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Abstract: The core challenge in time series forecasting lies in effectively modeling long-term 

dependencies and multi-scale patterns. Although the NHiTS model has made progress in long-term 

forecasting through its multi-scale framework, its core multilayer perceptron (MLP) building blocks have 

limitations in feature representation capability, making it difficult to jointly capture local fine-grained 

patterns and global longterm dependencies. To address this, this paper proposes an improved model 

architecture, with its core innovation being the design of a novel Multi-Scale Fusion Block (MSFB) to 

enhance multi-period feature representation. This module explicitly models local temporal patterns and 

global dependencies through parallel multi-scale 1D convolutions and block-sparse attention 

mechanisms, respectively, and introduces a learnable dynamic fusion gating mechanism to adaptively 

integrate heterogeneous feature streams. Experiments were conducted on four benchmark datasets—

ETTm2, Traffic, Weather, and Exchange—for training, validation, and testing. The results show that the 

improved model achieved average reductions of 11.20% and 7.79% in MAE and MSE metrics, 

respectively, compared to the original NHiTS model, and significantly outperformed mainstream 

comparative models such as TimesNet, Autoformer, and FEDformer. This validates the effectiveness of 

the proposed module in enhancing temporal representation learning and improving forecasting accuracy. 
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1. Introduction 

Time series forecasting, as a core task in data analysis, plays a crucial role in key fields such as power 

load forecasting, meteorological prediction, and financial market analysis [1-3].Real-world time series data 

often contain complex multi-scale temporal patterns (e.g., daily, weekly, and seasonal variations) and 

non-stationary dynamic characteristics, posing severe challenges to forecasting models: they must 

simultaneously possess high sensitivity to local fine-grained patterns, robust modeling capabilities for 

long-term trends and dependencies, and high efficiency in practical deployment. 

In recent years, deep learning models, leveraging their powerful nonlinear fitting capabilities, have 

become mainstream methods for time series forecasting. Architectures represented by Transformer [4] and 

Temporal Convolutional Networks (TCN)[5]have demonstrated advantages in long-range dependency 

modeling and local pattern extraction, respectively. However, these models often face issues of high 

computational complexity or severe error accumulation when dealing with extremely long forecasting 

horizons. To address this, the NHiTS model proposed by Challu et al[6]. constructs an efficient pyramid 

analysis framework through multi-scale[7] hierarchical sampling and interactive downsampling 

mechanisms[8]. It achieves a good balance between forecasting accuracy and computational efficiency in 

long-term forecasting tasks. 

Nevertheless, the core building block of the NHiTS model—the Multilayer Perceptron (MLP)—has 

inherent limitations in feature representation capability[9]: it struggles to effectively capture fine-grained 

intra-period patterns; it inefficiently establishes long-range dependencies by stacking multiple network 

layers, which can lead to gradient-related problems; and its feature transformation is simplistic, failing 

to adaptively balance local details and global contextual information. 

To address the limitations of the MLP block, researchers have explored methods to enhance temporal 

feature extraction from different perspectives. For instance, Convolutional Neural Networks (CNN) [10-
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11], with their local receptive fields and weight-sharing mechanisms, have been proven effective in 

capturing local patterns and multi-scale features in time series. Sparse or localized attention 

mechanisms[12]can maintain modeling capability for key long-term dependencies while reducing 

computational complexity. These works provide important insights for designing more powerful 

temporal feature extractors. However, how to organically embed and adapt such capabilities into the 

efficient multi-scale framework of NHiTS, rather than simply stacking or replacing the entire architecture, 

remains a problem warranting further exploration. 

Therefore, this paper proposes an improved NHiTS model, with its core innovation being the design 

of a Multi-Scale Fusion Block (MSFB). Targeting the multi-scale hierarchical characteristics of NHiTS, 

this module combines multi-scale convolution and block-sparse attention mechanisms to achieve 

efficient modeling of local temporal patterns and global dependencies, respectively. It enhances basic 

feature representation capability through a dynamic gating mechanism for adaptive feature fusion. 

The main contributions of this paper are as follows: 

(1) We systematically analyze the specific limitations of the MLP building block in the NHiTS model 

in terms of temporal feature representation, explicitly pointing out its inadequacy in jointly modeling 

local fine-grained patterns and global long-term dependencies, thereby providing a theoretical basis for 

improving such models. 

(2) To address the above limitations, we propose a Multi-Scale Fusion Block (MSFB), which achieves 

unified and efficient modeling of local features and global dependencies in time series through the 

collaborative design of parallel multi-scale convolution and block-sparse attention, along with a dynamic 

gating fusion mechanism. 

(3) Experimental results on multiple public datasets demonstrate that the proposed improved model 

significantly enhances prediction performance through module-level replacement while maintaining the 

multi-scale pyramid architecture. 

2. Related Work 

2.1. Baseline Model and Related Methods 

The NHiTS model constructs a pyramid structure through multi-scale hierarchical sampling and 

interactive downsampling mechanisms, capturing short-term patterns at shallow layers, modeling long-

term trends at deep layers, and fusing predictions from different scales[6]. However, its fundamental MLP 

building block has inherent limitations in capturing complex nonlinear patterns within multi-periods: it 

lacks an explicit modeling mechanism for the local continuity of time series; it relies on stacking multiple 

network layers to indirectly establish long-range dependencies; its feature transformation is simplistic. 

These limitations make the basic feature extraction capability of the original NHiTS a performance 

bottleneck on sequences with complex periodic structures, which is the direct motivation for the 

improvements in this paper. In the field of time series forecasting, TimesNet captures multi-period 

patterns via 2D convolution but incurs high computational cost[13]; Autoformer introduces seasonal-trend 

decomposition and auto-correlation mechanisms[14]; FEDformer performs global modeling in the 

frequency domain. While these methods have their respective advantages, they mostly focus on overall 

architectural innovation[15]. This paper focuses on lightweight module improvements within the NHiTS 

framework. Inspired by the multi-period modeling idea of TimesNet, this paper designs a lightweight 

Multi-Scale Fusion Block (MSFB), employing 1D convolution and block-sparse attention to 

collaboratively model local and global features, and achieving adaptive fusion through dynamic gating, 

thereby enhancing the model’s ability to model complex temporal patterns without excessively 

increasing computational burden. 

2.2. Improved Model Design 

Addressing the specific limitations of the MLP building block’s temporal feature representation in 

the original NHiTS model analyzed in Section, this paper proposes an improved model. Its core idea is 

to embed the self-designed Multi-Scale Fusion Block (MSFB) into the NHiTS model to enhance local 

pattern capture and global dependency modeling capabilities. The overall model architecture is shown in 

Figure 1, consisting of three core parts: 

(1) Input Projection Layer: The model first maps the input to a high-dimensional space via a linear 
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projection layer, obtaining X(0)∈RL×d_model. This projection is added to a sinusoidal positional encoding 

to obtain the processed data X(1). 

(2) Multi-Scale Fusion Processing Layer: Consists of 𝑁𝑠  stacked stacks. Each stack contains 

𝑁𝑏 serially connected MSFB modules (see Figure 2), responsible for feature extraction and 

transformation at the current scale. The final output of each stack is a prediction sequence  𝑌̂𝑖 ∈ 𝑅𝐻×1 

(where H is the forecast length). 

(3) Gated Fusion and Output Layer: Inspired by the gated fusion mechanism introduced by Kocak et 

al[16]. for prediction outputs 𝑌̂1, 𝑌̂2, … … , 𝑌̂𝑁𝑠
 from all stacks are passed through a shallow neural network 

to generate normalized weights g ∈ R𝑁 𝑠 , dynamically fusing the results of each stack: 𝑌̂𝑓𝑢𝑠𝑒𝑑 = 𝛴ⅈ=1
𝑁𝑠 𝑔𝑖 ⋅

𝑌̂𝑖. Finally, 𝑌̂𝑓𝑢𝑠𝑒𝑑  is passed through an output projection layer to obtain the model’s final prediction 𝑌̂ ∈

𝑅𝐻. 

 

Figure 1: model structure diagram 

Through this processing flow, the overall model ensures backward compatibility of the framework 

while significantly enhancing basic feature representation capability. 

2.3. MSFB Module Design 

The MSFB module is the core feature extraction unit of the model. Its structure is shown in Figure 2. 

Input 𝑋  enters two parallel pathways: 

Multi-Scale Convolution Pathway: The input passes through multiple parallel Conv1d𝑘  layers, 

undergoes batch normalization and GELU activation, and is then averaged to obtain the local feature 

𝐹𝑐𝑜𝑛𝑣 

               𝐹𝑐𝑜𝑛𝑣 =
1

|𝐾|
∑ 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝐺𝐸𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣1𝑑𝑘(𝑋))))

𝑘𝜖𝐾

        (1) 

where 𝐾  is the set of convolution kernel sizes. 

Sparse Attention Pathway: The input sequence is divided into blocks of length block size.Attention 

is computed independently within each block (𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖→ softmax). The outputs 𝐴𝑗 are concatenated and 

passed through a linear projection layer to obtain the global feature 𝐹𝑎𝑡𝑡𝑛. For the 𝑗 -th block: 

                                                       𝑄𝑖, 𝐾𝑖 , 𝑉𝑖 =  𝑋𝑏𝑙𝑜𝑐𝑘[𝑗]𝑊𝑞  ,𝑋𝑏𝑙𝑜𝑐𝑘[𝑗]𝑊𝑘  ,𝑋𝑏𝑙𝑜𝑐𝑘[𝑗]𝑊𝑣                                   (2) 

                                                       𝐴𝑗 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
QjKj

T

√dk

) Vj                                                          (3) 

All block outputs 𝐴 𝑗  are concatenated and passed through a linear projection layer to obtain the final 

output 𝐹 attn of this pathway. 

Dynamic Fusion and Output: Adaptive weights 𝛼 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑤 ∕ 𝜏) are computed using learnable 

weights 𝑤 = [𝑤𝑐𝑜𝑛𝑣, 𝑤𝑎𝑡𝑡𝑛]𝜖𝑅2, and the features from the two pathways are weighted and fused: 
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                                                         Ffused = α1Fconv + α2Fattn                                                        (4) 

The fused features undergo GLU nonlinear transformation, are then combined with the input 𝑋  via a 

residual connection, and output after layer normalization: 

                               𝑋𝑜𝑢𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑋 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐺𝐿𝑈(𝐹𝑓𝑢𝑠𝑒𝑑)))                                    (5) 

The outputs of the two pathways are weighted and fused in the dynamic fusion gating layer, then 

undergo nonlinear transformation via a Gated Linear Unit (GLU), and finally undergo a residual 

connection (Add) with the input 𝑋 , and are output after layer normalization. 

 

Figure 2: Structure of the Multi-Scale Fusion Block (MSFB) 

This module, while maintaining the lightweight nature of NHiTS, enhances the modeling capability 

for local patterns and global dependencies through the collaborative design of multi-scale convolution 

and block-sparse attention, and achieves adaptive feature fusion through dynamic gating, demonstrating 

the value of module-level innovation within an efficient multi-scale framework. 

The effectiveness of the proposed MSFB will be validated through extensive experiments in Section4. 

3. Experimental Setup 

To comprehensively evaluate the performance of the improved model, we conducted rigorous 

experiments on multiple public datasets and compared it with a series of advanced baseline models. To 

evaluate the model’s forecasting performance from multiple dimensions, the experiments employed 

Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the 

Coefficient of Determination (R²) as evaluation metrics. 

3.1. Datasets 

The experiments used four public time series datasets from different domains. All datasets were 

sourced from the Tsinghua University Time Series Forecasting Bench mark Library (Time-Series-

Library)[17]. ETTm2: Electricity Transformer Temperature dataset, exhibiting clear daily (96 points) and 

weekly (672 points) cycles, making it an ideal dataset for testing multi-period modeling capability. Traffic: 

Highway sensor occupancy rate data, containing daily cycles and weekend patterns. Weather: 

Multivariate meteorological data containing multiple periodicities like temperature and humidity, making 

it a dataset with cross-scale cycles. Exchange: Multi-country exchange rate data, with strong trends and 

no obvious fixed periodicity, making it a non-stationary sequence dataset lacking explicit periodicity. 

3.2. Data Processing 

To ensure the fairness and reproducibility of the experiments, a unified data preprocessing pipeline 

was adopted. The data processing flow is shown in Figure 3, mainly including four steps: data acquisition, 

missing value handling, feature engineering, and standardization: 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 9, Issue 1: 48-55, DOI: 10.25236/AJCIS.2026.090106 

Published by Francis Academic Press, UK 

-52- 

 

Figure 3: Data Processing Flowchart 

Linear interpolation was first applied to handle missing values. Temporal features were then 

encoded using sine–cosine transformations to preserve their cyclical properties. For high-dimensional 

datasets such as Traffic, mutual information–based feature selection was performed to identify key 

predictors, following the findings of Covert et al.[18]. Finally, RobustScaler was used for normalization 

due to its robustness to outliers, as recommended by Arefi et al.[19-20]. All preprocessing steps were 

fitted exclusively on the training set to avoid data leakage. 

3.3. Experimental Parameter Configuration 

All experiments were conducted under the same hardware and software environment to ensure fair 

comparability of results.All models are trained with the same early stopping strategy.The specific 

configuration is as follows: the processor is an Intel Core i5-13400F, the graphics card is an NVIDIA 

GeForce RTX 3060 12GB, and the operating system is Windows 11. The experiments were implemented 

based on Python 3.11 and the PyTorch 2.5 framework. Model training utilized the Adam optimizer, with 

a batch size of 32, a learning rate of 3e-4, and was run for 50 epochs. 

4. Experimental Results and Analysis 

4.1. Ablation Study 

To verify the necessity of each sub-component within the MSFB module and its contribution to 

overall performance, we conducted a systematic ablation study on the ETTm2 dataset. The experimental 

setup is shown in Table 1. By sequentially removing key modules while keeping the experimental 

configuration consistent (total samples: 69,680, split 44,595/11,149/13,936 for train/validation/test, 24-

step multi-step forecasting task), we observed the changes in model performance. 

Table 1: Ablation study of model components 

Component Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

Multi-scale fusion × ✓ ✓ ✓ ✓ 

Sparse attention ✓ × ✓ ✓ ✓ 

Dynamic fusion ✓ ✓ × ✓ ✓ 

GLU gating ✓ ✓ ✓ × ✓ 

MAE 0.317 0.173 0.175 0.179 0.159 

MSE 0.403 0.215 0.219 0.228 0.173 

R² 0.803 0.939 0.936 0.931 0.964 

Params (M) 0.27 1.49 1.48 1.29 1.49 

The experimental results demonstrate that each component within the improved module is 
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indispensable: removing the multi-scale fusion module leads to a 133.0% surge in MSE, highlighting its 

importance in capturing local patterns; removing sparse attention, dynamic fusion, or GLU gating results 

in 24.3%, 26.6%, and 31.8% increases in MSE, respectively, confirming the critical role of each 

component in feature extraction and fusion. 

4.2. Model Comparison Experiment 

To comprehensively evaluate the performance of the improved model, we conducted systematic 

comparative experiments with multiple advanced time series forecasting baseline models,including: 

TimesNet, NHiTS, FEDformer, and Autoformer. All comparative experiments were conducted on the 

ETTm2 dataset under the same data preprocessing pipeline and evaluation metrics (total samples: 69,680, 

split 44595/11149/13936 for train/validation/test, 96-step multi-step forecasting) to ensure fairness of the 

results. Detailed quantitative results are shown in Table 2. 

Table 2: Comparative experiments of different models 

Dataset 
Ours TimesNet NHiTS FEDformer Autoformer 

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE 

ETTm2 0.165 0.179 0.333 0.291 0.176 0.185 0.305 0.349 0.327 0.371 

Traffic 0.313 0.394 0.336 0.620 0.402 0.431 0.376 0.610 0.379 0.628 

Weather 0.148 0.189 0.287 0.259 0.158 0.205 0.360 0.309 0.382 0.339 

Exchange 0.196 0.215 0.443 0.416 0.218 0.243 0.429 0.519 0.539 0.613 

A comprehensive analysis of the comparative experimental results presented in Table 2 reveals that 

the improved model significantly outperforms the original NHiTS model across all four public datasets. 

Specifically, compared to NHiTS, the improved model reduced the MAE metric by 6.25%, 22.14%, 

6.33%, and 10.09%, respectively, with an average reduction of approximately 11.20%. It reduced the 

MSE metric by 3.24%, 8.58%, 7.80%, and 11.52%, respectively, with an average reduction of 

approximately 7.79%. Furthermore, the improved model demonstrated outstanding performance on 

datasets with prominent periodic patterns, such as ETTm2 and Weather, indicating that the MSFB module 

effectively enhances the model’s ability to capture complex intra-period patterns. It also achieved 

significant improvements on non-stationary, trend-strong datasets like Exchange, suggesting that the 

multi-scale fusion mechanism improves the modeling stability for long-term dependencies. 

4.3. Visualization Analysis of Forecasting Results 

To further analyze the forecasting behavior of different models beyond quantitative metrics, we 

visualize the averaged prediction results on the ETTm2 dataset. Specifically, Figure 4 illustrates the mean 

forecasting curves over 30 randomly selected test samples with a prediction horizon of 96 steps. 

Compared with single-sample visualization, this averaged representation effectively reduces the 

influence of extreme fluctuations and provides a more robust reflection of the overall predictive 

characteristics of each model. 

 

Figure 4: Averaged Forecasting Results on ETTm2 

As shown in Figure 4, all models are able to capture the general trend of the ground truth to varying 
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degrees. TimesNet exhibits relatively fast responses to short-term variations but also introduces 

noticeable oscillations in the averaged curve, indicating higher sensitivity to local fluctuations. 

Autoformer and FEDformer tend to underestimate the overall load level, suggesting limited capability in 

modeling fine-grained temporal dynamics under long forecasting horizons. 

In contrast, the proposed NHiTS-MSFB model produces smoother prediction curves with strong trend 

consistency. Although its averaged prediction exhibits slightly reduced sensitivity to short-term 

amplitude variations, it closely follows the overall trajectory of the ground truth and avoids abrupt 

oscillations. This behavior can be attributed to the design of the Multi-Scale Fusion Block, which 

enhances cross-scale feature consistency by jointly modeling local temporal patterns and global 

dependencies while suppressing isolated noise. 

It is worth noting that the observed smoothing effect in the averaged visualization does not indicate 

inferior predictive performance. Instead, it reflects a deliberate bias–variance trade-off introduced by the 

MSFB module, favoring robustness and stability across different samples. This characteristic is 

particularly desirable in long-term forecasting tasks such as power load prediction, where stable trend 

estimation is often more critical than fitting transient fluctuations. The visualization results therefore 

complement the quantitative improvements reported in Section 4.2 and further demonstrate the 

effectiveness of the proposed model. 

5. Conclusion 

This paper addresses the limitations of the NHiTS model in temporal feature representation by 

proposing an improved architecture based on a Multi-Scale Fusion Block (MSFB). This module models 

local patterns and global dependencies through parallel multi-scale 1D convolutions and block-sparse 

attention mechanisms, respectively, and achieves adaptive integration of heterogeneous features through 

a dynamic gating fusion mechanism. Experimental results demonstrate that the improved model 

outperforms the baseline model in predictive performance across multiple public datasets. 

In future work, we plan to further investigate the performance of the proposed model under longer 

forecasting horizons and more diverse real-world scenarios. Moreover, extending the proposed approach 

to more complex and highly non-stationary time series remains an interesting direction for future research. 

Beyond forecasting, exploring more efficient implementations of the proposed module to enhance 

scalability also deserves further study. 
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