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Abstract: Aiming at the imperfection of historical degradation data for equipment, a remaining useful 

life (RUL) prediction method with fusing failure time data is proposed. Firstly, the nonlinear Wiener 

process-based degradation mode is used to model the degradation process of equipment. Then, based 

on the failure time data of congeneric equipment, the expectation maximization (EM) algorithm is used 

to estimate the unknown parameters in the model, in which the fixed parameters are calculated based 

on the field degradation data of the evaluated equipment. Finally, the degradation data of lithium-ion 

batteries are used to verify the proposed RUL prediction method. The experimental results show that 

for degradation data of equipment with imperfect prior information, the RUL prediction method with 

fusing failure time data is better than the traditional RUL prediction method. 
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1. Introduction  

With the progress of society and the development of science and technology, electromechanical 

equipment such as subway, automobile and aircraft are widely used in daily civil and military fields. 

However, due to the increase of precision, complexity of production requirements and the lack of 

natural resources, the manufacturing cost of electromechanical equipment increases significantly, the 

whole life cycle of electromechanical equipment from design, manufacturing, sales, use, maintenance 

to scrapping needs to be optimized [1]. For some key electromechanical equipment in major fields, 

once the parts fail during operation, it would produce significant economic losses, and even cause 

major accidents such as casualties. For example, on June 22, 2009, due to track circuit failure, two 

southbound Washington subway trains collided in the northeast of Washington, D.C., killing 9 people 

and injuring 10 others [2].  

The study found that in the actual operation process, due to the influence of complex working 

environment and surrounding random impact interference, the parts of electromechanical equipment 

would undergo a gradual deterioration process, resulting in the gradual decline of their performance [3]. 

In this process, if the maintenance personnel can predict the remaining useful life (RUL) during 

operation according to the performance degradation status or historical failure data of parts, track the 

health status of electromechanical equipment parts in real time, and formulate corresponding 

maintenance strategies to achieve planned maintenance or replacement of spare parts, it can greatly 

prevent the sudden occurrence of accidents, At the same time, it can reduce the preventive maintenance 

cost of replacing parts in advance. Prognostic and health management (PHM) technology is an effective 

technology to solve this kind of problem [4]. 

PHM technology uses monitoring information, expert knowledge and maintenance support 

information, with the help of artificial intelligence learning and reasoning model to realize the 

monitoring and prediction of equipment operation status, and then carry out intelligent maintenance. 

PHM technology is mainly divided into two parts [5]. One is prediction, which determines the 

performance status and the RUL of the evaluated equipment parts according to the historical 

degradation data, failure time data and the field degradation data of the evaluated equipment parts. The 

second is health management, that is to make the optimal maintenance decision according to the 

predicted performance status of equipment parts, the RUL and product instructions, so as to achieve the 
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lowest maintenance cost and minimum failure risk, mainly including determining the optimal 

maintenance time, formulating spare parts ordering strategy and providing a scheme to prolong service 

life [6,7]. Engineering practice shows that PHM technology can reduce maintenance costs, improve 

equipment reliability and safety, and reduce the risk of failure events. It is very important for military, 

aerospace and other fields with high safety and reliability requirements. 

RUL prediction is one of the important components in PHM [8,9]. Its purpose is to evaluate the 

failure probability of equipment parts after running for a period of time according to the relevant 

degradation data, the failure time data of congeneric equipment parts and the field degradation data of 

the evaluated equipment [10]. In recent years, with the improvement of the reliability of complex 

electromechanical equipment, the research on RUL prediction has attracted great attention of scholars 

[11,12]. The traditional RUL prediction heavily depends on the historical degradation data of 

electromechanical equipment. However, under the existing conditions, it often occurs imperfect prior 

information, i.e., the historical degradation data of congeneric equipment are often inaccurate, 

incomplete [13,14] or even non-existent [5] in practical application. Therefore, this paper attempts to 

fuse the failure time data to predict the RUL of equipment. 

The remainder is as follows. Section 2 develops a nonlinear Wiener process-based model and 

obtains the parameters estimation results by the expectation maximization (EM) algorithm with fusing 

failure time data. A case study of lithium-ion battery is provided in Section 3; and Section 4 draws the 

main conclusions. 

2. RUL Prediction of Nonlinear Wiener Process-Based Model with Fusing Failure Time Data 

2.1. Degradation Model 

The nonlinear Wiener process-based model can be expressed as follows 

( ) ( ; ) ( ( ; ))BX t t W t                               (1) 

Where   denotes the drift coefficient,   is the nonlinear parameter, B  denotes the diffusion 

coefficient and ( )W t  is the standard Brownian motion. Let w  denote the failure threshold of 

equipment. The probability density function (PDF) of lifetime can be written as [15] 
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2.2. Parameters Estimation with Fusing Failure Time Data 

Suppose that the field degradation data of the evaluated equipment at time 1 2[ , , , ]kt t t    are 

1: 1 2[ , , , ]k kx x x x  , let 1j j jx x x     and 1( ; ) ( ; )j j jv t t     , then, jx  follows the 

normal distribution, i.e.,  2~ ,j j B jx N v v    . In addition, it is assumed that there are n  sets of 

failure time data 1: 1 2[ , , , ]n nT T T T  and the failure time data of the thi  unit is iT .  

Inspired by Tang et al [16], we give a two-step parameters estimation method with fusing failure 

time data, which are as follows: 

Step 1: Calculating the fixed parameter   and 
2

B  based on the field degradation data of the 

evaluated equipment 

The log-likelihood function based on the field degradation data of the evaluated equipment can be 

expressed as  
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The estimation of   and 2
B  can be obtained by maximizing Equation (3), as shown in 

Equations (4) and (5). 
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The estimation of   can be obtained by maximizing Equation (6) through the “FMINSEARCH” 

function of MATLAB. 
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Then, the estimation of   and 2
B  can be obtained by bringing ̂  into Equations (4) and (5). 

Step 2: Calculating the random coefficient 
2,    with fusing failure time data 

The log likelihood functions of 
2( , )    based on failure time data can be obtained as 
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It is assumed that ( ) ( ) 2( )ˆ ˆ ˆ{ , }k k k

    is the estimation of   in the thk  step based on 1:nT . 

Then, the EM algorithm is implemented.  

E-step: Calculating the expectation of the complete log-likelihood function 
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M-step: Maximizing ( )ˆ( | )kL    
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Taking the first partial derivatives 
( )ˆ( | )kL    with respect to   and 

2

 , and setting these 

derivatives to zero, the MLE of   and 
2

  can be obtained as follows 
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Then, the above E-step and M-step are iterated until 
( 1) ( )|| ||k k Θ Θ  is sufficiently small.  
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2.3. RUL Prediction 

In order to further adapt to the degradation characteristics of a single individual, the random 

coefficient need to be updated based on Bayesian theory. Given the field degradation data of the 

evaluated equipment 1: 1 2[ , , , ]k kx x x x   and the prior information of  , the posterior distribution of 

random coefficient can be obtained as 
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Then, the PDF of the RUL can be obtained as [17] 
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Where      ; ;k k k kv l l t t      . 

3. Experimental Study 

In this section, we use the lithium-ion battery data provided by the National Aeronautics and Space 

Administration (NASA) Ames Prognostics Center of Excellence to verify the effectiveness of RUL 

prediction with fusing failure time data. The original degradation paths of lithium-ion batteries are 

shown in Figure 1. There are four sets of lithium-ion batteries data. Since the relaxation effect of 

lithium-ion battery would affect the accuracy of RUL prediction, we use the degradation data after 

eliminating the moderation effect [18], as shown in Figure 2. 

 

Figure 1: Degradation paths of lithium-ion battery 

 

Figure 2: Degradation paths after eliminating the relaxation effect 

The failure threshold is 1.4 Ahr. For simplicity, the method of RUL prediction with fusing the 

failure time data is referred to 0M  and the traditional RUL prediction method is referred to 1M . 

NO.5 lithium-ion battery is selected as the evaluated equipment. The failure time data of the remaining 
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three groups of lithium-ion batteries are 69.5, 110.3 and 51 respectively. Then, the unknown parameters 

in the model are calculated by using the parameters estimation method with fusing failure time data 

proposed in Section 2.2. The corresponding RUL prediction results and the mean squared errors (MSEs) 

at some points are shown in Figure 3 and Figure 4 respectively. It can be observed from Figure 3 and 

Figure 4 that the RUL prediction results with fusing failure time data is better than those based on the 

traditional RUL prediction method. 

 

Figure 3: The estimated RULs by 0M  and 1M  

 

Figure 4: MSEs at some times 

4. Conclusions  

It is expensive to build a complete historical degradation database of equipment. Therefore, it is 

necessary to consider using more easily available failure time data to predict the RUL of equipment. In 

this paper, a RUL prediction method with fusing failure time data is proposed. Firstly, the fixed 

parameters are calculated based on the field degradation data of the evaluated equipment. Then, the EM 

algorithm is used to solve the prior information of the random coefficients in the model with fusing the 

failure time data, and the Bayesian theory is used to update the random coefficients. After that, based 

on these parameters estimation results, the RUL of the equipment is predicted. The results show that for 

the degraded data with imperfect prior information, the RUL prediction results obtained by fusing the 

failure time data is better. 

References  

[1] Mazhar M I, Kara S, Kaebernick H. Remaining life estimation of used components in consumer 

products: Life cycle data analysis by Weibull and artificial neural networks [J]. Journal of Operations 

Management, 2007, 25(6):1184-1193. 

[2] Pecht. M G, Kang. M. Front Matter [M]//Pecht M G, Kang M. Prognostics and Health 

Management of Electronics. Piscataway, New Jersey, USA; IEEE PRESS. 2018: i-lviii. 

[3] Ji S, Han X, Hou Y, et al. Remaining Useful Life Prediction of Airplane Engine Based on 



International Journal of Frontiers in Sociology 

ISSN 2706-6827 Vol. 3, Issue 15: 159-164, DOI: 10.25236/IJFS.2021.031520 

Published by Francis Academic Press, UK 

-164- 

PCA-BLSTM [J]. Sensors (Basel), 2020, 20(16). 

[4] Jouin M, Gouriveau R, Hissel D, et al. Degradations analysis and aging modeling for health 

assessment and prognostics of PEMFC[J]. Reliability Engineering & System Safety, 2016, 148:78-95. 

[5] Si X-S, Wang W, Hu C-H, et al. A Wiener-process-based degradation model with a recursive filter 

algorithm for remaining useful life estimation [J]. Mechanical Systems and Signal Processing, 2013, 

35(1-2):219-237. 

[6] Han X, Wang Z, Xie M, et al. Remaining useful life prediction and predictive maintenance 

strategies for multi-state manufacturing systems considering functional dependence[J]. Reliability 

Engineering & System Safety, 2021, 210:107560. 

[7] Wang H, Liao H, Ma X, et al. Remaining useful life prediction and optimal maintenance time 

determination for a single unit using isotonic regression and Gamma process model[J]. Reliability 

Engineering & System Safety, 2021, 210:107504. 

[8] Zhang J-X, Hu C-H, He X, et al. A Novel Lifetime Estimation Method for Two-Phase Degrading 

Systems [J]. IEEE Transactions on Reliability, 2019, 68(2):689-709. 

[9] Tang S, Guo X, Zhou Z. Mis-specification analysis of linear Wiener process–based degradation 

models for the remaining useful life estimation [J]. Proceedings of the Institution of Mechanical 

Engineers, Part O: Journal of Risk and Reliability, 2014, 228(5):478-487. 

[10] Ungurean L, Cârstoiu G, Micea M V, et al. Battery state of health estimation: a structured review 

of models, methods and commercial devices [J]. International Journal of Energy Research, 2017, 41(2): 

n/a-n/a. 

[11] Si X S, Wang W B, Hu C H, et al. Remaining Useful Life Estimation Based on a Nonlinear 

Diffusion Degradation Process [J]. IEEE Transactions on Reliability, 2012, 61(1):50-67. 

[12] Tang S, Yu C, Wang X, et al. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on 

the Wiener Process with Measurement Error [J]. Energies, 2014, 7(2):520-547. 

[13] Gebraeel N, Elwany A, Pan J. Residual Life Predictions in the Absence of Prior Degradation 

Knowledge [J]. IEEE Transactions on Reliability, 2009, 58(1):106-117. 

[14] Zhiliang F, Guangbin L, Si X-S, et al. Degradation data-drive approach for remaining useful life 

estimation [J]. Journal of Systems Engineering and Electronics, 2013, 24:173-182. 

[15] Peng C Y, Tseng S T. Mis-Specification Analysis of Linear Degradation Models [J]. IEEE 

TRANSACTIONS ON RELIABILITY, 2009, 58(3):444-455. 

[16] Tang S, Xu X, Yu C, et al. Remaining Useful Life Prediction With Fusing Failure Time Data and 

Field Degradation Data With Random Effects[J]. IEEE Access, 2020, 8:11964-11978. 

[17] Huang Z, Xu Z, Wang W, et al. Remaining Useful Life Prediction for a Nonlinear Heterogeneous 

Wiener Process Model With an Adaptive Drift[J]. IEEE Transactions on Reliability, 2015, 

64(2):687-700. 

[18] Jin G, Matthews D E, Zhou Z. A Bayesian framework for on-line degradation assessment and 

residual life prediction of secondary batteries in spacecraft [J]. Reliability Engineering & System 

Safety, 2013, 113:7-20. 


