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Abstract: This paper proposed a framework based on joint multi-feature representation learning to 
reduce the inherent speckle phenomenon in Polarimetric Synthetic Aperture Radar (PolSAR) images 
interfere with the scattering characteristics of land objects. Firstly, the corresponding 6-dimensional 
real vector is obtained from the covariance matrix of PolSAR data and combined with the polarized 
feature vector obtained by the polarization decomposition method to improve the differentiation ability 
of similar features in images. Secondly, the stacked sparse autoencoder (SSAE) is employed, where the 
non-negative constraint method is incorporated to make the sparse features in the depth space robust 
by filtering the weights. Finally, a non-negative constrained SSAE model is proposed to effectively 
accomplish the classification task of PolSAR images. In the experiments, the proposed classification 
network is trained layer by layer using unlabeled data, the softmax classifier is trained with a small 
number of labeled pixels. The parameters obtained from the above steps are used as initial parameters 
to train the entire classification framework with labeled pixels, the resulting well-trained model is used 
to predict the labels corresponding to pixels in the datasets. Through experiments using the Flevoland 
and San Francisco Bay datasets, the results demonstrate that the proposed method yields superior 
classification results compared with traditional SVM, AE, and Gray Level Co-generation Matrix 
(GLCM) classification methods. 

Keywords: Autoencoder (AE), polarized synthetic aperture radar (PolSAR), polarization 
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1. Introduction 

Synthetic Aperture Radar (SAR) is a high-resolution active sensor that possesses the unique 
capability of electromagnetic wave imaging capability to work uninterrupted all-weather and all-day 
[1]. Due to the different polarization modes of the SAR sensors for transmitting and receiving echoes, 
these signals can connect the incident and scattered electric fields to obtain a backward scattering 
matrix reflecting the ground feature, which forms a PolSAR image [2]. PolSAR images have higher 
spatial resolution and better discrimination capabilities for land objects, which can reflect the features 
such as dielectric properties and geometric structures of real land objects. Therefore, PolSAR image 
interpretation is particularly important, and PolSAR image classification [3] is an important applied 
research content, whose primary objective is to classify all pixels in an image into a certain class 
according to specific rules. 

At present, the feature extraction methods for PolSAR images can be broadly classified into two 
main categories: simple data transformations and polarimetric target decomposition. The methods 
based on simple data transformations involve the polarized scattering matrix and its corresponding 
vector forms [4-7], or mathematical transformations of the scattering matrix such as the polarimetric 
coherency matrix and polarimetric covariance matrix [8-11]. The method based on polarization target 
decomposition is to decompose the polarization coherence matrix or covariance matrix according to 
different physical mechanisms, and then use the decomposition parameters representing the target 
scattering or geometric structure to construct features. For example, entropy/alpha decomposition [12], 
Freeman decomposition [13], and Krogager decomposition [14]. Among them, the entropy/alpha 
decomposition proposed by Cloude and Pottier is one of the most widely used methods. This method 
decomposes the coherence matrix into three components with different scattering mechanisms, namely 
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internal reflection, external reflection, and polarized scattering components. Then, the pixels in the 
PolSAR image are classified according to the parameters derived from the  polarization 
decomposition. Although this method can only classify 8 types of ground objects, it is still widely 
welcomed due to its simplicity and clear physical meaning [15]. 

Considering the complexity of electromagnetic scattering from land objects and the interference 
caused by various factors such as imaging parameters and noise, it is crucial to select the optimal 
feature combination from a rich set of features to achieve effective land object classification. To 
adequately represent the complementary information between different land objects in PolSAR data, it 
is necessary to combine the real-valued vector with the polarized feature vector. Since different 
decomposition algorithms may lead to the weakening of some information features, this combination 
method can effectively exploit discriminative features of polarimetric SAR images, enhance the 
discrimination ability for similar land cover categories, and thus improve the robustness of 
classification results. Therefore, it is important to employ the approach for efficient and accurate 
classification of PolSAR images. To extract features from PolSAR images of data of interest, a great 
deal of manpower and experience is usually required. Therefore, to solve the specific problem of 
polarimetric SAR object classification, we need a novel and powerful strategy that can automatically 
learn features that will alleviate the dependence on human resources and provide higher accuracy. 

In recent years, several studies have shown the effectiveness of deep learning for PolSAR image 
classification [16]. Some of the typical deep learning methods include Deep Belief Network (DBN) 
[17], Autoencoder (AE) [18], Convolutional Neural Network (CNN) [19], etc. As deep learning 
technology advances, studies in neuroscience have revealed the advantages of multilayer deep learning, 
which can automatically extract more abstract and invariant features from data. These automatically 
extracted deep features have stronger capabilities in representing images compared to manually 
extracted shallow features. The stacked sparse autoencoder (SSAE) is a classical deep learning model 
that has been successfully applied in the field of image classification. The model uses an unsupervised 
manner to automatically acquire a representation with coefficient abstraction features from the input 
data in a hierarchical manner by the process of layer-by-layer reconstruction [20, 21]. These deep 
features without human intervention can effectively distinguish between different categories. At the 
same time, it is also able to utilize data contextual information, thereby enhancing the accuracy of 
image classification. However, there are some challenges and problems with stacked autoencoders. 
First, due to the complex structure of the stacked autoencoder, it requires a lot of time and 
computational resources in the training process. Moreover, debugging the model can be difficult, 
requiring careful optimization and adjustment of parameters for each autoencoder within the stack. 

According to the above problems, many researchers have proposed different thoughts and solutions. 
Zhou et al. [22] proposed an architecture containing a four-layer convolutional neural network through 
a reasonable analysis of PolSAR data and successfully proved that deep neural networks have great 
potential in feature extraction and classification of PolSAR data. In 2018, to allow deep convolutional 
neural networks to have better generalization performance in limited training samples, researchers 
proposed a polarization feature-driven PolSAR image classification method [23]. Geng et al. [24] 
proposed a deep convolutional autoencoder (DCAE) with scale transformation before and after the 
sparse autoencoder (SAE). This method can effectively aggregate local image information, thus solving 
the problem of low classification progress caused by speckle noises to a large extent. Zhang et al. [25] 
proposed local spatial information to SSAE (SSAE-ls) to overcome speckle noises. They effectively 
alleviated the influence of neighbor pixels on the central pixel by controlling the spatial distances 
between the central pixel and adjacent pixels. Hou et al. [26] adopted the k-nearest neighbor algorithm 
based on superpixels and combined with SSAE to obtain the probability distributions of classes to 
reduce the influence of speckle noise. Wang et al. [27] defined the data error term in the loss function 
according to the data distribution and introduced a stacked MAE (SMAE) network, which successfully 
dealt with highly polluted speckle noise. Zhang et al. [28] proposed a method called multi-scale sparse 
autoencoder (MS-SSAE), which can simultaneously capture discriminative multi-scale features and 
preserve details in images. Hu et al. proposed an algorithm called Adaptive Nonlocal Stacked Sparse 
Autoencoder (ANSSAE). The algorithm realizes the adaptive extraction of non-local spatial 
information by calculating the weighted average value of each pixel in the non-local area. It can not 
only reduce the influence of speckle noise but also preserve edge details [29]. These studies 
collectively validate the strong classification ability of deep networks on PolSAR data. In Stacked 
Sparse Autoencoder (SSAE), the application of sparsity effectively eliminates redundant information 
and obtains complementary information that is more independent. 

To more effectively improve the ability of polarized features to distinguish similar image classes, in 
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this paper, we first use the polarized scattering feature decomposition parameters to form a new feature 
vector and then use the original scattering matrix information to learn jointly with this feature vector to 
obtain a more effective feature representation. Then, a non-negative constraint method is introduced in 
SSAE to extract features better. Next, the weights are filtered by non-negative constraints to make the 
sparse features in the depth space robust, thus overcoming the scattering noise and improving the 
classification accuracy. Finally, the encoding process of the obtained feature representation network is 
combined with the softmax classifier to achieve the design of an end-to-end network architecture to 
accomplish the PolSAR image classification task. 

The rest of this paper is structured as follows. In the second part, the data composition is first 
introduced, and then a non-negativity constraint-based SSAE classification framework is proposed. In 
Section III, experimental results and discussions are given to illustrate the effectiveness of the proposed 
method. Finally, the fourth section draws conclusions. 

2. Methods 

2.1. Data Representation 

To fully extract the information in PolSAR images, the multi-look PolSAR data in covariance 
matrix format are used and transformed into normalized 6-dimensional real vectors. The polarization 
scattering eigenvalue decomposition is used to obtain the eigenvalues. The entropy, anisotropy, and 
alpha are extracted using the  decomposition. This information is combined into a new feature 
vector and used as the input to the proposed network for PolSAR image classification. 

The scattering matrix is used to simply describe the individual pixels in PolSAR images [30]. The 
covariance matrix contains the full polarization information of the target obtained from radar 
measurement. The validity of the covariance matrix has been verified in [31]. According to the 
reciprocity theorem, the covariance matrix can be calculated by the Kronecker product of the 

 as follows: 

                   (1) 

where the superscript and denote conjugation and transposition respectively. Introducing multi-
look processing in covariance matrix to suppress speckle noise in PolSAR images. 

                                                 (2) 

where  is the number of looks. According to the scattering property of PolSAR images, the 
principal diagonal of the covariance matrix  is composed of real values, while the rest are complex 
values. To obtain the real vector form of PolSAR images more effectively, the following representation 
is proposed: 

                                                     (3) 

where  is the total decibel scattered power of each polarization channel  and  are the 
normalized ratio of  and , respectively. , , and  are the relative correlation 
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coefficients. By definition, except for , the remaining five parameters can be normalized in [0,1]. 
Therefore, any multi-look complex (MLC) PolSAR image can be converted to a six-dimensional real 
vector representation [32]. 

In general, the covariance matrix can be described further by the eigenvalues and eigenvectors. 
According to the reciprocity theorem, the covariance matrix can be decomposed into the sum of three 
independent covariance matrices. The eigenvalue decomposition of the covariance matrix is 

                                        (4) 

where denotes the independent covariance matrix of rank 1.  and  are the corresponding 
eigenvalues and eigenvectors, respectively. The eigenvalues indicate the strength of this mechanism, 
while the corresponding eigenvectors provide information on the direction of matrix change.  
parameters are written as follows [33]: 

                                                       (5) 

                                                            (6) 

                                                                 (7) 

                                                                 (8) 

where  denotes the ith eigenvalue of the covariance matrix,  is the randomness of the 
scattering medium from isotropic scattering ( =0) to completely random scattering ( =1),  
indicates the relationship between the two weaker scattering components,  denotes the average 
scattering mechanism from surface scattering to double-bounce scattering. 

2.2. Non-negative constraints stacked sparse Autoencoder Model 

AE is a network that can copy input data to output, and it consists of two parts, an encoder and a 
decoder. The encoder maps input data into a low-dimensional space, while the decoder reconstructs the 
low-dimensional representation of the data into the original form. The process can be defined as  

                                                                  (9) 

                                                                (10) 

where ,  and ,  denote the weight matrix and bias of the encoding and decoding 
processes, respectively.  and  denote the sigmoid activation function used. 

The AE utilizes the Mean Square Error (MSE) for network training and minimizes the objective 
function, which represents the reconstruction error between the input and output. It is shown in (11) 

                                           (11) 

where  is set to simplify the calculation of the subsequent backpropagation process and  
represents the total number of training samples. With the random gradient descent algorithm, the 
optimal solution of the parameters  and  can be obtained, significantly reducing the error between 
the output and input layers. 

The non-negatively constrained sparse AE is an advancement over AE. In non-negatively 
constrained sparse AE, the cost function is a sparse constraint term and a weight decay term. The sparse 
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constraint term is usually implemented using the KullbackLeibler (KL) scattering function, which 
restricts the probability distribution of the activation of the hidden unit. It is expressed as  

                                      (12) 

where  is the sparsity parameter,  is the average activation value of all input signals in ith 
hidden node, and  is the number of hidden nodes. During the training process,  tends to be 0 if the 
constraint =  is satisfied and when the difference is very large,  is big. 

The AE cost function incorporates a weight decay term to better capture the non-negative features 
in input data. We employ the asymmetric piecewise linear decay function. 

                                                 (13) 

                                                 (14) 

where  is denoted as (14),  is the weight coefficient,  is the number of layers. 
Therefore, the cost function of the non-negative constraints stacked sparse autoencoder network is 
given by 

                                                    (15) 

where  is the weight of the sparse penalty term and  is the weight of the weight decay term. The 
non-negatively constrained sparse AE contains only one hidden layer, it is difficult to complete the 
classification task when the input data is too complex. In addition, shallow networks are prone to 
information loss, so non-negative constraints stacked sparse AE network is proposed to achieve a 
deeper representation of input data by adding multiple hidden layers to the existing shallow network.  

A non-negative constraint stacked sparse AE network is a network model that consists of a stack of 
multiple hidden layers of AE. The model is trained using a layer-by-layer training approach, where the 
first AE is trained with a given training set and the activation of the hidden layer of the first AE is used 
as input to the second AE. The architecture of the proposed network is shown in Fig. 1. 
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Figure 1: Non-negative constraints stacked sparse Autoencoder structure. 

A non-negative constraint stacked sparse AE network is a deep learning model. The network obtains 
the training sample set V as its input vector, where each sample set V= {x1, x2, ..., xn}, with dimension 
n equal to the number of neurons in the input layer and also equal to the number of neurons in the 
output layer. First, by encoding, the proposed network encodes each input vector V into a feature vector 
a1. Then, the encoding part maps feature vector a1 to feature vector a2. Subsequently, the decoding part 
decodes feature vector a2 to feature vector a3. Finally, the decoding part reconstructs feature vector a3 
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to the original vector to output the output vector O= {z1, z2, ..., zn}. During this process, b1, b2, b3, 
and b4 are used as bias terms to adjust the weight between different features in the network. 

2.3. Optimization Process 

Similar to the autoencoder (AE), the non-negative constraints stacked sparse AE also utilizes a 
backpropagation algorithm to calculate the overall cost function. To minimize the cost function, each 
parameter needs to be initialized randomly and the optimization algorithm is applied to the training 
data. In this process, the L-BFGS optimization algorithm can be used to adjust the parameters in the 
network. 

First, update decoding weight and biases using the stochastic gradient descent algorithm 

                                                            (16) 

                                                               (17) 

where  denotes the learning rate. 

Second, the backpropagation algorithm is utilized to calculate the partial derivatives in the overall 
cost function. The calculation of the overall cost function on the weight in the decoder can be expressed 
as 

                                             (18) 

During weight and bias updates, the parameters of the network are adjusted based on the changes in 
the cost function to better fit the training data. To specify the operations of the above formula, let us 
define the variable  as  

                                             (19) 

where  is the partial derivative of . By substituting (19) into (18), the partial derivatives of the 
loss function for the weight and biases in the decoding process can be expressed as follows: 

                                             (20) 

                                                                  (21) 

where the  is defined as the symbol function.  

Finally, the update of the weight and biases of the encoding process is similar to the decoding 
process and will not be explained in detail. The result is directly given as follows: 

                                        (22) 

                                                                (23) 

                              (24) 

2.4. Classification Tasks 

The non-negative constraints stacked sparse AE network can extract the features of PolSAR images. 
The information of interest is contained in the activation of the hidden layer. Thus, the features of the 
image can be represented by the values of the hidden nodes. To accomplish the classification task of 
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PolSAR images, a small number of labeled pixels can be selected as training samples for the classifier. 
Therefore, the features obtained after network training and the corresponding label information are 
selected to train the classifier. In the experiments, the softmax classifier after training is chosen to be 
connected with the non-negative constraints stacked sparse AE network. The structure is shown in Fig. 
2.  
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Figure 2: Non-negative constraints stacked sparse Autoencoder classification structure. 

The softmax classifier is a commonly used classification algorithm that generates a k-dimensional 
real-value vector in the range of 0 to 1 to represent the classification probability distribution, which 
represents the probability of each class, with the maximum probability corresponding to the final 
classification. The softmax function represents how to predict the probability of a class given a sample 
vector  and can be denoted as 

                                       (25) 

where  is the total number of categories,  denotes the weight vector of category  and  
denotes the weight matrix of the softmax classifier. 

In summary, the features of each pixel point in the PolSAR image extracted by non-negative 
constraints stacked sparse AE are fed into the trained softmax classifier to obtain the classification 
results for each category. 

3. Experimental Analysis and Results 

In our experiments, Considering that PolSAR images are seriously affected by speckle noise, a 
refined Lee filter [34] in the preprocessing, and the window size of the filter is set to 7 by experience. 
The effectiveness of the proposed method is verified by SVM, AE, NC-AE, NC-SSAE and GLCM 
(contrast, correlation, energy, and homogeneity) are spatial-based methods. The classification 
performance is evaluated by the overall accuracy (OA). Because ground truth labeled samples are few, 
randomly picked 5% of the labeled samples as training data, and use the whole datasets as test data. 
This experiment uses the Flevoland and San Francisco Bay datasets, which are described below.   

3.1. Flevoland Image 

1) Dataset: 

  
(a)                                                        (b) 
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Figure 3: (a) Pauli RGB image of Flevoland. (b) Corresponding ground-truth map. (c) Terrains. 

The Flevoland image is obtained from a subset of an L-band, multilook PolSAR data, acquired by 
the AIR-SAR airborne platform on August 16, 1989. The image size is 750 x 1024, and the total 
number of labeled pixels in the ground truth is 167712. The Pauli RGB image, the corresponding 
ground-truth map, and the terrains are shown in Fig. 3. The ground-truth map contains 15 classes. 

2) Hyperparameters Selection: 

Table 1: OAs (%) of Two Classifiers with Different Values of Hidden Size (  ) and Sparsity (  ) over 
the Flevoland Image 

Sparsity 0.01 0.05 0.10 0.50 1.00 
Hidden size AE NC-AE AE NC-AE AE NC-AE AE NC-AE AE NC-AE 

30 72.56 90.11 73.95 91.21 74.70 91.45 82.77 91.01 74.56 91.77 
80 85.46 92.36 87.33 92.04 86.85 92.15 85.78 92.31 85.15 92.33 
100 86.83 92.30 85.83 92.73 86.37 92.78 86.17 92.86 85.73 92.54 
150 85.23 91.80 85.53 92.68 85.02 92.94 85.65 92.93 84.52 93.1 
300 85.43 91.52 85.52 91.36 85.52 91.23 85.48 91.34 85.41 91.38 

There are 2 proposed algorithms in our experiments. We do experiments to choose the parameters 
of the AE and NC-AE models, including hidden node numbers of 50, 80, 100, 150, and 300, and the 
sparsity, including 0.01, 0.05, 0.1, 0.5, and 1. By setting the single one and keeping the other one to be 
constants when discussing how these two parameters affect the classification performance, which is 
presented in Table. It is evident from Table 1 that the AE model is more sensitive to these parameters 
than the NC-AE model. To balance the classification accuracy, we set the number of hidden nodes to 
100 and the sparsity is 0.05. Additionally, the weights of the regularization term and the softmax 
classifier are also set as . 

 
(a)                                                         (b) 

 
(c)                                                          (d) 
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(e)                                                          (f) 

Figure 4: Classification results of the Flevoland image. (a) SVM. (b) AE. (c) NC-AE. (d) NC-SSAE. (e) 
Texture features+softmax. (f) Proposed. 

Table 2: Classification Accuracy of Flevoland 

Class SVM  AE NC-AE NC-SSAE Texture Proposed 
Water 97.45 97.32 98.32 99.80 92.45 99.93 

Stem beans 95.69 79.93 95.29 99.26 75.10 99.38 
Potatoes 87.78 83.37 85.43 98.29 78.14 99.64 
Forest 88.91 92.98 91.86 98.06 89.39 99.54 

Grasses 80.29 73.90 91.75 95.71 72.36 97.44 
Beet 95.41 84.22 90.51 99.13 83.78 99.35 

Rapeseed 79.35 78.73 88.93 94.25 72.25 95.40 
Peas 97.13 88.53 93.18 98.28 84.59 98.80 

Lucerne 95.76 94.20 95.27 98.45 90.41 98.62 
Bare Soil 90.88 97.93 97.98 99.88 93.71 99.88 
Wheat2 81.25 80.85 86.10 94.24 75.88 94.96 
Wheat 92.19 84.18 91.26 96.34 80.85 97.27 
Wheat3 95.35 92.39 96.02 98.57 89.73 99.25 

Buildings 4.9 56.73 81.59 93.47 51.69 94.42 
Barley 96.84 79.08 97.53 98.68 65.64 99.28 

OA 90.57 86.82 92.34 97.66 82.53 98.45 

The classification accuracy results are displayed in Table 2, and the classification images are shown 
in Fig. 4. From the results, the classification accuracy of the proposed method is 98.45%, which is 
about 7.88%, 11.63%, 6.11%, 0.79%, and 15.92% higher than that of the others, respectively. It is 
worth noting that not all the categories can be classified effectively by SVM. For instance, the accuracy 
for buildings is lower than 10%, Rapeseed and Grasses both are approximately 80%. This indicates that 
the results of SVM classifiers are not satisfactory. The classification networks based on NC-AE is 
effective to distinguish all categories, and for most classification result, the accuracy of NC-AE 
approaches 90%. This shows features learned through the NC-AE network can be effectively classified. 
It should be noted that NC-AE classifies buildings better compared to SVM. As shown in the 
classification result diagram in Fig. 4(c), even though the data are filtered already using a window size 
of 7 Lee filter, the classification map of NC-AE is affected by the speckle noise. This may be because 
the pixel count of buildings is relatively low, causing the classification network to be unable to fully 
recognize the characteristics of buildings, thus leading to inaccurate classification results. Compare to 
NC-AE, the OA of NC-SSAE improved by 5.32%, the speckle noise is significantly reduced, and it can 
effectively predict the class of the pixels in the whole image. A comparison with the texture features 
obtained using the same softmax classifier shows that the discriminatory power of the texture features 
extracted from the GLCM is relatively weak compared to using the proposed feature combinations. 
From the resulting image, it can observe that the visual effect of the proposed method is better than 
each method, and the misclassified speckle noise is reduced significantly. 
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3.2. San Francisco Bay Image 

    
(a)                                          (b) 

high-density urban developed urban water low-density urban vegetation  
(c) 

Figure 5: (a) Pauli RGB image of San Francisco Bay. (b) Corresponding ground-truth map. (c) 
Terrains. 

The San Francisco Bay data is obtained from RADARSAT-2 C-band observation. The image size of 
the selected scene is 1380 x 1800 which contains five recognized crop classes: High-density urban, 
Water, Vegetation, Developed urban, and Low-density urban. The Pauli RGB image, the ground-truth 
map, and the terrains are given in Fig. 5. The total number of labeled pixels in the ground truth is 
1804087. The Hyperparameters of the AE, NC-AE, and NC-SSAE models are selected in the same way 
as they are in the Flevoland experiments. 

     
(a)                                                (b)                                                (c) 

     
(d)                                                (e)                                                (f) 

Figure 6: Classification results of the San Francisco Bay image. (a) SVM. (b) AE. (c) NC-AE. (d) NC-
SSAE. (e) Texture features+softmax. (f) Proposed. 

The classification accuracy results are shown in Table 3, with the classified images shown in Fig. 6. 
The OA of the proposed method is 95.63%, and compare with other methods improved by 6.8%, 
7.63%, 6.29%, 2.8%, and 7.8%, respectively. The accuracy performance of various methods across 
different categories is listed in Table 3. It can be seen that the proposed method performs best in the 
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Water category, reaching 100% of OA. Additionally, the proposed method also achieves high 
classification accuracy in other categories. From Fig. 6, it can be seen that the proposed method 
achieves the most accurate and smooth classification image for the Water category, with lower speckle 
noise. For the Vegetation category, the OA of NC-SSAE reaches 91.23%, significantly improving on 
the OA of NC-AE. It can also be seen from the classification image that compare to the ground-truth 
map, the corresponding speckle noise is significantly reduced. This indicates that using NC-SSAE for 
feature dimensionality reduction can effectively extract deep features of PolSAR data. Compare to 
other classification methods, the OA of the Developed urban is almost lower than 70%. The 
classification performance of the texture features is almost the poorest among all methods, with a value 
of only 52.01% for the Developed urban, significantly lower than the OA of the proposed method. This 
indicates that the proposed feature combinations have a better feature expression. Additionally, both 
SVM, AE, and Texture performed poorly on OA in the urban area, with values lower than 80%. 
Possible reasons for this include a lack of sufficient training data, which is insufficient to satisfy the 
structure parameters of the network. However, after the proposed method is improved, the OA 
significantly improves. 

Table 3: Classification Accuracy of San Francisco Bay 

Class SVM AE NC-AE NC-SSAE Texture Proposed 
Water 99.25 99.81 99.93 99.97 99.81 100.00 

Vegetation 88.23 87.00 87.73 91.23 88.58 92.25 
High-density urban 73.79 73.11 73.99 80.12 74.68 86.80 
Low-density urban 82.18 79.52 81.82 88.37 77.07 95.35 
Developed urban 62.32 55.22 68.75 86.05 52.01 91.74 

OA 88.83 88.00 89.34 92.83 87.83 95.63 

4. Conclusion 

A non-negative constraint stacked sparse autoencoder classification framework is constructed to 
fully extract the information from PolSAR images. The framework combines the 6-dimensional real 
vector derived from the covariance matrix with the polarization feature vector obtained by the 
polarization decomposition method as the input. Through a detailed analysis of the combined vectors, a 
non-negative constraint method is introduced into SSAE to achieve the screening of weights and 
improve the discrimination of image classes with similar polarization features. The framework is 
evaluated using the Flevoland and San Francisco Bay image and compared with the traditional SVM, 
AE, and Gray Level Coevolution Matrix (GLCM) for classification. The results show that the proposed 
classification framework has a significant improvement in classification performance and has better 
robustness. 
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