
Frontiers in Educational Research
ISSN 2522-6398 Vol. 6, Issue 14: 19-22, DOI: 10.25236/FER.2023.061404

Published by Francis Academic Press, UK
-19-

Design of Campus Network Streaming Media Live
Broadcasting System

Yinqian Chenga, Xinge Liub, Lei Yuc,*

Information Network Center, China University of Geosciences (Beijing), Beijing, China
achengyq@cugb.edu.cn, b1004132131@cugb.edu.cn, cyul@cugb.edu.cn
*Corresponding author

Abstract: Currently, video live streaming has become a hot topic of research. Students, who have more
free time, have become the main audience of online live streaming, but this has also put considerable
pressure on the egress of campus networks. At the same time, due to the lack of cable TV signals in
dormitories, students' demand for live TV programs cannot be met in real time. Considering the above
factors, this paper takes China University of Geosciences (Beijing) as an example and combines the
actual environment and usage needs of universities to analyze the actual topology of the campus intranet
in detail. Targeted and precise adjustments are made to the traffic structure, and a campus intranet
media streaming live system is designed. Currently, this system is running stably at China University of
Geosciences (Beijing), providing strong live streaming support for various activities and major events,
significantly improving the traffic structure of egress, saving a lot of traffic costs for faculty and students,
and achieving significant optimization effects in terms of network quality and service diversity of the
campus network.

Keywords: Stream media, Video, Live, Campus network

1. Introduction

With the rapid development of Internet technology, the trend of constructing campus networks has
quickly emerged in universities [1]. Although many universities have built their own campus networks,
their current applications are not optimistic, and there are many problems that need to be solved [2].
Generally, the speed of campus networks is fast, providing certain conditions for the transmission and
playback of audio and video on campus networks [3]. With the increasing popularity of the concept of
online live streaming, the barrier to entry for live streaming has gradually lowered, and "watching live
streams" has become a part of people's daily lives. However, this live streaming boom has brought
enormous traffic expenses, resulting in excessive load on the egress of campus networks in universities,
thereby affecting the network user experience. Traditional architectures of campus networks in
universities often struggle to cope with the massive influx of traffic. On the one hand, faculty and students
on campus need normal academic use of the network; on the other hand, the increasing demand for
entertainment poses challenges to the campus network. The complex intranet architecture and chaotic
egress structure of the campus network often result in a trade-off situation. Meanwhile, cable TV signals
are usually not available in dormitories on campus, which leads to students seeking external live
streaming on the intranet terminals driven by their demand for TV viewing. Especially during major
social events of public concern, numerous intranet terminals repeatedly access the same live streaming
content through the campus network gateway, resulting in redundant expenses.

In the past, when there was live broadcasting of major events, multiple internal network terminals
would independently access the same content through the campus network's external gateway, resulting
in redundant traffic expenses for the gateway[4]. The system designed in this paper can pull media content
into the campus network through a dedicated external network route, and terminals can directly access
the corresponding content from the internal network, thus saving external network gateway expenses.
This system design can effectively optimize the traffic management of the campus network, reduce the
burden on the external network gateway, improve the network usage experience, and meet the demands
of students for live broadcasting and TV programs, especially in cases where TV signals are not provided
in student dormitories. By sharing live broadcasting content within the internal network, dependence on
the external network can be reduced, traffic expenses can be lowered, and the overall performance and
user satisfaction of the campus network can be improved.

Frontiers in Educational Research
ISSN 2522-6398 Vol. 6, Issue 14: 19-22, DOI: 10.25236/FER.2023.061404

Published by Francis Academic Press, UK
-20-

2. Introduction to System-Related Technologies

2.1. PHP

PHP is a popular general-purpose scripting language. PHP is widely applicable, highly scalable, and
powerful in terms of performance. In the design of this system, PHP is responsible for functions such as
user page rendering, data interaction, and internal cluster control. Due to the use of PHP 8.0 version in
this system, it performs well in various tests, especially stress testing.

2.2. RPC

Remote Procedure Call (RPC) is a computer communication protocol that allows programs running
on one computer to call subroutines on another computer without the need for additional programming
for this interaction. In the cluster mode of this system, the remote calling process of each node is not
implemented as a standard RPC instance, but rather through HTTP requests and callbacks to achieve the
corresponding functionality of RPC. Strictly speaking, the remote calling in this design does not fully
comply with the RPC standard, but because the final implementation achieves the same result as RPC, it
can be considered as a type of RPC implementation in a broad sense.

2.3. Streaming Pull and Push

Streaming media, as a type of data stream, has certain differences in nature compared to regular static
file content. The basic and fundamental operations for handling streaming media content are pulling and
pushing, which are essential for ensuring smooth playback. There are various types of streaming media
servers available in the market, including commercial ones such as Wowza, Flussonic Media Server, and
Adobe Media Server, as well as open-source options such as gstreamill, Nimble Streamer, Simple RTMP
Server, and Nginx RTMP Module.

2.4. Transcoding

There are various types of streaming media formats available, and to ensure a convenient and
seamless viewing experience for ordinary users, it is necessary to minimize the effort required on the
client side. One effective approach is to transcode all pushed content into a consistent encoding format
that can be directly played on clients. Common open-source transcoding solutions include FFmpeg, Libav,
x264, and others. This simplifies the process, makes it fast and efficient, and ensures that all streaming
media on the system can be played smoothly on all clients.

2.5. Distribution

Distribution refers to the process of delivering the final processed media content to the clients
(viewers). Due to the diverse requirements of different types of media, there are various distribution
methods available, each with its own focus. Commonly used distribution methods include RTMP (Real-
Time Messaging Protocol), RTSP (Real-Time Streaming Protocol), HTTP-FLV (HTTP-based Flash
Video), and HLS (HTTP Live Streaming).

3. System Design

In the development process of this system, commercial media server software was initially excluded
as the hosting server. Among all the open-source media server software options, Nginx RTMP Module
was ultimately chosen as the main hosting core[5]. As a module of Nginx, it can seamlessly integrate with
various callback operations of Nginx, providing a robust and flexible solution.

3.1. Core Scheduling System

As the core scheduling system of the cluster, it is responsible for receiving status information from
all other servers and issuing control commands to other servers based on factors such as the number of
viewers, server load, and network status. It also serves as the response server for direct access to the main
domain name by users. During system deployment, simply pointing the domain name to the core
scheduling system ensures that users and other nodes can access the relevant resources of the core

Frontiers in Educational Research
ISSN 2522-6398 Vol. 6, Issue 14: 19-22, DOI: 10.25236/FER.2023.061404

Published by Francis Academic Press, UK
-21-

scheduling system correctly. Even if the IP address of the core scheduling system needs to be changed
due to various reasons, the system will provide feedback on its operational status to the core scheduling
system as soon as it is restored.

3.2. Streaming Tanscoding Node

After pulling the media stream, if it cannot be directly processed through HLS segmenting, it will be
converted by the transcoding node. In this node, PHP is used to control FFmpeg to process external input
streams and push the output streams to designated locations. In the actual production environment, this
system is deployed on 2 servers as transcoding nodes, with one server serving as a backup that only
handles workload when the primary transcoding node is overloaded or unavailable.

3.3. Streaming Pull Node

The pulling nodes are responsible for obtaining the source media streams from the internet or through
user-initiated pushes, and reporting the acquired formats to the core scheduling system. After evaluation,
the media streams are pushed to designated servers. The core scheduling system can start a live stream
channel through scheduled tasks or manual activation. In the actual system deployment, 2 pulling nodes
are set up. One node serves as the main pulling node for educational TV channels from the external IPv6
network, using a fully fiber-optic network that can handle concurrent tasks of pulling streams from
hundreds of channels. The other node serves as a backup pulling server for external IPv4 public network
media sources, working as an emergency backup pulling server in case of special requirements or
abnormal IPv6 signals.

3.4. Edge Distribution Node

The system design deploys edge distribution nodes in concentrated user areas such as educational
zones, dormitory areas, office areas, etc., to achieve the goal of distributing media content to users' local
areas. This edge distribution node architecture can improve the user's playback experience and reduce
the load on the backbone network. When a user opens the playback page of a corresponding channel, the
core scheduling system returns the actual address of the corresponding edge distribution node, guiding
the user's browser to directly obtain the actual playback content from that node. This avoids long-distance
transmission of media content from the core server to user terminals, reduces latency, improves loading
speed, and enhances the user's viewing experience. At the same time, by deploying edge distribution
nodes at multiple locations, the system can achieve efficient distribution of media content, reducing the
load on the backbone network. This distributed architecture helps improve system stability and fault
tolerance, as even if a node experiences an exception or failure, other nodes can continue to provide
services, ensuring system reliability.

3.5. Client Design

Figure 1: System Architecture

In the client-side design, a cross-platform adaptive approach is adopted to reduce redundant
development efforts. The Clappr open-source project is introduced to implement the playback
functionality on both desktop and mobile platforms, with the functional code shared between them to
achieve code reusability[6]. Users only need to access the main domain pointing to the core scheduling
system to obtain channel configuration information and watch media content. This design approach
simplifies the development process of the client, reduces maintenance costs, and ensures consistency in
user experience between desktop and mobile platforms. In the desktop environment, to address the issue
of some browsers lacking built-in support for HLS (HTTP Live Streaming), the system also introduces

Frontiers in Educational Research
ISSN 2522-6398 Vol. 6, Issue 14: 19-22, DOI: 10.25236/FER.2023.061404

Published by Francis Academic Press, UK
-22-

hls.js as an additional decoding feature. hls.js is an open-source JavaScript library used to implement
HLS playback functionality in browsers that do not support HLS natively. By introducing hls.js, the
system can achieve smooth playback of HLS format media content on desktop browsers, ensuring a
seamless playback experience for desktop users.

After completing the aforementioned design, the architecture of the system is shown in Figure 1.

3.6. Workflow

The core scheduling node checks the database every three minutes to obtain the streaming media
information to be played based on the channel information, external source addresses, and the schedule
stored in the database. When selecting playback nodes, the core scheduling node uses the
clCluster::getStatus method to consider the load status of the pulling and transcoding nodes, the physical
location of the distribution nodes, and potential high-traffic audience concentration areas to choose the
most suitable node combination. Once the selection is made, the core scheduling node calls the
clRPC::callRemote Command method to send task-specific configurations to the selected nodes. Upon
receiving the request, the pulling node checks the format of the source stream. If the source stream format
is compatible with the client browser for direct playback, the pulling node directly pushes the fetched
streaming media to the specified distribution node. If the source stream format is incompatible, the
pulling node pushes the streaming media to the transcoding node and uses FFmpeg to perform format
conversion. The transcoding node then pushes the transcoded streaming media to the distribution node.

Once the client browser opens the playback page, it requests channel information, including the
streaming address of the actual distribution node, from the core scheduling node. Once the streaming
address is obtained, the client browser directly retrieves the actual streaming content from the distribution
node and begins playback.

This design approach enables the system to select the most appropriate node for media distribution
based on factors such as node load and location. Additionally, the introduction of transcoding nodes
allows for the handling of different media formats, ensuring playback compatibility. By requesting the
streaming address from the core scheduling node, the client browser can retrieve content from the nearest
distribution node directly, thereby improving playback efficiency and user experience.

4. Conclusion

The streaming media live broadcasting system implemented at China University of Geosciences
(Beijing) has successfully alleviated the pressure on the campus network's external Internet exit and
increased the usage of the IPv6 network. It has provided a comprehensive channel for watching cable TV
channels for students on campus, effectively solving the issue of cable TV signal supply in dormitories.
During the system design process, challenges such as content distribution and access control for both
IPv6 and IPv4 networks were successfully addressed, and a robust adaptive solution for wired and
wireless networks was provided, ensuring a consistent streaming media viewing experience across
desktop and mobile devices. This system presents a new solution for campus intranet live broadcasting
of campus events in higher education institutions, overcoming the issues of traffic cost and external
Internet exit pressure associated with using external live broadcasting platforms for campus events with
large audiences. It provides a powerful solution for promoting live broadcasting of future campus events.

References

[1] Y. Fan, Y. Wang. The study of part-peer-based streaming service system [J]. Electronic Design
Engineering, 2017, 0(4):154-157.
[2] X. N. Wang, J. G. Han. Research on IPv4/IPv6 Transition Technology of Network Convergence in
Smart Campus Construction [J]. Journal of Xianyang Normal University, 2022, 37(6):23-27.
[3] J. H. Sun, P. Yang. Construction and Application of Video Resource Management System Based on
Campus Network [J]. Electronic Components and Information Technology, 2021, 5(05):28-29.
[4] M. M. Xiao, J. C. Liu, Y. L. Li, Y. Ma. Exclusive Cloud Architecture Design and Implementation for
Live Streaming Platforms [J]. The Chinese Journal of ICT in Education, 2021(3):88-91.
[5] Arut. Nginx-rtmp-module wiki[EB/OL]. https://github.com/arut/nginx-rtmp-module/wiki. Accessed
on 2023-04-20.
[6] Clappr.io. Clappr wiki[EB/OL]. https://github.com/clappr/clappr/wiki. Accessed on 2023-04-20.

	2.1. PHP
	2.2. RPC
	2.3. Streaming Pull and Push
	2.4. Transcoding
	2.5. Distribution
	3.1. Core Scheduling System
	3.2. Streaming Tanscoding Node
	3.3. Streaming Pull Node
	3.4. Edge Distribution Node
	3.5. Client Design
	3.6. Workflow

