechanisms!!?lcan maintain modeling capability for key long-term dependencies while reducing
computational complexity. These works provide important insights for designing more powerful
temporal feature extractors. However, how to organically embed and adapt such capabilities into the
efficient multi-scale framework of NHiTS, rather than simply stacking or replacing the entire architecture,
remains a problem warranting further exploration.

Therefore, this paper proposes an improved NHiTS model, with its core innovation being the design
of a Multi-Scale Fusion Block (MSFB). Targeting the multi-scale hierarchical characteristics of NHiTS,
this module combines multi-scale convolution and block-sparse attention mechanisms to achieve
efficient modeling of local temporal patterns and global dependencies, respectively. It enhances basic
feature representation capability through a dynamic gating mechanism for adaptive feature fusion.

The main contributions of this paper are as follows:

(1) We systematically analyze the specific limitations of the MLP building block in the NHiTS model
in terms of temporal feature representation, explicitly pointing out its inadequacy in jointly modeling
local fine-grained patterns and global long-term dependencies, thereby providing a theoretical basis for
improving such models.

(2) To address the above limitations, we propose a Multi-Scale Fusion Block (MSFB), which achieves
unified and efficient modeling of local features and global dependencies in time series through the
collaborative design of parallel multi-scale convolution and block-sparse attention, along with a dynamic
gating fusion mechanism.

(3) Experimental results on multiple public datasets demonstrate that the proposed improved model
significantly enhances prediction performance through module-level replacement while maintaining the
multi-scale pyramid architecture.

2. Related Work
2.1. Baseline Model and Related Methods

The NHiTS model constructs a pyramid structure through multi-scale hierarchical sampling and
interactive downsampling mechanisms, capturing short-term patterns at shallow layers, modeling long-
term trends at deep layers, and fusing predictions from different scales®. However, its fundamental MLP
building block has inherent limitations in capturing complex nonlinear patterns within multi-periods: it
lacks an explicit modeling mechanism for the local continuity of time series; it relies on stacking multiple
network layers to indirectly establish long-range dependencies; its feature transformation is simplistic.
These limitations make the basic feature extraction capability of the original NHiTS a performance
bottleneck on sequences with complex periodic structures, which is the direct motivation for the
improvements in this paper. In the field of time series forecasting, TimesNet captures multi-period
patterns via 2D convolution but incurs high computational cost!!3]l; Autoformer introduces seasonal-trend
decomposition and auto-correlation mechanisms['¥; FEDformer performs global modeling in the
frequency domain. While these methods have their respective advantages, they mostly focus on overall
architectural innovation!'*). This paper focuses on lightweight module improvements within the NHiTS
framework. Inspired by the multi-period modeling idea of TimesNet, this paper designs a lightweight
Multi-Scale Fusion Block (MSFB), employing 1D convolution and block-sparse attention to
collaboratively model local and global features, and achieving adaptive fusion through dynamic gating,
thereby enhancing the model’s ability to model complex temporal patterns without excessively
increasing computational burden.

2.2. Improved Model Design

Addressing the specific limitations of the MLP building block’s temporal feature representation in
the original NHiTS model analyzed in Section, this paper proposes an improved model. Its core idea is
to embed the self-designed Multi-Scale Fusion Block (MSFB) into the NHiTS model to enhance local
pattern capture and global dependency modeling capabilities. The overall model architecture is shown in
Figure 1, consisting of three core parts:

(1) Input Projection Layer: The model first maps the input to a high-dimensional space via a linear
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projection layer, obtaining X(®) &€ RLxd-model Thig projection is added to a sinusoidal positional encoding
to obtain the processed data X(1).

(2) Multi-Scale Fusion Processing Layer: Consists of N, stacked stacks. Each stack contains
N, serially connected MSFB modules (see Figure 2), responsible for feature extraction and
transformation at the current scale. The final output of each stack is a prediction sequence ¥; € RP*1
(where H is the forecast length).

(3) Gated Fusion and Output Layer: Inspired by the gated fusion mechanism introduced by Kocak et
all'l, for prediction outputs ¥;, %, ... ... , ?Ns from all stacks are passed through a shallow neural network
to generate normalized weights g € R¥ s, dynamically fusing the results of each stack: ?fused = Sili 59"

Y;. Finally, 17fused is passed through an output projection layer to obtain the model’s final prediction ¥ €
RH.
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Figure 1: model structure diagram

Through this processing flow, the overall model ensures backward compatibility of the framework
while significantly enhancing basic feature representation capability.

2.3. MSFB Module Design

The MSFB module is the core feature extraction unit of the model. Its structure is shown in Figure 2.
Input X enters two parallel pathways:

Multi-Scale Convolution Pathway: The input passes through multiple parallel Convldk layers,
undergoes batch normalization and GELU activation, and is then averaged to obtain the local feature

FCOTlli

1
Foony = mz Dropout(GELU(BatchNorm(DepthwiseConvld,(X)))) (@8]

keK

where K 1is the set of convolution kernel sizes.

Sparse Attention Pathway: The input sequence is divided into blocks of length block size.Attention
is computed independently within each block (Q;, K;, V;— sofimax). The outputs A; are concatenated and
passed through a linear projection layer to obtain the global feature F,;;,. For the j -th block:

QuK, Vi = Xblock[j]w/q ,szack[i]Wk ,Xblack[i]M/v 2

KT
Aj = Softmax (Q]K] )VJ 3)

/o

All block outputs A j are concatenated and passed through a linear projection layer to obtain the final
output F attn of this pathway.

Dynamic Fusion and Output: Adaptive weights & = Softmax(w / 1) are computed using learnable
weights W = [Weonp Waren]€R?, and the features from the two pathways are weighted and fused:
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Frused = @1 Feonv + @2 Farn (4)
The fused features undergo GLU nonlinear transformation, are then combined with the input X viaa
residual connection, and output after layer normalization:

Xout = LayerNorm (X + Dropout (GLU(Ffused))) )

The outputs of the two pathways are weighted and fused in the dynamic fusion gating layer, then
undergo nonlinear transformation via a Gated Linear Unit (GLU), and finally undergo a residual
connection (Add) with the input X , and are output after layer normalization.
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Figure 2: Structure of the Multi-Scale Fusion Block (MSFB)

This module, while maintaining the lightweight nature of NHiTS, enhances the modeling capability
for local patterns and global dependencies through the collaborative design of multi-scale convolution
and block-sparse attention, and achieves adaptive feature fusion through dynamic gating, demonstrating
the value of module-level innovation within an efficient multi-scale framework.

The effectiveness of the proposed MSFB will be validated through extensive experiments in Section4.

3. Experimental Setup

To comprehensively evaluate the performance of the improved model, we conducted rigorous
experiments on multiple public datasets and compared it with a series of advanced baseline models. To
evaluate the model’s forecasting performance from multiple dimensions, the experiments employed
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the
Coefficient of Determination (R?) as evaluation metrics.

3.1. Datasets

The experiments used four public time series datasets from different domains. All datasets were
sourced from the Tsinghua University Time Series Forecasting Bench mark Library (Time-Series-
Library)[!”l. ETTm2: Electricity Transformer Temperature dataset, exhibiting clear daily (96 points) and
weekly (672 points) cycles, making it an ideal dataset for testing multi-period modeling capability. Traffic:
Highway sensor occupancy rate data, containing daily cycles and weekend patterns. Weather:
Multivariate meteorological data containing multiple periodicities like temperature and humidity, making
it a dataset with cross-scale cycles. Exchange: Multi-country exchange rate data, with strong trends and
no obvious fixed periodicity, making it a non-stationary sequence dataset lacking explicit periodicity.

3.2. Data Processing
To ensure the fairness and reproducibility of the experiments, a unified data preprocessing pipeline

was adopted. The data processing flow is shown in Figure 3, mainly including four steps: data acquisition,
missing value handling, feature engineering, and standardization:
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Figure 3: Data Processing Flowchart

Linear interpolation was first applied to handle missing values. Temporal features were then
encoded using sine—cosine transformations to preserve their cyclical properties. For high-dimensional
datasets such as Traffic, mutual information—based feature selection was performed to identify key
predictors, following the findings of Covert et al.['®]. Finally, RobustScaler was used for normalization
due to its robustness to outliers, as recommended by Arefi et al.l'>-2%. All preprocessing steps were
fitted exclusively on the training set to avoid data leakage.

3.3. Experimental Parameter Configuration

All experiments were conducted under the same hardware and software environment to ensure fair
comparability of results.All models are trained with the same early stopping strategy.The specific
configuration is as follows: the processor is an Intel Core i5-13400F, the graphics card is an NVIDIA
GeForce RTX 3060 12GB, and the operating system is Windows 11. The experiments were implemented
based on Python 3.11 and the PyTorch 2.5 framework. Model training utilized the Adam optimizer, with
a batch size of 32, a learning rate of 3e-4, and was run for 50 epochs.

4. Experimental Results and Analysis
4.1. Ablation Study

To verify the necessity of each sub-component within the MSFB module and its contribution to
overall performance, we conducted a systematic ablation study on the ETTm?2 dataset. The experimental
setup is shown in Table 1. By sequentially removing key modules while keeping the experimental
configuration consistent (total samples: 69,680, split 44,595/11,149/13,936 for train/validation/test, 24-
step multi-step forecasting task), we observed the changes in model performance.

Table 1: Ablation study of model components

Component Exp.1 Exp.2 Exp.3 Exp.4 Exp.5
Multi-scale fusion x v v v v
Sparse attention v x v v v
Dynamic fusion v v X v v
GLU gating v v 4 x v

MAE 0317 0173 0175 0.179 0.159

MSE 0.403 0215 0219 0228 0.173

R? 0803 0939 0936 0931 0.964

Params (M) 0.27 1.49 1.48 1.29 1.49

The experimental results demonstrate that each component within the improved module is
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indispensable: removing the multi-scale fusion module leads to a 133.0% surge in MSE, highlighting its
importance in capturing local patterns; removing sparse attention, dynamic fusion, or GLU gating results
in 24.3%, 26.6%, and 31.8% increases in MSE, respectively, confirming the critical role of each
component in feature extraction and fusion.

4.2. Model Comparison Experiment

To comprehensively evaluate the performance of the improved model, we conducted systematic
comparative experiments with multiple advanced time series forecasting baseline models,including:
TimesNet, NHiTS, FEDformer, and Autoformer. All comparative experiments were conducted on the
ETTm?2 dataset under the same data preprocessing pipeline and evaluation metrics (total samples: 69,680,
split 44595/11149/13936 for train/validation/test, 96-step multi-step forecasting) to ensure fairness of the
results. Detailed quantitative results are shown in Table 2.

Table 2: Comparative experiments of different models

Ours TimesNet NHiTS FEDformer Autoformer
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
ETTm2 0.165 0.179 0.333 0.291 0.176 0.185 0.305 0.349 0.327 0.371

Traffic 0313 0394 0336 0.620 0402 0431 0376 0.610 0.379 0.628
Weather 0.148 0.189 0.287 0.259 0.158 0.205 0.360 0.309 0.382 0.339
Exchange 0.196 0.215 0443 0416 0.218 0.243 0429 0.519 0.539 0.613

A comprehensive analysis of the comparative experimental results presented in Table 2 reveals that
the improved model significantly outperforms the original NHiTS model across all four public datasets.
Specifically, compared to NHiTS, the improved model reduced the MAE metric by 6.25%, 22.14%,
6.33%, and 10.09%, respectively, with an average reduction of approximately 11.20%. It reduced the
MSE metric by 3.24%, 8.58%, 7.80%, and 11.52%, respectively, with an average reduction of
approximately 7.79%. Furthermore, the improved model demonstrated outstanding performance on
datasets with prominent periodic patterns, such as ETTm2 and Weather, indicating that the MSFB module
effectively enhances the model’s ability to capture complex intra-period patterns. It also achieved
significant improvements on non-stationary, trend-strong datasets like Exchange, suggesting that the
multi-scale fusion mechanism improves the modeling stability for long-term dependencies.

Dataset

4.3. Visualization Analysis of Forecasting Results

To further analyze the forecasting behavior of different models beyond quantitative metrics, we
visualize the averaged prediction results on the ETTm?2 dataset. Specifically, Figure 4 illustrates the mean
forecasting curves over 30 randomly selected test samples with a prediction horizon of 96 steps.
Compared with single-sample visualization, this averaged representation effectively reduces the
influence of extreme fluctuations and provides a more robust reflection of the overall predictive
characteristics of each model.

Averaged Forecasting Results on ETTm2

= Ground Truth (Mean)
550 —— TimesNet

NHITS

Autoformer
FEDformer
NHITS-MSFB

0

F] 50 125 150 175 20

Time S::p
Figure 4: Averaged Forecasting Results on ETTm?2

As shown in Figure 4, all models are able to capture the general trend of the ground truth to varying
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degrees. TimesNet exhibits relatively fast responses to short-term variations but also introduces
noticeable oscillations in the averaged curve, indicating higher sensitivity to local fluctuations.
Autoformer and FEDformer tend to underestimate the overall load level, suggesting limited capability in
modeling fine-grained temporal dynamics under long forecasting horizons.

In contrast, the proposed NHiTS-MSFB model produces smoother prediction curves with strong trend
consistency. Although its averaged prediction exhibits slightly reduced sensitivity to short-term
amplitude variations, it closely follows the overall trajectory of the ground truth and avoids abrupt
oscillations. This behavior can be attributed to the design of the Multi-Scale Fusion Block, which
enhances cross-scale feature consistency by jointly modeling local temporal patterns and global
dependencies while suppressing isolated noise.

It is worth noting that the observed smoothing effect in the averaged visualization does not indicate
inferior predictive performance. Instead, it reflects a deliberate bias—variance trade-off introduced by the
MSFB module, favoring robustness and stability across different samples. This characteristic is
particularly desirable in long-term forecasting tasks such as power load prediction, where stable trend
estimation is often more critical than fitting transient fluctuations. The visualization results therefore
complement the quantitative improvements reported in Section 4.2 and further demonstrate the
effectiveness of the proposed model.

5. Conclusion

This paper addresses the limitations of the NHiTS model in temporal feature representation by
proposing an improved architecture based on a Multi-Scale Fusion Block (MSFB). This module models
local patterns and global dependencies through parallel multi-scale 1D convolutions and block-sparse
attention mechanisms, respectively, and achieves adaptive integration of heterogeneous features through
a dynamic gating fusion mechanism. Experimental results demonstrate that the improved model
outperforms the baseline model in predictive performance across multiple public datasets.

In future work, we plan to further investigate the performance of the proposed model under longer
forecasting horizons and more diverse real-world scenarios. Moreover, extending the proposed approach
to more complex and highly non-stationary time series remains an interesting direction for future research.
Beyond forecasting, exploring more efficient implementations of the proposed module to enhance
scalability also deserves further study.
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