

Group Work in Teaching: A Multidimensional Perspective

Jie Chen, Qianmei Li*

Guilin University of Electronic Technology, Guilin, 541004, China

*Corresponding author

Abstract: *Group work is theoretically expected to yield better outcomes through collaboration. In practice, however, it often degenerates into a ritualized routine with low efficiency. To address this challenge, this paper examines group work from a multidimensional perspective and proposes three synergistic strategies: (1) designing appropriate tasks to spark collective engagement; (2) structuring dynamic processes to enhance collaborative efficiency; and (3) integrating project-based learning to drive co-production of tangible outcomes within authentic scenarios. It is hoped that this strategic framework will equip teachers with actionable solutions to the practical challenges of group work, thus fostering the shift from formalistic interaction to substantive collaboration.*

Keywords: *Group Work; Appropriate Task; Dynamic Process; Project-Based Learning*

1. Introduction

Group work, theoretically believed to cultivate students' collaborative spirit, critical thinking and problem-solving competence, has been widely adopted at all levels of schooling. Nevertheless, its effectiveness often falls short of theoretical expectations in actual operation. Common situations include: after tasks are assigned, dominant students often assume full responsibility while less assertive peers free-ride; alternatively, members may vie for power and suppress one another's opinions. Such phenomena reduce group work to a mere formality, failing to achieve its goal of fostering students' broader capabilities through collaborative effort and costing them valuable time and energy.

In response to the inefficiency of group work in practice, this paper attempts to explore solutions from a multidimensional perspective. It first clarifies the basic concepts of a group, then defines the core essence of group work in teaching contexts, and analyzes its benefits and challenges. Finally, systematic optimization strategies for facilitating group work are proposed from three dimensions: designing appropriate task, structuring dynamic process and integrating project-based learning. The aim is to offer research-informed, practice-oriented insights that may help teachers move group work beyond superficial implementation and foster genuine collaboration and learning among students, while also enriching research literature in the field of group work.

2. Basic Concepts of a Group

2.1 Definition of a Group

According to Schäfers, a social group comprises "a certain number of members who, in order to achieve a common goal, engage over a longer period in relatively continuous communication and interaction processes and develop a sense of belonging" (Schäfers, 1994, cited in Huwendiek 2000, p. 189) [1]. Glöckel defines the group from a didactic-sociological perspective as "a small group in which each member maintains constant contact with every other member, experiences themselves and others as a unit, and is treated as such" (Glöckel, 1996, p. 34) [2].

2.2 Characteristics of a Group

The characteristics of a group are formulated as follows: a specific number of members form a group; a common personal group goal emerges; a sense of group belonging exists; a system of common norms and values develops as a basis for communication and interaction processes; Given these characteristics, it is considered a particularly valuable form of social coexistence.

2.3 Development Phases of a Group

The psychological development of an individual is mirrored onto the group. To reach a reflexive-interactional level within a working group, the group may go through various phases. Models must be developed to illustrate the different developmental stages of a group, capturing its development. These developmental stages can sometimes remain incomplete or revert to an earlier stage. It is not possible for a group to jump ahead to a later stage. The phases of group development models are:

Phase 1: The situation within the group is unclear. Initial boundaries towards the external environment are established.

Phase 2: A relationship emerges between an individual group member, the group leader, and the group as a whole.

Phase 3: Conflicts among peers arise, paralyzing the group. Afterwards, initial norms within the group emerge through mutual agreement.

According to this model, a group member must undergo these phases to ultimately identify with the group as a whole, as all functions represent fundamental components of a group.

3. Group Work in Teaching

3.1 Definition of Group Work

Gudjons described it as “a form of teaching in small groups (usually 3 to 6 students) within a class: under the same teacher, at the same time, typically in the same room; with tasks related to teaching objectives aimed at developing cooperative skills, inquiry-oriented behavior, and joint problem-solving” (Gudjons, 2003, p. 16) [3]. This definition illustrates that group work is a complex and multifaceted social form. The complex relationships between teacher, groups, and group members are visualized in Figure 1:

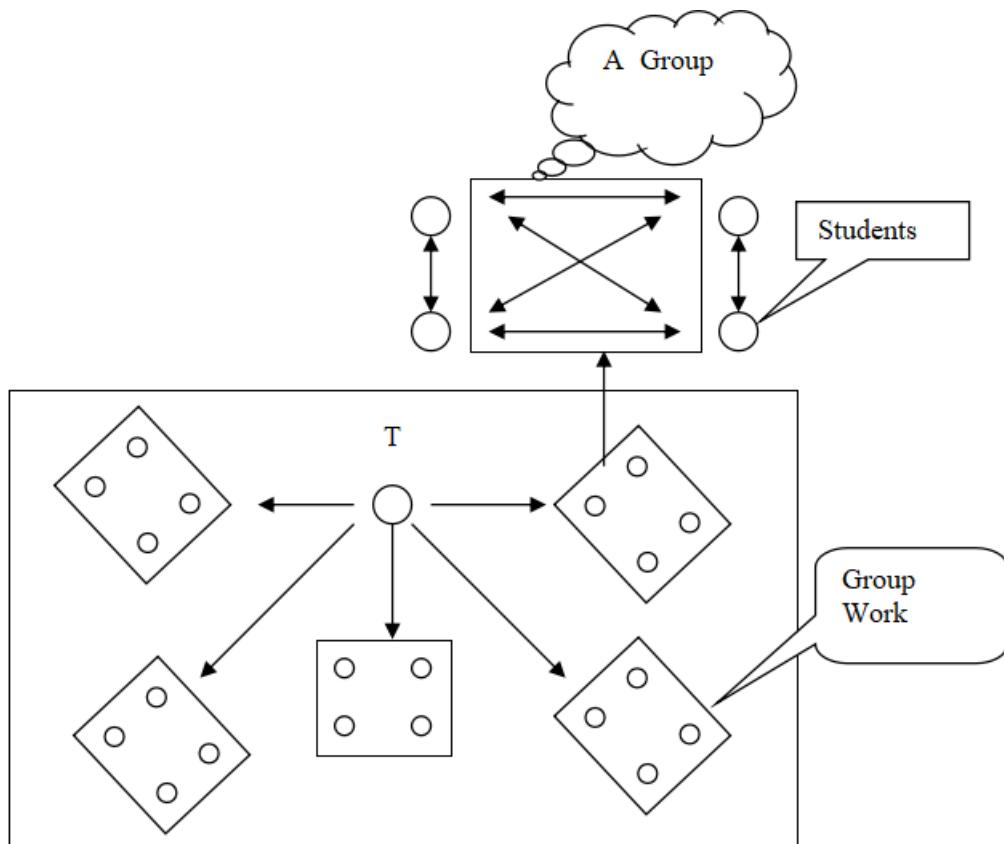


Figure 1: Work and Communication between Students and Teachers in Group Work, Cited in Wilhelm H. Peterßen, 2001 [4]

3.2 Benefits of Group Work

Group work/group instruction is applied on the basis of various motives: fostering cooperation, teamwork, helpfulness, a partnership-oriented mindset, and social responsibility. In group work, students can learn independently with less evaluation pressure. Since the group is a complex and multifaceted social form requiring students' collaboration and cooperation, democracy is imparted. Group work can support differentiation: students may be assigned to different groups according to their achievement level or interests, or they may choose a group themselves. Once formed, groups can better accommodate individual students. Group work promises performance benefits: performances achieved in group work are usually better than those accomplished individually. When group members collaborate on the subject matter, they develop a stronger interest in it and explore it more deeply.

3.3 Challenges of Group Work

Many teachers adopt group work "at all costs." Such forced group work often fails. When power struggles and conflicts arise, groups cannot resolve their own issues. Group work also does not always proceed optimally: arguments, suppression, and opportunism can occur. A primary reason for group work failure is students' lack of motivation for the task: when task design is divorced from their actual cognitive levels or interests, even repeated teacher emphasis on collaboration fails to sustain their willingness to engage. Group work does not always enhance performance. Factors such as personal issues, uneven work pace, and superficial treatment of topics can distract students from learning. Thus, learning gains do not always match the effort.

3.4 Strategies for Facilitating Group Work

The effectiveness of group work is never automatic. Instead, it depends on systematic orchestration. This paper therefore proposes three synergistic strategies: designing appropriate tasks for group work, structuring dynamic processes for group work, and integrating project-based learning into group work, aiming to give teachers practical reference for enhancing group-work efficiency in their teaching.

3.4.1 Designing Appropriate Tasks for Group Work

Task design is undoubtedly crucial for maintaining students' interest. Tasks that are either too simple and mechanical or too complex and cumbersome quickly breed boredom, prompting disengagement, withdrawal from collaboration, and reducing group work to an empty formality. Designing appropriate tasks therefore determine whether students remain invested and are the fundamental prerequisite for effective group work.

Certain task types are particularly suitable for group work as they encourage collaboration and dialogue within a group. Distinctly interactive and inquiry-based, these tasks can prompt members to establish connections, pool strengths, offset weaknesses, and thus achieve deep collaboration through idea clash and coordinated actions. In this way, they help construct a "mutually dependent, jointly advancing" rather than a shallow "divide and finish" group work model.

Tasks such as discussion, analysis, design and practice are ideal for group work. Discussion tasks allow students to form and exchange opinions in groups. Centered on open-ended topics with no single correct answer, these tasks ask students to share views grounded in their knowledge and experience. In doing so they encounter a spectrum of angles and cognitive levels. For example, when discussing the healthy development of the live-stream economy, one student may highlight product-quality control, another improved regulation, a third the professional training of hosts. The clash of ideas sparks reasoned debate and thus helps all group members deepen their understanding, refine their own positions, and sharpen their logical expression and negotiation skills. Analysis tasks enable students to identify and process the topic in groups. Typically multidimensional and logically deep, these tasks allow complementary strengths. Students first map the core of the topic together, set directions and priorities, and then divide labor by aptitude. For example, when analyzing the causes of environmental pollution in a region, the data-oriented student compiles monitoring statistics, the logically strong student charts causal chains, and the field-savvy student tracks down potential pollution sources. Integrating these inputs gives all group members a more comprehensive grasp of the issue, while also cultivating their systems thinking, division-of-labor skills, and information-integration ability. Design tasks give students opportunities to plan and execute projects in groups. Highly creative and practical, these tasks demand deep collaboration at every stage — from initial designing and planning, through mid-phase implementation and adjustment, to final refinement and presentation. For example, when

designing a smart-campus science exhibition, students divide the work of investigating smart-campus scenarios, collating disorganized materials, designing eye-catching posters, and giving on-site presentations, while constantly exchanging ideas and coordinating progress. Through such full-process collaboration, all group members gain hands-on experience in turning theory into practice, thereby strengthening their collective belonging and responsibility and fostering their problem-solving and innovation skills. Practice tasks offer students opportunities for exercises and hands-on applications in groups. They encourage mutual evaluation and correction, as well as collective reflection and improvement, so that the whole group levels up together. For example, when practicing public speaking, students evaluate each other's voice control and body language skills, engage in joint reflection and improvement, and collectively enhance their public speaking delivery. This full-participation, whole-process collaborative practice model lets students of differing abilities complement one another, and through repeated operation and interactive feedback all group members master target skills, truly realizing the practice goal of "progress for all."

In conclusion, teachers need to design appropriate group-work tasks such as discussion, analysis, design and practice, tailored to the learning context, so as to engage every student in group work and thus enhance their comprehensive competencies.

3.4.2 Structuring Dynamic Processes for Group Work

There are highly complex relationships in group work and various phases within group processes. It is important to present the idealized progression of group work. Below, the idealized progression according to Meyer is shown in Table 1:

Table 1: The Idealized Progression of Group Work (Meyer, 1996, cited in Huwendiek, 2000) [1]

Content Level	Relationship Level	Teacher's Task
Familiarization with the task	Assessing the situation, getting acquainted with one another and sounding each other out	Provide instructions, time frame, and materials, stimulate interest.
Difficulties, resistance to the task	Emergence of conflicts, tensions, power struggles	Help, information, motivation
Exchange of information, interpretation of the task	Agreement on rules, role differentiation	Help and advice only upon request
Working on the task, agreeing on solutions	Cooperation within the group, informal contacts	—
Presentation of results, exchange, correction	Consolidation within the group, external contact establishment	Moderation between groups, improvement and evaluation

This progression only indicates the possible stages of group work. In school practice, individual stages may be skipped, combined, or omitted. With improving cooperative efficiency as the central goal, teachers need to build dynamic processes that are both pre-structured and flexible, breaking the long-standing drawback of traditional group work — emphasizing form while neglecting actual effect. It is through reasonable planning and regulation within these processes that the balance between the structural demands of teaching and students' individual learning needs can be achieved, thereby guaranteeing high-quality group work.

During planning, teachers should, guided by teaching objectives and aligned with task difficulty, break down the group-work progression into logically coherent core stages and critical nodes. For example, in the task of designing a campus shared-bike management plan, the work can be split into four core stages — problem investigation, solution design, proposal finalization, and outcome presentation — each further divided into explicit key nodes. Meanwhile, teachers should set elastic time frames for every stage to avoid efficiency loss caused by rigid progression. These flexible intervals must fully account for different groups' learning paces: faster teams can move to the next stage early, while slower teams are given room to catch up, ensuring that every group completes high-quality learning within a reasonable time.

During implementation, teachers serve as facilitators and monitors, circulating to observe and grasp each group's progress in real time. While circulating, they should focus on division of labour, communication efficiency, and task quality, spotting and solving cooperation problems as they emerge. If any group shows unclear roles or lagging progress, teachers may guide it to combine several stages

— jointly clarifying goals, breaking the task into steps, and assigning member responsibilities — to cut ineffective talk and help students quickly find their niche. If any group already has clear goals and smooth collaboration, teachers can guide them to flexibly interweave or partially merge some stages, eliminating redundancy and accelerating deeper exploration. For instance, when groups are solving a mathematical modeling problem, any group that has quickly mastered the modeling method may be encouraged to try alternative modelling paths or explore real-world applications of the model, cultivating creative thinking and higher-order cognition.

In addition, teachers should embed a rapid feedback mechanism into critical transitions. Brief progress checks prompt students to adjust cooperative strategies and optimize role division on the spot. Student-centred, the mechanism mixes self-assessment, peer review, and teacher comments, focusing on both cooperation process and task completion, offering specific, actionable improvement suggestions. At each transition, teachers can organize three-to-five-minute mini-reports: team members share what they have gained and what problems they met; other groups offer opinions and advice; teachers summarize and guides on common issues. In this way students can quickly recognize their own cooperation weaknesses, adjust strategies, refine role division, thus keeping group work moving efficiently.

Supported by such dynamic processes, students no longer participate passively but actively engage in group work, jointly solving academic problems through interaction and collaboration, thereby constructing knowledge and improving their abilities. At the same time, dynamic processes provide teachers with clear instructional guidance, helping them better organize and facilitate group work. In practical teaching, teachers need to keep exploring how to structure dynamic group-work processes in light of teaching content and student characteristics, pushing group work from procedural participation toward substantive collaboration, so that it truly becomes an effective pathway for improving students' learning outcomes and core competencies.

3.4.3 Integrating Project-Based Learning into Group Work

Project-based learning is the highest form of group work. It breaks the shallow pattern of traditional cooperation — simple task-splitting and low-level collaboration — and shifts students from “passively finishing” to “actively constructing knowledge,” thereby bridging classroom and real world. This approach offers an opportunity to combine practical and intellectual activity; that is, networked thinking and action are the cornerstones of project work. On this basis, students no longer memorize isolated facts. Instead, they weave multidisciplinary knowledge, skills and real-life problems into a coherent system, adjust strategies on the fly, and keep thinking and practice in sync.

In project-based lessons, students can be independent of the framework guidelines set by the teacher and can, through free negotiation, plan and carry out projects. During discussion, students in groups clarify goals, deliverables, steps and possible pitfalls around the theme, reaching consensus through idea clash and produce an implementation plan. During execution they respond flexibly to challenges such as hypothesis deviations, resource shortages, or time constraints, and thereby hone communication, negotiation and adaptive competencies. Meanwhile, teachers become guides and supporters who intervene when necessary to keep the project on track and up to standard.

Unlike daily or weekly schedule work and self-directed work, project-based learning is more strongly task-oriented and places individual initiative in the foreground. It encourages students to divide roles according to interest and strength — researchers collect data, synthesizers distil findings, presenters deliver reports — thus mobilizing enthusiasm while optimizing resources and giving individual students a sense of achievement. The work is oriented towards established agreements, a jointly developed plan, and collaborative project work. During implementation members follow the plan, communicate closely, hold progress meetings at key nodes, synchronize advances, solve conflicts and guarantee smooth project progression, thereby cultivating rule-awareness and team spirit.

Selected themes may stem from personal interest or from sub-topics chosen within teacher-given themes. Interest-driven themes tap intrinsic motivation and prompt students to explore the unknown. Teacher-given themes ensure alignment with curriculum standards. For example, in environmental education lessons, students can, based on their own interest, observe and investigate an animal or a plant together with their classmates. Through the division of labour, some record growth habits and environmental conditions, others search literature for ecological value and threats, and still others conduct interviews to gather examples of conservation efforts. After integrating data, they produce a research report and make a presentation in class. By conducting this project, students acquire knowledge of biological and environmental sciences while developing comprehensive competences and environmental awareness. They can also, for instance, select and work on only sub-aspects of the

teacher-given theme “forest” in biology lessons. Taking the sub-topic “interdependence of plants and animals” they select as an example, students in groups consult literature and teachers, design a field trip plan, and during fieldwork record species, observe interactive behaviors and collect samples for analysis. After synthesizing data, they construct food webs, write reports and share results via PPT. By conducting this project, students not only deepen their understanding of biology but also cultivate their scientific inquiry spirit and collaborative competence.

In summary, teachers need to integrate project-based learning into group work, guiding groups to carry out practical inquiry driven by project tasks. In the collaborative process of project implementation, teachers should help students find their niche, contribute their value, construct relevant knowledge, enhance their problem-solving competences, foster a spirit of cooperation, and cultivate a sense of social responsibility, thus fully preparing them to adapt to future workplace scenarios.

4. Conclusion

Group work is a valuable and indispensable social form of teaching. Immersive interaction within a group enables students to foster abstract competencies through concrete practice. In reality, however, group work is plagued by severe ritualization that leads to low efficiency. To offer a systematic solution to the predicament, this paper explores group work from a multidimensional perspective and proposes three synergistic strategies. First, design appropriate tasks such as discussion, analysis, design, and practice that precisely match students’ cognitive levels and interests, igniting full participation and thus constituting the fundamental prerequisite for effective group work. Second, structure dynamic processes by decomposing core stages, allocating flexible time slots, and embedding rapid-feedback mechanisms to achieve scientific regulation of the entire collaboration cycle, thereby guaranteeing substantive synergy within a group. Third, integrate project-based learning driven by authentic themes and deliverable outcomes, so that students in the same group are prompted to engage in deep collaboration while solving real-world problems through exploratory, innovative, and critical practice.

Limitations remain: the proposed framework is based mainly on theoretical derivation and literature analysis and has not yet undergone large-scale empirical testing across diverse teaching contexts. Future research could employ empirical research methods to track the framework’s long-term instructional implementation, investigate the interaction mechanisms among its dimensional strategies, and examine how digital technologies can empower the optimization of group-work progression, thereby advancing the continuous development of group-work theory and practice.

Acknowledgment

This work is supported by the “14th Five-Year Plan” Project of Guangxi Education Sciences (Grant No. 2023A101).

References

- [1] Huwendiek. (2000). *Leitfaden Praxis [Practice Guide]* (3rd ext. & rev. ed.). Berlin: Cornelsen.
- [2] Glöckel, H. (1996). *Vom Unterricht: Lehrbuch der allgemeinen Didaktik [On Teaching: Textbook of General Didactics]* (3rd rev. & enl. ed.). Bad Heilbrunn/Obb.: Klinkhardt.
- [3] Gudjons, H. (Ed.). (2003). *Handbuch Gruppenunterricht [Handbook of Group Instruction]* (2nd rev. ed.). Weinheim; Basel; Berlin: Beltz.
- [4] Peterßen, W. H. (2000). *Handbuch Unterrichtsplanung: Grundfragen, Modelle, Stufen, Dimensionen [Handbook of Lesson Planning: Basic Issues, Models, Stages, Dimensions]* (9th updated & rev. ed.). München: Oldenbourg.