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Abstract: With the rapid development of deep learning technologies, the integration of fuzzy clustering 

methods with convolutional autoencoders has offered new perspectives for data clustering. This paper 

introduces a novel deep learning methodology, "Convolutional Autoencoder-based Deep Embedded 

Fuzzy Clustering Using H-divergences, (CADEFC)". In response to the rapid evolution of deep 

learning, this study combines fuzzy clustering methods with convolutional autoencoders to explore new 

dimensions in data clustering. We critically assess the limitations of the Wasserstein distance as a 

conventional loss function and propose the adoption of H-divergences as a more robust alternative. By 

integrating H-divergence and introducing fuzzy theory, our method transcends the traditional 

constraints of deep clustering techniques, offering substantial improvements in clustering accuracy and 

stability. The effectiveness and superiority of this approach are demonstrated through rigorous testing 

on several benchmark datasets, including Digits, Fashion-MNIST, MNIST, and USPS. Our results 

confirm that the proposed methodology not only enhances performance but also broadens the 

applicative landscape of deep embedded clustering. 
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1. Introduction 

Data clustering, a pivotal component of unsupervised learning, plays a crucial role in various 

applications such as image recognition and speech processing. Fuzzy clustering, by allowing data 

points to belong to multiple clusters, offers a more flexible tool for data analysis compared to 

traditional clustering methods. In recent years, clustering techniques that integrate deep 

learning—particularly those based on convolutional autoencoders—have demonstrated remarkable 

capabilities in handling complex datasets. However, traditional loss functions like the Wasserstein 

distance exhibit limitations, especially under conditions of insufficient distributional support, leading to 

decreased performance. 

Background on Fuzzy Clustering and Convolutional Autoencoders: Fuzzy clustering extends 

traditional approaches by incorporating the concept of partial membership, which provides a nuanced 

understanding of data points' affiliations with multiple clusters [1]. Convolutional autoencoders, 

renowned for their efficacy in feature extraction from structured data like images, serve as the 

backbone for our deep clustering framework. By harnessing the power of deep convolutional networks, 

these autoencoders efficiently capture the intricate patterns and relationships within data, facilitating 

more accurate and robust clustering [2]. 

Limitations of Wasserstein Distance in Clustering: While the Wasserstein distance has been a 

popular choice for measuring discrepancies between distributions in clustering scenarios, it encounters 

significant challenges when the underlying data distributions lack sufficient overlap or are sparsely 

supported [2]. Such scenarios often lead to suboptimal clustering outcomes, reflecting the need for 

alternative approaches that can provide more reliable results across diverse distributional 

characteristics. 

Introduction of H-divergences: To address these shortcomings, we introduce H-divergences as an 

innovative divergence metric within our clustering methodology. H-divergences are adept at measuring 

differences between distributions, even in cases where traditional metrics like the Wasserstein distance 

falter [3]. By incorporating H-divergences into our deep embedded fuzzy clustering framework, we aim 

to enhance the model's ability to discern and adapt to complex distributional shifts, thereby improving 
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clustering accuracy and robustness. 

This paper explores the integration of H-divergences into deep convolutional autoencoder-based 

clustering, aiming to provide a sophisticated approach that not only addresses the inherent limitations 

of previous metrics but also leverages the strengths of modern deep learning architectures to advance 

the field of data clustering. 

2. Related work 

This section provides a comprehensive review of the advancements in fuzzy clustering, deep 

convolutional autoencoder-based clustering, and their associated loss functions, with a particular focus 

on the application of Wasserstein distances and H-divergences in clustering. By analyzing the strengths 

and limitations of existing methods in specific scenarios, we establish a theoretical foundation for the 

research presented in this paper. 

2.1 Advancements in deep learning for clustering 

Recent advancements in the field of deep learning have substantially influenced the development of 

clustering methods, particularly through the integration of deep convolutional networks with fuzzy 

clustering techniques. This synthesis of deep learning and fuzzy logic in clustering not only improves 

the robustness and adaptability of clustering methods but also opens new avenues for research and 

application. For instance, in fields like bioinformatics, customer segmentation, and image processing, 

where data ambiguity and complexity are prevalent. This fusion, known as deep convolutional 

embedded fuzzy clustering (DCEFC) [4], has marked a significant step forward in both the theory and 

application of clustering methods. 

Deep convolutional networks, renowned for their superior capability in feature extraction from 

complex datasets, such as images and videos, have been effectively adapted for clustering purposes. 

These networks facilitate the discernment of intricate patterns and relationships within data, which 

traditional clustering methods might overlook. The work of Alqahtani et al. (2018) and Du et al. (2023) 

exemplifies the application of these deep learning architectures, demonstrating enhanced clustering 

performance in terms of both accuracy and computational efficiency [5,6]. 

Moreover, the incorporation of fuzzy logic into deep learning-based clustering frameworks 

addresses the often rigid cluster assignment problem inherent in many conventional methods. Fuzzy 

clustering allows for soft cluster membership, which is a more realistic representation of the 

ambiguities present in real-world data. As highlighted by Tan et al. (2023), this approach provides a 

more flexible and realistic clustering process, where data points can belong to multiple clusters to 

varying degrees, thus reflecting the probabilistic nature of many real-world scenarios [7]. 

The progress in this area suggests a promising direction for further research, particularly in 

exploring the scalability of these models to larger datasets and their applicability across different 

domains. Future studies might focus on enhancing the interpretability of the clusters generated by such 

models, thus making them more actionable for decision-making processes in business and science [2]. 

2.2 Review of Wasserstein distance and other loss functions  

The Wasserstein distance, recognized for its capacity to measure the discrepancies between 

probability distributions, has emerged as a preferred loss function in the realm of clustering methods. 

This metric, grounded in the principles of optimal transport, has been shown to effectively capture the 

true distances between complex distributions, which is often a challenging feat for traditional metrics. 

As highlighted by Bischoff et al. (2024), the Wasserstein distance offers a robust framework for 

assessing dissimilarities in data characterized by varied probability distributions, enhancing the 

precision of clustering outcomes [8]. 

The Deep Convolutional Embedded Fuzzy Clustering with Wasserstein Loss (DCEFC) [4] stands 

as a sophisticated progression from traditional Deep Embedding Clustering (DEC). This advanced 

model integrates the concept of Wasserstein distance as the clustering phase's loss function. The 

selection of the Wasserstein distance is informed by its proficiency in accommodating the geometric 

intricacies of data distributions, which significantly enhances the accuracy of cluster assignments. 

Furthermore, DCEFC incorporates the fuzzy parameter m, a concept pivotal in fuzzy clustering. This 

addition allows for a more flexible membership assignment within clusters, thereby refining the 
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clustering process by acknowledging and managing the degrees of uncertainty inherent in data points. 

This dual incorporation of Wasserstein distance and fuzzy logic considerably elevates the clustering 

performance of DCEFC over traditional methods. 

Despite its advantages, the Wasserstein distance is not devoid of limitations. One significant 

challenge arises when this metric is employed in datasets with sparse or disjoint distributional supports. 

In such cases, the Wasserstein distance can struggle to accurately gauge the true disparities between 

clusters. This issue is particularly problematic in scenarios where clusters are not well-defined or are 

separated by non-overlapping supports, leading to potentially misleading clustering results. Cai et al. 

(2024) explore these challenges in depth, suggesting that while the Wasserstein distance is powerful, its 

effectiveness may be contingent upon the structural characteristics of the data [9]. 

In addition to the Wasserstein distance, other divergence measures like the Kullback-Leibler (KL) 

divergence and the Jensen-Shannon (JS) divergence have also been investigated for their potential in 

clustering applications. Both divergences, rooted in information theory, provide alternative means of 

measuring the information loss when one probability distribution is used to approximate another. 

However, as Cai and Yuhang (2024) discuss, these measures also encounter limitations, particularly in 

handling data complexities such as multimodal distributions where multiple subgroups exist within a 

single cluster [10]. 

The exploration of these loss functions highlights a critical area of research in clustering: the need 

for a versatile, accurate, and computationally feasible approach to measure distances between 

distributions in varied data environments. Future research might focus on developing new metrics or 

enhancing existing ones to overcome these challenges. Enhancements could involve hybrid approaches 

that combine the strengths of Wasserstein and other divergences, or entirely novel methods that are 

designed to be more adaptive to the specific properties of the dataset [11]. 

2.3 Applications of H-divergences in various domains  

The application of H-divergences in various domains, stemming from their origin in statistical 

hypothesis testing, has garnered considerable attention in machine learning. Particularly noteworthy are 

their roles in domain adaptation, generative adversarial networks (GANs), and clustering frameworks 

[11]. 

Shui et al. (2020) shed light on the utility of H-divergences in assessing the similarity between 

source and target distributions, crucial for ensuring the efficacy of learning models in domain 

adaptation scenarios [12]. Their studies demonstrate that models adapted using H-divergence-based 

strategies exhibit superior performance, especially when faced with significant disparities between the 

underlying data distributions of training and testing sets. 

In the realm of generative adversarial networks, Goel et al. (2020) showcase the instrumental role of 

H-divergences in refining the training process. By leveraging H-divergences, they enhance the 

generator's capability to produce synthetic data points that closely resemble real data, thus advancing 

the applicability of GANs in areas such as image synthesis and data augmentation [13]. 

Furthermore, Rey et al. (2022) delve into the adaptability of H-divergences in clustering 

frameworks, emphasizing their effectiveness in environments with non-overlapping distributions. This 

characteristic renders H-divergences a robust alternative to traditional metrics like Euclidean distance 

or the Kullback-Leibler divergence, particularly when capturing the true nature of data clusters 

becomes challenging [14]. 

Zhao et al. (2022) provide a comprehensive analysis of H-divergences across various machine 

learning tasks, including clustering, classification, and generative modeling. Their findings underscore 

the superiority of H-divergences over Kullback-Leibler and Wasserstein distances, especially in 

scenarios involving non-overlapping distributions or noisy data [15]. Additionally, Goel et al. (2020) 

contribute to this discourse with their review on advancements in divergence measures for machine 

learning, highlighting the superior performance of H-divergences in capturing intricate dependencies 

between distributions [13]. 

Collectively, these studies bolster the burgeoning literature supporting the adoption of 

H-divergences as a viable alternative to traditional distance measures. They underscore the potential of 

H-divergences to enhance the performance of machine learning methods, particularly in scenarios 

characterized by complex or non-standard distributional characteristics. 
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The insights gained from these studies provide crucial context for our investigation into the 

incorporation of H-divergences into deep convolutional autoencoder-based clustering. The next section 

details the methodology developed in this research, building upon the theoretical insights and empirical 

findings discussed herein. 

3. Proposed method 

In this section, we introduce a novel method named Convolutional Autoencoder-based Deep 

Embedded Fuzzy Clustering Using H-divergences (CADEFC). This section details the network 

architecture of the method, presents the core mathematical formulations, and provides illustrative 

diagrams and pseudocode to elucidate the method's implementation. 

In our proposed method, we continue to apply the clustering framework of DCEFC [4], which is 

divided into two distinct phases: the pre-training phase and the clustering phase. Initially, the 

pre-training phase employs a network architecture comprising three convolutional layers followed by a 

symmetric mirror structure. This configuration is meticulously designed to batch process datasets and 

subsequently construct the requisite convolutional autoencoder for pre-training. During this phase, both 

the parameters (weights and biases) and the hidden features from the final layer of the pre-training 

encoder are retained. 

Following the pre-training phase, the clustering phase commences. Here, the convolutional 

autoencoder's architecture from the pre-training phase is preserved, and the network parameters from 

this phase are inherited. The clustering model is then formed by appending a clustering layer 

subsequent to the pre-training encoder. In our approach, clustering centers are defined by the weights 

of the hidden features from the last pre-training encoder. Unlike other DCEFC implementations, our 

clustering is conducted using Fuzzy C-means clustering to derive cluster prediction labels and centers. 

These labels and centers are utilized to initialize the weights of the clustering layer. 

To better introduce our, we provide a schematic diagram of our method as shown in Figure 1, along 

with a detailed description of the method outlined below. 

 

Figure 1. Schematic Diagram of Convolutional Autoencoder-based Deep Embedded Fuzzy Clustering 

Using H-divergences 

To optimize DCEFC outcomes and mitigate the risk of Wasserstein divergence failure, we 

introduce an H-divergence based approach. This approach provides a rigorous framework for clustering 

analysis, effectively integrating the novel concept of H-divergences to enhance model performance and 

reliability. The fuzzy distribution p of embedding points is computed using the formula: 

𝑝(𝑧𝑖) = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(−
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Subsequently, the auxiliary distribution {qij ∈ Q}
i,j=1

C×N
 is calculated as: 

𝑞𝑖𝑗 =
(𝑚+‖𝒗𝑖−𝒛𝑗‖

2
)

−2
𝑚−1

∑ (𝑚+‖𝒗𝑘−𝒛𝑗‖
2

)

−2
𝑚−1𝐶

𝑘=1

, ∑ 𝑞𝑖𝑗 = 1𝐶
𝑖=1 , ∀𝑗                      (2) 

To better facilitate the minimization of the H-divergence between the predicted and target 

distributions. 

The minimization of H-divergence is realized through the loss function: 

𝐿 = ∑ 𝑝𝑖𝑖 𝒍𝒐𝒈
𝑝𝑖

𝑞𝑖
+ 𝜆𝐇 − 𝐝𝐢𝐯(𝑃‖𝑄)                         (3) 

Where ∑ 𝑝𝑖𝑖  and 𝜆𝐇 are the distributions of target and clustering output, respectively. Here, 𝜆𝐇 

acts as a regularization parameter, and the H-divergence H − div(P‖Q) is defined as: 

𝐇 − 𝐝𝐢𝐯(𝑃‖𝑄) = ∑ 𝜋(𝑥, 𝑦)ℓ(𝑥, 𝑦)(𝑥,𝑦)                          (4) 

Which π(x, y) denotes the joint distribution that minimizes the expected loss ℓ(x, y) between 

pairs (x, y). 

Label updates are governed by the minimization of H-divergence:  

Label𝑖 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝑘

𝐇 − 𝐝𝐢𝐯(𝑝𝑖𝑘 ∥ 𝑞)                          (5) 

Where 𝑝𝑖𝑘 is the distribution corresponding to the 𝑞-th data point for the 𝑞 -th cluster. 

Training is halted when the label difference rate between consecutive updates falls below a 

predetermined threshold 𝑞, reflecting minimal change and convergence: 

if 
∑ |Label𝑖

(𝑡)−Label𝑖
(𝑡−1)|𝑖

𝑁
< 𝜖, stop training 

Where 𝑁 is the total number of data points. 

The pseudocode is provided below. 

Convolutional Autoencoder-based Deep Embedded Fuzzy Clustering Using H-divergences, 

(CADEFC) 

Input Specifications 

 Dataset (X): A set of data points to be clustered. 

 Number of Samples per Batch (B): The number of data points in each batch during 

training. 

 Number of Pre-training Iterations (T): The total iterations for the initial encoding and 

decoding process to prepare the model. 

 Maximum Number of Main Clustering Iterations (N): The upper limit on the number of 

iterations in the clustering phase. 

 Update Frequency for Target Distribution (P): The number of iterations after which the 

target distribution is updated. 

 Stopping Threshold (ε): A predefined threshold for stopping the training process if the 

change in clustering results or loss falls below this value. 

Output Specifications 

 Clustering Centers: The centroids of the clusters after the completion of the training, 

representing the typical data points within each cluster. 

 Clustering Pseudo-Labels: The labels assigned to each data point, indicative of their 

respective cluster memberships. 

Detailed Process Description 

1) Batch Preparation: 

 Divide the dataset X into batches, each containing B samples. Each batch is 

represented as (𝑏), where 𝑏 indexes the batch. 

2) Pre-training Loop (Initialization): 

 For each iteration from 1 to T: 

 For each batch 𝑋(𝑏): 

 Encoder: Map (𝑏) to a latent space to obtain embeddings (𝑏). 
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 Decoder: Reconstruct (𝑏) from (𝑏), obtaining 𝑋̂(𝑏). 

 Compute the Mean Squared Error (MSE) between (𝑏) and 𝑋̂(𝑏) 

and optimize the encoder and decoder parameters. 

 After pre-training, initialize the clustering centers and pseudo-labels using fuzzy 

C-means on the embeddings obtained from the encoder. 

3) Main Clustering Loop: 

 For each iteration up to N: 

 Target Distribution Update: Every P iterations: 

 Compute embeddings for all data points using the Encoder. 

 Update the fuzzy membership matrix and auxiliary target 

distribution using predefined formulas (referred to as formula 

(1) and formula (2)). 

 Store the last set of pseudo-labels and update the current 

pseudo-labels using the update rule (formula (5)). 

 Compute the stopping criterion (usually some function of the 

change in cluster assignments or loss). 

 If the stopping criterion (difference < 𝜖), terminate training. 

 Batch Processing: 

 Shuffle and divide the dataset X into batches again. 

 For each batch 𝑋(𝑏): 

 Calculate partial embeddings (𝑏) using the Encoder. 

 Update the fuzzy membership for (𝑏) using the 

membership update formula (1). 

 Segment (𝑏) into clusters. 

 Calculate the H-divergence and optimize parameters 

and cluster centers based on this distance (using 

formula (4)). 

This section introduced the Convolutional Autoencoder-based Deep Embedded Fuzzy Clustering 

Using H-divergences (CADEFC). We outlined the architecture, provided mathematical formulations, 

and explained the innovative integration of H-divergences for optimizing clustering performance. The 

upcoming section will empirically validate CADEFC, demonstrating its efficacy across various 

benchmark datasets. 

4. Experimental design and validation 

This section outlines the experimental design and validation of our study, focusing on the 

application of clustering methods across several benchmark datasets. We detail the datasets used, 

describe the evaluation metrics, and discuss comparative methods to assess the performance and 

robustness of the proposed CADEFC method against established clustering techniques. 

4.1 Introduction to datasets 

In this paper, our experimental framework revolves around the utilization of four well-established 

benchmark datasets, namely Digits, Fashion-MNIST, MNIST, and USPS. These datasets were 

meticulously chosen for their prominence and representativeness within the domain of digital image 

processing. Despite sharing the commonality of comprising digital images, each dataset presents 

unique characteristics, particularly in terms of dimensionality, thereby enriching the breadth of our 

study. 

4.1.1 Digits dataset 

The Digits dataset constitutes a foundational component of our experimental setup, characterized by 

its diverse collection of hand-written digit images. Renowned for its role in machine learning research, 

this dataset offers a rich assortment of digit images, spanning various writing styles and complexities. 

4.1.2 Fashion-MNIST dataset 

The Fashion-MNIST emerges as another cornerstone in our experimental design, featuring a 

curated ensemble of fashion-related images. Renowned for its emulation of the structure and 

complexity of the original MNIST dataset, Fashion-MNIST presents a challenging yet realistic 
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benchmark for evaluating clustering methods in the context of fashion image analysis. 

4.1.3 MNIST dataset 

The MNIST dataset stands as a seminal benchmark in the realm of machine learning, renowned for 

its pivotal role in benchmarking clustering methods. Comprising a vast array of hand-written digit 

images, MNIST serves as a standard reference for evaluating the performance and robustness of 

various clustering techniques. 

4.1.4 USPS dataset 

The USPS dataset, derived from the United States Postal Service, represents an essential component 

of our experimental paradigm. Renowned for its practical relevance and real-world applicability, this 

dataset encompasses a diverse collection of hand-written digit images, offering insights into the 

performance of clustering methods in real-world scenarios. 

Table 1. Attributes of Selected Benchmark Datasets 

Datasets Samples Features Clusters 

Digits 1797 64 10 

Fashion-MNIST 70000 784 10 

MNIST 70000 784 10 

USPS 9298 356 10 

The selection of these datasets is underpinned by their diverse attributes and widespread adoption in 

the research community. As detailed in Table 1, the distinct characteristics of each dataset serve to 

enhance the comprehensiveness and validity of our experimental evaluations, thereby providing 

valuable insights into the performance and generalizability of our proposed methodology. 

4.2 Introduction to evaluation methods 

In the experimental evaluation of clustering methods, the choice of appropriate evaluation metrics is 

crucial to accurately assess the efficacy of the methods in producing meaningful clusters. Here, we 

delve into the intricacies of three fundamental evaluation metrics: Accuracy (ACC), Normalized 

Mutual Information (NMI), and Adjusted Rand Index (ARI). 

4.2.1 Accuracy (ACC) 

Accuracy, denoted as ACC, measures the proportion of correctly classified data points within a 

clustering result. Mathematically, ACC is computed as the ratio of the number of correctly classified 

data points to the total number of data points. Formally, 

𝐴𝐶𝐶 =
∑ 𝟏(𝑦𝑖 = 𝑦̂𝑖)

𝑛
𝑖=1

𝑛
 

where yi represents the true label of data point 𝑖, 𝑦̂𝑖 denotes the assigned cluster label for data 

point 𝑖, and 𝑛 signifies the total number of data points. The indicator function 1 yields a value of 1 if 

yi = ŷi and 0 otherwise. 

4.2.2 Normalized Mutual Information (NMI) 

NMI quantifies the similarity between two clusterings, considering both the mutual information and 

the entropies of the individual clusterings. It provides a normalized measure of clustering quality, 

taking into account the inherent structure of the data. Formally, NMI is defined as: 

𝑁𝑀𝐼 =
2 ⋅ 𝐼(𝑌, 𝑌̂)

𝐻(𝑌) + 𝐻(𝑌̂)
 

where 𝐼(𝑌, 𝑌̂)represents the mutual information between the true clustering 𝑌̂ and the predicted 

clustering Ŷ, and 𝐻(𝑌) and 𝐻(𝑌̂)  denote the entropies of 𝑌 and Ŷ respectively. 

4.2.3 Adjusted Rand Index (ARI) 

The Adjusted Rand Index, denoted as ARI, offers a robust measure of agreement between two 

clustering by accounting for chance grouping. It adjusts the Rand Index to provide a normalized 

measure that considers random clustering assignments. Formally, ARI is calculated as follows: 

𝐴𝑅𝐼 =
𝑅𝐼 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑅𝐼)

𝑀𝑎𝑥(𝑅𝐼) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑅𝐼)
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where 𝑅𝐼 represents the Rand Index, 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑅𝐼) is the expected value of the Rand Index, and 

𝑀𝑎𝑥(𝑅𝐼) denotes the maximum possible value of the Rand Index. 

These evaluation metrics play a pivotal role in quantifying the performance of clustering methods 

and are instrumental in guiding method selection and parameter tuning. In the subsequent sections, we 

present empirical results utilizing these metrics to assess the performance of various clustering methods 

on benchmark datasets, providing insights into their effectiveness and suitability for real-world 

applications. 

4.3 Introduction to comparative methods 

In order to assess the effectiveness of our proposed clustering approach, we conducted comparative 

analyses with several established clustering methods, each characterized by its unique attributes and 

methodologies. These methods are as follows: 

K-means [16]: This is a well-established partition-based hard clustering method where each data 

point is assigned exclusively to one cluster. This method serves as a baseline due to its simplicity and 

widespread usage in clustering tasks. 

DEC [17]: Deep Embedding Clustering (DEC) is an advanced deep clustering model that employs a 

Student's-t distribution for cluster assignment and notably omits the decoder component in its 

architecture. The experiments employ the original implementation of the DEC method as published by 

its creators. 

IDEC [18]: An Improved version of DEC, IDEC maintains the local structure of the data, thereby 

enhancing the fidelity of the clustering outcomes relative to the underlying data distribution. 

DCEC [19]: Deep Convolutional Embedded Clustering (DCEC) integrates a convolutional 

autoencoder (CAE) with a structure that preserves local data characteristics, along with a dedicated 

clustering layer, to refine the quality of the clustering. 

GrDNFCS [20]: Utilizing a deep fuzzy clustering method, this approach reconstructs original data 

through an autoencoder, emphasizing the delineation between clusters and the regularization of affinity 

based on pseudo-labels, which aims to optimize the cohesiveness within clusters and the distinction 

between them. 

DECCA [21]: This method leverages the Frobenius norm as a penalty term and integrates it with a 

deep embedding clustering framework that is based on a shrinkage autoencoder. This combination is 

designed to enhance clustering performance by effectively managing the compactness and separation of 

clusters. 

DCEFC [4]: Standing as a sophisticated advancement over traditional Deep Embedding Clustering 

(DEC), the Deep Convolutional Embedded Fuzzy Clustering with Wasserstein Loss (DCEFC) utilizes 

Wasserstein distance as the loss function during the clustering phase. This choice is motivated by the 

Wasserstein distance's ability to account for the geometry of the data distribution, thereby facilitating 

more meaningful cluster assignments compared to traditional methods. 

For the comparative analysis, we maintained consistent parameters across all methods as per the 

referenced methodologies, with the exception of setting m to a default value of 1.8. This ensured a fair 

and standardized comparison of the different clustering approaches. The evaluation was rigorously 

carried out through ten random executions of each method, and the results were averaged to derive 

robust conclusions regarding the efficacy of each clustering technique. 

4.4 Experimental results and analysis 

Table 2 illustrates the comprehensive evaluation of clustering methods, including our novel 

CADEFC method, alongside established methodologies, through the averaging of results from 10 

independent runs. This meticulous assessment offers valuable insights into the stability and efficacy of 

the CADEFC method when compared with existing approaches. Particularly noteworthy is the superior 

clustering performance demonstrated by our CADEFC method across all metrics on the four-digit 

image datasets, as denoted by the bold annotations. 
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Table 2: Average Clustering Results of CADEFC Method and Comparative Methods over 10 Runs 

Dataset Metrics K-means DEC IDEC DCEC* GrDNFCS* DECCA* DCEFC CADEFC 

Digits 

ACC 0.7525 0.8019 0.8182 0.8529 0.8608 0.8705 0.8818 0.8839 

NMI 0.7469 0.8257 0.8231 0.8452 0.8593 0.8672 0.8680 0.8702 

ARI 0.6687 0.7219 0.7300 0.8041 0.8149 0.8264 0.851 0.8576 

Fashion-

MNIST 

ACC 0.5123 0.5791 0.5772 0.6332† 0.6351 0.6099 0.6370 0.6399 

NMI 0.5178 0.6275 0.6029 0.6636† 0.6609 0.6698 0.6698 0.6672 

ARI 0.3643 0.4558 0.4481 - 0.5028 - 0.5142 0.5181 

MNIST 

ACC 0.5324 0.8847 0.8851 0.8897 0.9145 0.9637 0.9589 0.9608 

NMI 0.4997 0.8525 0.8637 0.8849 0.9074 0.9074 0.9152 0.9258 

ARI 0.3652 0.8243 0.8382 - 0.8626 - 0.9119 0.9211 

USPS 

ACC 0.6681 0. 7277 0.7541 0.7900 0.7652 0.7731 0.8037 0.8089 

NMI 0.6265 0. 7368 0.7362 0.8257 0.7761 0.8053 0.8329 0.8401 

ARI 0.5463 0. 6639 0.6796 - 0.6903 - 0.7593 0.7618 

The results reveal that the CADEFC method consistently outperforms its counterparts in terms of 

clustering accuracy (ACC), normalized mutual information (NMI), and adjusted Rand index (ARI). 

Specifically, on the MNIST dataset, CADEFC achieves an ACC of 0.9608, NMI of 0.9258, and ARI of 

0.9211, surpassing the performance of competing methods such as K-means, DEC, IDEC, and DCEC. 

Similarly, on the Digits, Fashion-MNIST, and USPS datasets, CADEFC exhibits notable superiority 

across all metrics, highlighting its robustness and effectiveness in diverse clustering tasks. 

These findings underscore the potential of the CADEFC method as a promising tool for clustering 

tasks, particularly in the domain of image data analysis. The consistently superior performance of 

CADEFC reaffirms its efficacy in accurately identifying clusters within complex datasets, thus offering 

valuable insights for various applications in pattern recognition, data mining, and image processing. 

 

Figure 2. Normalized Mutual Information (NMI) Outcomes of CADEFC and DCEFC Methods across 

Various Fuzziness m Values on the MNIST Dataset. 

Figure 2 illustrates the Normalized Mutual Information (NMI) outcomes of the CADEFC and 

DCEFC methods when applied to the MNIST dataset, with respect to varying values of the fuzziness 

parameter m. This graph provides a clear depiction of the clustering methods' sensitivity and 

adaptability under different operational conditions, as m plays a critical role in influencing the 

clustering results. 

From the graph, it is apparent that the CADEFC method attains its peak performance with an NMI 

score of 0.94364 at an m value of 1.8, highlighting its robustness in accurately capturing the underlying 

data structure with minimal fuzziness. In comparison, the DCEFC method reaches its highest NMI of 

0.93689 at an m value of 1.9, indicating a slightly higher tolerance for fuzziness but at a minor sacrifice 

in clustering precision. 

The superior performance of the CADEFC method at lower m values not only underscores its 

effectiveness in discerning the intrinsic cluster structures within the dataset but also suggests a potential 
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reduction in computational costs. This efficiency is crucial, especially in scenarios where quick and 

accurate data categorization is necessary. Moreover, the ability to perform optimally at lower m values 

may reduce the likelihood of overfitting, thus enhancing the generalizability of the clustering model. 

The sensitivity of the clustering outcomes to the fuzziness parameter m is a significant observation, 

as it aligns with the fundamental principles of fuzzy clustering, where m determines the degree of 

cluster membership as fuzzy or crisp. This parameter’s optimization is essential for achieving precise 

clustering results and can greatly influence the practical applications of fuzzy clustering methods in 

real-world scenarios, such as image recognition and data segmentation. 

In summary, the data presented in Figure 2 advocate for the CADEFC method’s deployment in 

applications requiring high precision and computational efficiency. The findings also open avenues for 

further research into the effects of the fuzziness parameter on clustering performance, with an aim to 

refine and optimize clustering methods for broader machine learning tasks. 

 

Figure3. Comparative Loss Dynamics of CADEFC and DCEFC Methods on the MNIST Dataset Using 

H-divergences and Wasserstein Distance Respectively as Loss Functions. 

Figure 3 illustrates the comparative loss values derived from employing H-divergences and 

Wasserstein Distance as loss functions within the CADEFC and DCEFC methods, respectively, on the 

MNIST dataset. This study specifically chooses the MNIST dataset due to its widespread 

acknowledgment as a robust benchmark in digital image processing. The graph distinctly highlights the 

performance of our proposed CADEFC method, which leverages H-divergences, against the traditional 

DCEFC method that utilizes Wasserstein Distance as its loss function. 

As depicted, the CADEFC method exhibits a notably faster reduction in loss values, effectively 

demonstrating the superiority of H-divergences in optimizing clustering outcomes. This rapid 

convergence of the CADEFC method is particularly advantageous for complex machine learning tasks, 

where reducing computational time without sacrificing accuracy is paramount. Furthermore, the use of 

H-divergences addresses some of the intrinsic weaknesses observed with the Wasserstein Distance, 

such as sensitivity to model architecture changes and computational inefficiency in higher dimensions. 

Our analysis not only validates the effectiveness of H-divergences in enhancing the clustering 

method's performance but also sets a precedent for further explorations into loss functions that could 

potentially yield even more robust and efficient machine learning models. This comparative study 

underscores the pivotal role of advanced loss functions in the evolution of clustering methods, 

providing a clear pathway for future research in this domain. 

5. Conclusion 

This paper has detailed the development and evaluation of a CADEFC. Our study underscores the 

substantial contributions and empirical results of this innovative approach, particularly highlighting its 

effectiveness in clustering digital image data. 
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Effectiveness of the Fuzzy Parameter m: Our experimental results further affirm that the inclusion 

of the fuzzy parameter 𝑚 in the CADEFC model remains effective. The ability to adjust the fuzziness 

level within our clustering algorithm enables more nuanced control over membership degrees in cluster 

assignments, which has proven beneficial across our tests with various datasets. This flexibility 

enhances the model's capacity to handle overlapping data points and ambiguous classifications, 

contributing significantly to its robustness and accuracy in real-world scenarios. 

Summary of Research Findings and the Significance of H-divergences in Deep Fuzzy Clustering: 

The implementation of H-divergences as a loss function within our deep clustering framework has 

demonstrated notable improvements in handling complex data distributions compared to traditional 

methods. The ability of H-divergences to effectively measure discrepancies between non-overlapping 

distributions has proven critical in enhancing the accuracy and robustness of cluster assignments. Our 

experiments across various datasets, such as Digits, Fashion-MNIST, MNIST, and USPS, have 

validated the superiority of this method in capturing the underlying patterns within data more precisely 

than previously possible. 

Emphasis on the Potential Impact for Practical Applications: The methodology presented herein not 

only advances theoretical understanding but also offers substantial practical implications. Industries 

reliant on precise data categorization, such as healthcare for medical imaging, retail for customer 

segmentation, and autonomous driving for object recognition, could benefit immensely from the 

refined clustering capabilities provided by our approach. Furthermore, the adaptability of our method to 

different types of data and its resilience to distributional challenges make it a valuable tool for 

researchers and practitioners alike. 

Acknowledgment of Limitations: Despite its strengths, the CADEFC method introduces a higher 

level of complexity, which may lead to increased computational demands. This complexity can affect 

the scalability and speed of the algorithm, particularly when applied to very large datasets or in 

real-time applications where computational resources are limited. Addressing these challenges in future 

iterations of the method will be crucial to enhancing its applicability and efficiency. 

In conclusion, the convolutional autoencoder-based deep embedded fuzzy clustering method using 

H-divergences stands as a significant advancement in the field of machine learning for unsupervised 

data analysis. Future research will focus on further refining this approach, exploring its scalability to 

larger datasets, and extending its application to other challenging domains beyond image data. This 

work not only contributes to the academic discourse but also paves the way for enhanced data-driven 

decision-making in various industries. 
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