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Abstract: The automatic analysis of echocardiography is of great significance in the diagnosis of 
cardiovascular diseases, and accurate view classification is the basis for achieving the automatic 
analysis of echocardiography. However, the existing automation methods are confronted with 
numerous challenges: they rely heavily on expensive human annotations, have insufficient 
generalization ability among people and devices, and fail to fully utilize the inherent anatomical 
consistency among different standard views. To address these limitations, this study proposes a novel 
structure-aware self-supervised learning framework. The core idea is to guide the model to learn the 
view-invariant representation by constructing positive sample pairs between different echocardiogram 
views of the same patient, thus eliminating the need for manual annotation. This method enables the 
model to effectively capture anatomical consistency across views, providing more robust features for 
downstream tasks. The experimental results show that the viewpoint classification performance of this 
method on four standard echocardiogram datasets has been significantly improved, effectively 
verifying its effectiveness and clinical application potential. 
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1. Introduction 

Cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality worldwide. 
According to reports from the World Health Organization (WHO) and the American Heart Association 
(AHA), more than 17 million people die from cardiovascular diseases each year, accounting for over 30% 
of global deaths[1]. In clinical practice, echocardiography has become the most widely used cardiac 
imaging method due to its advantages such as non-invusiveness, strong real-time performance and 
relatively low cost. It is routinely used for cardiac function assessment, structural abnormality 
diagnosis and disease follow-up[2,3]. 

In echocardiographic analysis, view classification is the foundation of all downstream tasks. 
Doctors usually obtain multiple standard views such as the parapical long axis (PLAX), apical 
four-compartment (A4C), apical two-compartment (A2C), and apical three-compartment (A3C) to 
comprehensively assess the structure and function of the heart[4]. Therefore, the accuracy of automatic 
view classification directly determines the reliability of subsequent analyses, including left ventricular 
function assessment, valve disease detection, and cardiomyopathy diagnosis. Any misclassification at 
this stage may spread the error to the subsequent diagnostic process, thereby leading to serious clinical 
risks. Therefore, ensuring high-precision view classification is an important prerequisite for intelligent 
echocardiography analysis. 

In recent years, deep learning methods have been widely applied in the classification of 
echocardiographic images and have achieved remarkable progress. For instance, Madani et al. 
[5]demonstrated in their early work a model based on convolutional neural networks (CNNS) that could 
automatically classify 15 standard views with an accuracy rate close to 98%. Østvik et al.[6]further 
introduced real-time classification, achieving efficient clinical deployment. Meanwhile, the adoption of 
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large-scale datasets has also accelerated technological progress; For instance, Naser et al.[7]trained 
CNNS on data from over 900 patients and consistently maintained an accuracy rate of over 96% in 
various test scenarios. In addition, Huang et al.[8]introduced a capsule network heuristic interpretable 
mechanism to enhance the clinical interpretability of the prediction results, while Kususnose et 
al.[9]verified the feasibility of the CNN-based model in clinical practice through five standard 
viewpoints. Some recent studies have been conducted on specific populations and diagnostic Settings: 
Wu et al.[10] trained models on large pediatric congenital heart disease datasets to emphasize the 
significant role of view recognition in pediatric cardiology; Another study extended the view 
classification to valve localization, making functional and hemodynamic analysis possible [11]. 

Despite a series of advancements, the existing methods still face numerous challenges. These 
methods rely heavily on large-scale, high-quality labeled data, and the acquisition cost of such labeled 
data is extremely high. Furthermore, their generalization ability is limited under equipment, patient 
populations or low-quality imaging conditions, often leading to performance degradation [5]. 
Meanwhile, most studies have focused on disease prediction or quantitative analysis rather than 
specifically optimizing fundamental view classification tasks, and there is still room for improvement 
in this field[12]. 

Against this backdrop, self-supervised learning (SSL) has emerged as a promising research 
paradigm in the field of computer vision, leveraging proxy tasks to fully exploit the potential of 
unlabeled data [13,14]. Contrastive learning methods, such as SimCLR[15] and MoCo [16], significantly 
improve the quality of representation by constructing positive and negative samples. Subsequent 
methods, such as BYOL [17] and SimSiam [18], eliminate the reliance on negative samples, thereby 
making the training process more stable and efficient. In terms of medical imaging, studies such as 
Models Genesis [19] and Med3D [20] have verified the effectiveness of SSL in CT and MRI tasks. 
However, in the application of echocardiography, its development remains relatively limited, especially 
in the classification of views, where the structural consistency of cross-views has not been fully 
utilized. 

To address these limitations, we propose a structure-aware self-supervised learning method. The 
core idea is to guide the model to capture the structural invariance across views by constructing 
positive pairs among multiple views of the same patient. Specifically, we adopt Convolutional Network 
with Next-Generation Architecture (ConvNeXt) as the backbone encoder and introduce a structural 
information input construction strategy during the pre-training process to enhance the model's ability to 
represent the anatomical structure of the heart. In downstream classification tasks, compared with 
traditional methods, the accuracy of this method has increased by approximately 6-8%, highlighting its 
potential in clinical applications. 

The structure of this article is arranged as follows: Section Two provides a review of the research 
related to the classification of echocardiographic images; Section Three presents a structure-aware 
self-supervised learning method; The fourth section reports on the experimental design, comparative 
analysis and its results. Finally, the fifth part summarizes this research and explores future research 
directions.  

2. Materials  

2.1 The Application of Deep Learning Methods in the Classification of Echocardiographic Views 

Echocardiographic view classification, as an important basic task in clinical diagnosis, has attracted 
extensive research attention in recent years with the rapid development of deep learning methods. In a 
representative study first proposed by Madani et al. [5], a classification model based on CNN was 
developed, which could effectively distinguish 15 standard views, including 12 video-based views and 
3 static views. Their method achieved an accuracy rate of 97.8% in video classification and 91.7% in 
static image classification, significantly outperforming the average accuracy rate achieved by 
board-certified echocardiographers. Based on this, Østvik et al. [6] further developed a real-time view 
classification model, which utilized a dataset containing over 500 patients and 7,000 videos, achieving 
accuracy rates of 98.3% for single frames and 98.9% for video sequences, respectively. In addition, 
their system has achieved a real-time processing speed of 4.4±0.3 milliseconds per frame, highlighting 
its potential in immediate clinical decision-making. 

In large-scale applications, Naser et al. [7] trained two-dimensional and three-dimensional CNNS on 
transthoracic echocardiography (TTE) data from over 900 patients, covering 9 view categories and a 
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total of 10,269 videos. Their model has an overall accuracy of over 96%, with an area under the curve 
(AUC) value close to 1.0. At the same time, it also demonstrates strong versatility on the point-of-care 
ultrasound (POCUS) dataset. To enhance the interpretability of the model, Huang et al. [8] introduced an 
autoencoder structure inspired by capsule networks into their classification model, making feature 
mapping deconvolution a decoder for clinical interpretation. This model achieved an average 
classification accuracy rate of 98.2% and provided enhanced interpretability for clinicians. 

For a specific clinical context, Kususnose et al. [9] developed a dataset containing five standard 
echocardiogram views and trained a CNN classifier, achieving an accuracy rate of 98.1%. This study 
verified its feasibility in clinical prediction tasks. Wu et al. [10] focused on congenital heart disease 
(CHD) in children and designed a knowledge extraction framework trained on over 360,000 
echocardiographic images. Their system is capable of automatically identifying 23 clinically relevant 
diagnostic views, with the F1 scores of the majority of these views exceeding 0.90. Recently, Gungor et 
al. [11] extended view classification by integrating object detection technology, thereby achieving 
automatic localization and recognition of heart valves, which demonstrated the potential of view 
classification in supporting more complex clinical applications. 

In conclusion, deep learning methods have achieved performance close to that of experts or even 
surpassing that of humans in the classification of echocardiographic views. However, the high 
dependence of these methods on labeled datasets and their limited generalization ability under different 
imaging conditions remain the main bottlenecks. This has prompted researchers to explore methods of 
self-supervised learning and cross-view representation. 

2.2 A comparative study on the classification of echocardiographic views 

In recent years, the research on the classification of echocardiographic viewpoints has mainly 
focused on the following three aspects, as detailed in Table 1: 

(1) Significant breakthroughs have been achieved in standard view recognition by using CNNS. 

(2) Explore real-time typing and its clinical feasibility; 

(3) Integrate interpretability and knowledge distillation methods to enhance its practicality and 
scalability. 

Table 1. Comparison of existing classification studies of echocardiographic views 

Work (Authors, 

Year)  

Dataset size Method Result 

Madani et al., 

2018[5] 

267 pieces of TTE 

15 standard views 

(12 videos +3 static 

images) 

CNN 

classification 

model 

The classification accuracy rate of video views 

is 97.8%. The accuracy rate of static images is 

91.7%. The expert accuracy rate is 70% to 

84% 

Østvik et al., 

2019[6] 

Over 500 patients; 

7000 videos ;Seven 

views. 

CNN, real-time 

inference 

The single-frame accuracy rate is 98.3% ± 

0.6%. The sequence accuracy rate is 98.9% ± 

0.6%. Real-time performance of 4.4 ms per 

frame 

Kusunose et al., 

2020[9] 

340 patients; Five 

standard views; 

17,000 images 

CNN+ 

Cross-validation 

The test accuracy rate is 98.1%. The error rate 

is 1.9%, which has no impact on EF prediction 

Huang et al., 

2022 [8] 

26,465 images, 29 

types of views 

CNN+ Capsule 

Network 

Decoder 

The average classification accuracy rate is 

98.2%. The visualization of interpretability has 

been verified by experts 
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Wu et al., 2022 

[10] 

Patient 3772 

367,571 images; 23 

children's CHD 

views 

CNN+ 

Knowledge 

Distillation 

Most views have F1≥0.90; Support automatic 

diagnosis of CHD in children 

Gungor et al., 

2023 [11] 

A cardiac ultrasound 

dataset containing 

10 standard views 

CNN 

classification + 

valve 

localization 

The accuracy rate of view classification is 

relatively high. The detection and positioning 

of valve bounding boxes were achieved for the 

first time 

Naser et al., 

2024 [7] 

Patient 909 (10,269 

videos, 9 types of 

views); 229 patient 

validation set 

2D & 3D CNN 

classification 

2D CNN: Accuracy rate 96.8%, AUC=0.997; 

3D CNN: Accuracy rate 96.3%, AUC=0.998; 

The POCUS set has good generalization 

3. Method 

3.1 Overview of the overall architecture 

To enhance the structural understanding ability of the model in the task of echocardiogram view 
classification, this paper introduces a structure-aware strategy based on the SimSiam framework and, 
through adaptive modification, proposes a self-supervised representation learning method suitable for 
echocardiograms. The overall process is shown in Figure 1. 

 
Figure 1. The structure-aware self-supervised learning architecture proposed in this paper  

During the training phase, two images of the same patient from different perspectives (denoted as 
𝑥𝑥1 and 𝑥𝑥2) are sampled as input, and features are extracted through an encoder branch with shared 
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parameters. The left branch is connected to the predictor to achieve feature matching, while the right 
branch stops the gradient operation to prevent gradient flow, thereby avoiding representation collapse. 
Ultimately, the model models the consistency of the cross-view structure by maximizing the cosine 
similarity between the prediction vector and the target vector. 

Unlike the traditional SimSiam method that relies on random reinforcement to construct positive 
sample pairs, the "same patient view pairs" designed in this paper have stronger medical semantics. 
This design can guide the model to capture the consistency of the heart under different cross-sections, 
thereby enhancing the discriminability and robustness of the representation. 

3.2 Input construction strategy: same patient view pairs 

In the framework of self-supervised learning, the strategy for constructing positive sample pairs has 
a crucial impact on the representational ability of the final model. In the original design of SimSiam, 
positive sample pairs were constructed by using two enhanced versions of the same image (such as 
cropping, flipping, or color distortion) to encourage the model to learn the invariance of image 
perturbations. However, this enhancement method has two significant limitations in echocardiography 
tasks: 

(1) Medical semantic weakening: Conventional enhancement operations may destroy the 
anatomical structure information in the image, thereby causing the features learned by the model to 
deviate from the true structural semantics. 

(2) Insufficient view diversity: Enhanced views typically exhibit "local variations" and are unable to 
effectively simulate the real anatomical changes of the heart under different cross-sections. 

In response to the above problems, this paper designs a positive sample construction strategy based 
on pairs of images from different view of the same patient. Specifically, when constructing each 
training sample, two images from different perspectives (such as PLAX, A2C, A3C, etc.) of the same 
patient's echocardiography were selected as positive sample pairs(𝑥𝑥1, 𝑥𝑥2). Although these two images 
have significant differences in spatial distribution and visible areas, they are essentially different 
observations of the same heart structure and have semantic consistency. 

Through this strategy, the model is guided to learn the structural commonalities among different 
echocardiographic views during the self-supervised training process, thereby enhancing its multi-angle 
understanding ability of cardiac anatomy. Furthermore, this method is more in line with clinical 
practice because doctors usually comprehensively assess a patient's heart condition from multiple 
perspectives. 

At the implementation level, to ensure the consistency of the samples and the reliability of the 
labels, we screened out patient samples with multiple high-quality view images from the original 
dataset. This move aims to ensure the basis of structural consistency between each pair of images and 
strictly group them according to patient ids to prevent semantic deviations caused by cross-patient 
sampling. 

In conclusion, compared with traditional data augmentation methods, the same-patient view 
construction strategy proposed in this paper not only effectively retains the semantics of medical 
structure but also guides the model to model the invariance of cardiac structure across multiple views at 
a deeper level. This provides more powerful feature support for subsequent downstream classification 
tasks. 

3.3 Model architecture adaptation and modification 

To better adapt to the task of echocardiographic view classification, based on the analysis of the 
existing self-supervised framework, this paper designs an improved dual-branch architecture. On the 
one hand, this design draws on the "project-prediction" mechanism commonly used in contrastive 
learning; On the other hand, it combines optimizations for specific tasks of echocardiographic images, 
thereby forming a structure-aware self-supervised architecture that better meets the needs of medical 
scenarios. 

3.3.1 Encoder design: ConvNeXt Basic backbone 

In this study, we selected the ConvNeXt Base network as the backbone of the encoder for feature 
extraction. Compared with the traditional ResNet series, ConvNeXt adopts a wider convolution kernel 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 11: 1-13, DOI: 10.25236/AJCIS.2025.081101 

Published by Francis Academic Press, UK 
-6- 

and a deeper normalization mechanism, which enables it to effectively simulate the blurred edges and 
global structural information in echocardiographic images, thereby better adapting to the low contrast 
characteristics of medical images. To make full use of the existing pre-training parameters, we 
transiently initialized ConvNeXt and redesigned the subsequent modules. 

3.3.2 Redesign the projection and prediction modules 

After obtaining the feature representation from the encoder, this paper introduces two types of 
multi-layer perceptrons (MLPS) : 

Projection Head: It adopts a three-layer structure, with a hidden layer dimension of 1024 and an 
output dimension of 2048. The last layer removes the ReLU activation to ensure that the output vector 
is suitable for similarity calculation. 

Predictor: It adopts a three-layer bottleneck structure, with both input and output dimensions of 
2048, while the hidden dimension is set at 512.By introducing batch normalization and nonlinear 
activation functions, the predictive ability has been enhanced and the occurrence of degradation has 
been effectively prevented. 

Unlike general self-supervised frameworks, this paper conducts in-depth optimization of the 
structure of the predictor. This is because cross-view matching is more challenging than matching 
between enhanced versions of the same image, and thus requires stronger feature alignment and 
prediction capabilities. 

3.3.3 Stop-gradient mechanism and Training Process Adjustment 

In order to prevent feature collapse in the two-branch network during training, this paper introduces 
the stop gradient operation in the right branch. This design ensures that the feature vector of this branch 
does not participate in the backpropagation of the gradient, but only serves as a comparison target. 
Although similar ideas exist in other frameworks, this design is particularly important in our research 
scenario, where cross-view inputs exhibit greater variability and thus are more likely to lead to training 
instability. 

In summary, the proposed model architecture does not rely on direct reuse of a single existing 
framework. Instead, it redesigns and modifies the structure based on the analysis of effective 
mechanisms. By selecting a ConvNeXt backbone that is more suitable for echocardiographic image 
processing, deepening the predictor structure, and integrating the stopping gradient mechanism, we 
construct a structure-aware self-supervised network that can effectively model cross-view consistency 
and provide a solid feature representation foundation for subsequent classification tasks. 

3.4 Loss Function and Training Objective 

To effectively drive the model to learn discriminative view-invariant features under unsupervised 
conditions, this paper adopts the symmetric similarity maximization strategy proposed by SimSiam as 
the training objective. This method does not require negative sample support. By introducing the 
prediction module and the gradient stop mechanism, this model can achieve the alignment of the 
underlying structural semantics among different views. 

Let the input image pairs(x1, x2), represent two different views of the same patient. After 
processing by the encoder f, projector g and predictor h with shared weights, the following vector 
representation can be obtained:  

𝑧𝑧1 = 𝑔𝑔�𝑓𝑓(𝑥𝑥1)�,𝑝𝑝1 = ℎ(𝑧𝑧1) (1) 

𝑧𝑧2 = 𝑔𝑔�𝑓𝑓(𝑥𝑥2)�,𝑝𝑝2 = ℎ(𝑧𝑧2) (2) 
During the training process, gradient backpropagation only updates the predictor of one branch, 

while stopping the gradient operation blocks the projection vector of the other branch. Specifically, 
for𝑝𝑝1and 𝑧𝑧2, our goal is to maximize the cosine similarity between them: 

𝐷𝐷�𝑝𝑝1,𝑧𝑧2� = −
𝑝𝑝1

�𝑝𝑝1�2
∙
𝑧𝑧2

‖𝑧𝑧2‖2
 (3) 

To ensure the symmetry and stability of the training process, we maximize the similarity of the 
predictions in both directions and take the average as the final loss function: 
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ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1
2
𝐷𝐷�𝑝𝑝1,𝑧𝑧2� +

1
2
𝐷𝐷�𝑝𝑝2,𝑧𝑧1� (4) 

This method is defined for each image, and the total loss is averaged over all images. Its minimum 
possible value is -1. 

One of the important components of this method is to stop the gradient operation (see Figure 1). We 
achieve this by modifying equation (3) :  

𝐷𝐷�𝑝𝑝1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧2)� (5) 

This means that in this term, 𝑧𝑧2  is regarded as a constant. Similarly, Equation (4) is also 
implemented in a similar form: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1
2
𝐷𝐷 �𝑝𝑝1,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧2)� +

1
2
𝐷𝐷 �𝑝𝑝2,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧1)� (6) 

This design has the following advantages: Firstly, it eliminates the need for negative samples and 
avoids the construction of large negative sample sets commonly used in contrastive learning, thereby 
improving the training efficiency. Secondly, by leveraging the structural consistency among different 
views from the same patient, semantic alignment between views is forcibly achieved, guiding the 
model to learn more robust features under view changes. Finally, driven by structural consistency, the 
loss term implicitly encourages the model to extract consistent structural information in different views, 
thereby enhancing the anatomical representation of the heart. 

To enhance the numerical stability during the training process, 𝑙𝑙2 normalization was applied to the 
prediction vector and the projection vector before calculating the cosine similarity. In addition, to 
prevent the predictor from falling into regression resolution (such as identity mapping or constant 
output), a nonlinear activation function and dropout (p=0.2) were introduced in the predictor module to 
enhance the model's sensitivity to differences in image structure. 

Based on approach[21], when pi = −zj, loss function D�pi, zj� = −(−1), the largest loss of 1; 
When pi = zj is a perfect match, the loss reaches its minimum value of -1. Therefore, the range of 
values for this loss function is [-1, 1]. The optimization objective is to minimize ℒtotal, that is, to 
maximize structural consistency among cross-view vectors. 

This training objective, while maintaining the efficiency and simplicity of SimSiam, further 
introduces a similarity supervision mechanism driven by structural prior. This mechanism provides a 
stable optimization objective for extracting discriminative structural features and supporting 
downstream view classification tasks. 

3.5 Implementation Details and Training Procedure 

3.5.1 Data preprocessing and input construction 

In each training epoch, the model randomly selects two echocardiographic images from different 
perspectives of the same patient as the front pair (x1, x2) for training the structural alignment 
representation. This input structure reflects the assumption of structural invariance in 
echocardiographic images, that is, despite differences in imaging angles, the anatomical structure of the 
heart remains consistent. Therefore, the model should be capable of learning such cross-perspective 
semantic consistency. 

To fully tap into the data potential of each patient, we have built a customized dataset - 
EchoViewDataset. This dataset supports multiple samplings of different view combinations for each 
patient, thereby significantly expanding the amount of training data. The specific data loading logic is 
as follows: 

(1) Data organization is based on the patient directory, and each patient folder contains multiple 
subfolders with different views (for example, PLAX, A4C, etc.); 

(2) For each training sample, two different views are randomly selected from the same patient, and 
an image is randomly chosen from each view to form a direct alignment. 

(3) To ensure data quality, patients with less than two view categories or missing images are 
automatically excluded; 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 11: 1-13, DOI: 10.25236/AJCIS.2025.081101 

Published by Francis Academic Press, UK 
-8- 

(4) The number of pairs of samples for each patient is controlled by the parameter 
samples_per_patient (default is 40), which strikes a balance between training scale and diversity. 

Through the above methods, we can effectively enhance the richness and representativeness of the 
data required for model training. 

For image enhancement, to avoid interference with the anatomical structure of the heart, we have 
designed a lightweight enhancement strategy, which includes geometric transformation, slight image 
perturbation, normalization processing and tensor transformation. 

Finally, the enhanced image pairs are input into the shared encoder in the form of(x1, x2)for 
similarity learning. This input construction strategy combines the advantages of medical prior 
knowledge and self-supervised learning, not only improving the stability of the training process but 
also enhancing the model's perception ability of structural invariance. 

3.5.2 Training parameter Settings 

We use the SGD optimizer for pre-training. The learning rate is set according to the linear scaling 
rule lr×BatchSize / 256 (see linear scaling [22]), with an initial learning rate of 0.05, and cosine decay 
scheduling [23,15] is used. The weight decay is set to 0.0001, and the momentum value of SGD is 0.9. In 
this experiment, we used the NVIDIA A100-PCIE-40GB GPU, set the batch size to 64, and trained the 
model for 100 epochs. 

4. Results 

4.1 Experimental Setup 

Experimental environment: NVIDIA A100 40GB GPU, Python 3.9.12, PyTorch 2.1.2, CUDA 
12.1 / CuDNN 8.9.2. 

Dataset segmentation: In this study, the dataset is divided into a training set and a validation set, 
with a specific segmentation ratio of 7:3. During this process, all patient samples from the validation 
set were excluded from the training set to ensure patient-level independence. 

Training parameters: This study employs a stochastic gradient descent (SGD) optimizer, with the 
batch size set at 64. The training process lasts for 100 cycles. The initial learning rate is set at 0.05, and 
the cosine attenuation scheduling strategy is used. The loss function selects the maximization of 
symmetric cosine similarity as its objective. All models are implemented in the backbone network with 
ConvNeXt Base as the encoder. 

4.2 Experimental Comparison Design 

To systematically evaluate the effectiveness of the proposed structure-aware self-supervised 
pre-training method in the classification of echocardiographic views, we designed three sets of 
comparative experiments, aiming to demonstrate the performance evolution from traditional supervised 
learning methods to our self-supervised learning strategy. All experiments were conducted on the same 
dataset and downstream classification configuration to ensure the comparability of the results. The 
overall experimental plan is shown in Figure 2, and the specific description is as follows. 

(1) Experiment 1: View Classification Model Based on ConvNeXt 

In this experiment, the ConvNeXt Base model pre-trained with large-scale labeled data was used for 
the classification of echocardiographic views. This encoder has been specially trained for view 
classification and thus possesses a strong discriminative ability. Considering the robustness 
demonstrated by the encoder in visual perception, we only fine-tuned the classification head while 
keeping the encoder parameters unchanged. This setting simulates common transfer learning strategies 
in real-world scenarios and serves as an important benchmark reference for supervising the 
performance evaluation of transfer learning. 

(2) Experiment 2: ConvNeXt Base+Structure-aware Self-supervised Pre-training 

In this experiment, we adopt ConvNeXt Base as the encoder and conduct further pre-training in 
combination with the proposed structure-aware self-supervised method. By introducing structural 
matching and consistency enhancement tasks, the aim is to guide the encoder to learn feature 
representations with semantic structure-aware characteristics. After the self-supervision phase ended, 
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we made a comprehensive fine-tuning of the entire network (including the encoder and classification 
heads) to adapt to the downstream view classification tasks. This experiment aims to evaluate whether 
the proposed structure-aware pre-training can further enhance performance on the basis of the existing 
pre-training. 

(3) Experiment 3: Random initialization of ConvNeXt Base + self-supervised pre-training 

To further verify the independence and generalization ability of the proposed self-supervised 
method, in this experiment, the ConvNeXt Base encoder was randomly initialized, and structure-aware 
self-supervised pre-training was implemented from scratch. Subsequently, comprehensive fine-tuning 
was carried out for the downstream classification tasks. This experiment eliminates the possible 
influence of supervised pre-training, thereby providing a clearer basis for evaluating the intrinsic 
effectiveness of the proposed structure-aware self-supervised method. 

To ensure the fairness and scientific rigor of the comparison experiments, we adopted differentiated 
fine-tuning strategies based on the pre-training objectives and feature semantics of each model: 

(1) Experiment 1 (ConvNeXt Base View Classification Model): Since the encoder has been 
pre-trained on the supervised task and has fully learned the classification discriminant features, only the 
classification head is fine-tuned after the transfer, while keeping the encoder parameters unchanged. 

(2) Experiments 2 and 3 (Structure-aware Self-supervised Model) : The encoders pre-trained using 
the structure-aware self-supervised strategy mainly learn structural representations rather than direct 
view discriminative features. Therefore, in downstream tasks, the entire network was comprehensively 
fine-tuned to achieve an effective mapping from structural representation to semantic categories. 

This strategic design not only maximizes the performance potential of each model under its own 
conditions, but also ensures the comparability when evaluating transferability and feature 
representation capabilities. 

 
Figure 2. The process structure diagrams of three groups of comparative experiments 

This figure 2 shows the process structure of three groups of experiments, covering model sources, 
pre-training methods, fine-tuning strategies, and their adaptation processes in downstream classification 
tasks. Among them, the orange path represents the ConvNeXt Base supervised model where only the 
classification head is fine-tuned directly; The blue path represents a ConvNeXt with additional 
structure-aware self-supervised pre-training, which is then fully fine-tuned. The grey path describes a 
randomly initialized ConvNeXt model, which is trained using the same self-supervised strategy and 
then fully fine-tuned. 

4.3 Experimental Results and Performance Analysis 

This section presents the classification performance evaluation of three comparative experiments 
conducted on the validation set. We randomly selected 100 echocardiograms from the validation set to 
evaluate their accuracy, confusion matrix, ROC curve and AUC indicators. The results are presented in 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 11: 1-13, DOI: 10.25236/AJCIS.2025.081101 

Published by Francis Academic Press, UK 
-10- 

both tabular and visualized forms, supplemented by quantitative and qualitative analyses to 
comprehensively evaluate the effectiveness of the proposed method. 

4.3.1 Comparison of Classification Accuracy 

Table 2 summarizes the classification accuracy (Val Acc) of the three experiments on the validation 
set. The main findings are as follows: 

(1) ConvNeXt Base (Supervised pre-training, fine-tuning the classification header only) :The 
accuracy rate of this model has reached 89.75%. Due to the encoder's features being biased towards 
supervised classification tasks and lacking adaptability to various structural changes, its performance is 
limited, resulting in a relatively low accuracy rate. 

(2) ConvNeXt Base + Structure-aware Self-supervised Pre-Training: On the validation set, this 
model achieved an accuracy rate of 98.25%, significantly outperforming classification models that 
directly adopt supervised learning. This result indicates that the proposed structure-aware 
self-supervised strategy effectively enhances the modeling of structural consistency among different 
echocardiographic views, thereby improving the robustness during the classification process. 

(3) Random initialization + structure-aware self-supervised pre-training: This method achieved an 
accuracy rate of 96.50%, indicating that even without supervised pre-training, this method can still 
obtain powerful feature representations through structure-aware self-supervised learning. This 
highlights its excellent generalization ability. 

In conclusion, the proposed self-supervised method not only fully exploits the advantages of the 
pre-trained ConvNeXt encoder, but also can learn discriminative structural representations from scratch 
during random initialization, thereby significantly improving the accuracy of echocardiographic image 
classification. 

Table 2. Comparison of validation accuracy among the three experiments (%) 

Experiment ID Model 

Configuration 

Backbone 

Network 

Pre-training 

method 

Fine-tuning strategy Verification 

Accuracy (Val Acc) 

Exp. 1 ConvNeXt Base 

(supervised 

classification) 

ConvNeXt Base None Classification head 

only 

89.75 

Exp. 2 ConvNeXt Base +  

SSL 

ConvNeXt Base Structure-aware Full fine-tuning 98.25 

Exp. 3 Random Init +  

SSL 

ConvNeXt Base Structure-aware Full fine-tuning 96.50 

4.3.2 Confusion Matrix Analysis 

Figure 3 shows the confusion matrices of three groups of experiments. The research results are 
summarized as follows: 

(1) Experiment 1 shows that there is a significant confusion between certain categories (such as 
A2C and PLAX), which reflects that the supervised classification model has certain problems in 
cross-perspective discrimination. 

(2) The results of Experiment 3 show that the degree of confusion is significantly reduced 
compared with the supervised baseline. However, misclassification still occurs between some 
anatomically similar perspectives. Overall, although there is still slight confusion in specific categories, 
the performance of Experiment 3 is better than that of Experiment 1. 

(3) Experiment 2 achieved the best performance in all categories and significantly reduced the 
confusion rate. This result indicates that the proposed structure-aware self-supervised strategy 
effectively learns the invariance of cross-view structures, thereby improving the classification accuracy. 
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Figure 3. Confusion matrices of the three experiments 

4.3.3 ROC Curve and AUC Analysis 

Figure 4 shows multiple types of ROC curves and their corresponding AUC indicators under three 
experimental setups: 

(1) Experiment 1: The overall ROC curve deviates significantly from the ideal situation. The AUC 
values of some view categories are only close to 0.90, indicating that their classification ability is 
limited. 

(2) Experiment 2: The ROC curve was almost perfectly aligned in the upper left corner, and the 
AUC values of each category exceeded 0.98, demonstrating excellent discriminative performance. This 
further verified the effectiveness and robustness of the method proposed in this paper in the 
classification of echocardiographic views. 

(3) Experiment 3: The ROC curve as a whole was closer to the ideal upper left boundary, and the 
AUC values of most categories exceeded 0.95, highlighting the advantages brought by the 
structure-aware self-supervised method. 

 
Figure 4. Multi-class ROC curves and AUC comparison of the three experiments 

Based on the results of Table 2, Figure 3 and Figure 4, the following conclusions can be drawn: 

(1) Supervised ConvNeXt Base classifiers have obvious limitations in terms of overall accuracy and 
category-level discriminability, and thus are not very suitable for complex clinical scenarios. 

(2) Random initialization combined with self-supervised pre-trained models can effectively learn 
feature representations under unsupervised conditions, and their classification performance is 
significantly better than that of pure supervised baselines. 

(3) The combination of ConvNeXt Base and self-supervised pre-trained models consistently shows 
the best results in terms of accuracy, confusion matrix separability, and ROC-AUC metrics. This 
discovery confirms that the proposed structure-aware self-supervised method effectively utilizes the 
prior of structural consistency, thereby enhancing the robustness and generalization ability across 
views. 

5. Conclusion 

5.1 Research Conclusions 

Aiming at the basic clinical task of classifying echocardiographic views, this paper proposes an 
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improved method based on structure-aware self-supervised learning. Starting from the clinical practical 
challenges such as the diversity of echocardiographic views, the ambiguity of anatomical structures, 
and the high cost of manual annotation, we have carried out systematic exploration and improvement. 
The main conclusions are as follows: 

(1) A construction strategy for different views of the same patient was proposed.By using different 
views from the same patient as positives instead of the positives in traditional augment-based 
self-supervised learning, we effectively introduce medical structure priors. This strategy enables the 
model to learn structural consistency across views, thereby better adapting to echocardiographic 
diagnosis in the real world and providing a strong representational foundation for downstream tasks. 

(2) A structure-aware self-supervised learning framework was designed.Inspired by the SimSiam 
mechanism, we integrated the ConvNeXt basic backbone and constructed a customized self-supervised 
representation learning system for application in echocardiographic images. After combining the stop 
gradient mechanism and symmetric loss design, representation collapse was effectively prevented, 
ensuring the stability of the feature learning process. 

(3) Significantly improved the performance of view classification.The experimental results show 
that, compared with directly using the supervised ConvNeXt Base model, this method improves the 
verification accuracy by nearly 10 percentage points. Compared with the randomly initialized 
self-supervised model, this method maintains an advantage of more than 1.5 percentage points. Further 
analysis of the confusion matrix and ROC-AUC confirmed that our method significantly enhanced 
class discriminability and overall robustness, especially in differentiating highly similar views (such as 
A2C and A3C). 

(4) It has strong potential for clinical application.This study, by introducing structure-aware 
self-supervised learning, not only enhances the classification performance but also provides a new 
approach to alleviate the problem of limited labeling. The proposed framework can effectively utilize 
large-scale unlabeled echocardiographic data with limited labels, providing a more efficient and 
reliable human-intelligence auxiliary tool for clinical decision-making. 

In conclusion, the contrastive Cross-View representation learning method proposed in this paper has 
achieved remarkable results in the classification of echocardiographic images. This method not only 
outperforms existing technologies in terms of accuracy and robustness, but also shows a high degree of 
consistency with the features of medical imaging. This study lays a solid foundation for more complex 
intelligent diagnostic tasks in future echocardiography. 

5.2 Future Work 

The focus of future research will be on enhancing the generalization ability of echocardiographic 
image classification. On the one hand, cross-center and cross-device validation methods should be 
actively explored to enhance the applicability of this technology in different clinical Settings. On the 
other hand, combining multimodal information such as echocardiographic video sequences and clinical 
examination reports is conducive to further deepening the understanding of cardiac structure and 
function. Overall, on the basis of maintaining a high classification accuracy, improving the robustness 
and interpretability of the model will become an important direction for future research. 
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