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Abstract: Aiming at the problems of user trajectory privacy budget and personalized demand of existing 
trajectory differential privacy protection technology, a personalized differential privacy protection 
mechanism based on sliding window and prediction perturbation is proposed. First, based on the road 
network topology, the sensitive road sections are classified into levels, and the allocation of personalized 
privacy budget is achieved by customizing the sensitivity of semantic locations. Then, recurrent neural 
networks and exponential perturbation methods are utilized to predict the perturbed locations that satisfy 
the differential privacy and temporal correlation requirements, and service similarity is introduced to 
detect location availability; If successful, the predicted location is directly used instead of the location 
of the differential perturbation, which reduces the privacy overhead from successive queries and further 
improves the utilization of the privacy budget. Finally, a w sliding window based trajectory budget 
allocation mechanism is designed to dynamically adjust the degree of privacy protection for each 
position in the trajectory according to the privacy needs of the user of the position. Experiments on real 
datasets show that the method can better achieve the balance between privacy and utility of trajectory 
data and improve the usability of published data while strictly protecting privacy. 

Keywords: trajectory privacy; differential privacy; privacy budget allocation; temporal correlation 

1. Introduction  

In recent years, with the rapid development of intelligent terminals with positioning function and 
mobile communication technology, a variety of location-based services have become increasingly 
popular, and now cover all aspects of national economy and social life, due to the fact that mobile users 
need to provide their location information to location-based services when enjoying convenient services 
[1], so that a large number of users’ location information has been obtained by untrustworthy third parties, 
which may cause the users to suffer from serious location privacy leakage and jeopardize the user’s 
privacy and security. Researchers have conducted studies on location privacy protection techniques and 
achieved rich research results [2]. 

Geographic indistinguishability is modeled by adding controlled noise to the user’s location through 
a Laplace perturbation mechanism in a polar coordinate system, making it nearly impossible for an 
attacker to distinguish the difference between the approximate location and the true location, thus 
protecting the user’s true location within a circular region of radius r [3].The definition of differential 
location privacy is based on a rigorous mathematical statistical model and can be used to control the level 
of privacy protection by adjusting the privacy parameters, thus attracting much attention. However, 
existing research on location differential privacy protection still suffers from the following problems; 
existing location differential protection mechanisms are only effective for single or sporadic queries, but 
in the case of multiple queries, the user’s true location may still be exposed [4].This is due to the spatio-
temporal correlation between successive queried locations, and thus the query not only leaks the privacy 
cost of the current location, but also increases the privacy risk of other locations. Therefore, even if a 
single location satisfies the ε-differential privacy requirement, it does not ensure that the entire trajectory 
satisfies ε-differential privacy [5]. 

Location prediction is used to estimate the user’s current location by looking at publicly available 
information (e.g. historical trajectories). Since the prediction is independent of the user’s real location 
and does not provide more useful information to the attacker, the privacy loss is minimal or even 
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negligible [6]. Therefore, this paper attempts to reduce the privacy cost and minimize the privacy risk by 
adopting a prediction mechanism instead of differential perturbation. In this context, this paper proposes 
a personalized trajectory differential privacy protection mechanism based on spatio-temporal correlation 
prediction, and its main contributions are as follows.  

(1) We propose a differential query strategy that integrates predictive perturbation to optimize the 
privacy cost in continuous queries. Leveraging recurrent neural networks and exponential perturbation, 
we predict query locations that meet differential privacy and spatio-temporal criteria. A service similarity 
map assesses the availability of these locations. Queries are executed at predicted locations if available, 
or at differentially perturbed locations otherwise, enhancing query efficiency and reducing privacy costs. 

(2) To maintain data availability, we introduce a sliding window mechanism. It dynamically adjusts 
privacy protection levels for each location in a trajectory, considering location predictability and 
significance. 

(3) By analyzing the topological relationships in road networks, we categorize privacy levels for road 
segments near sensitive areas. This system allows users to customize location sensitivity, enabling 
personalized privacy budget allocation and optimizing its utilization. 

2. Trajectory privacy protection method.  

Based on the observation that the predicted locations are usually randomly distributed around the 
user’s real location, the attacker often cannot infer the user’s real location through the predicted locations, 
so the prediction mechanism can be used as a kind of random perturbation[7]. Since the privacy overhead 
of the prediction mechanism is very small, the prediction mechanism can be utilized to replace 
differential privacy thus effectively reducing the privacy overhead caused by continuous queries. At the 
same time, because of the differentiation of user privacy, according to the user’s demand for different 
location points, the differential privacy budget can be rationalized and allocated, which can effectively 
improve the utilization rate of the privacy budget and save the budget expenditure. Trajectory location 
has temporal correlation, if only the location release on a single moment is considered and the correlation 
between the trajectory data is ignored, although a single location satisfies ε-differential privacy, it does 
not ensure that the trajectory satisfies ε-differential privacy. Therefore, based on the above observation, 
this paper proposes a personalized trajectory differential privacy protection mechanism based on spatio-
temporal correlation prediction, which mainly contains the following strategies. The framework of the 
proposed algorithm is illustrated in Figure 1:  

 
Figure 1: Personalized trajectory differential privacy protection mechanism based on spatiotemporal 

correlation prediction 

2.1. Sensitivity Processing. 

The method assigns different privacy level values based on the user’s preset sensitive locations and 
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travel modes, and sets different differential privacy budgets to provide different degrees of privacy 
protection. However, if the geographic topological relationship is ignored and only the set of predefined 
sensitive locations is anonymized, other location points in the trajectory may also lead to the leakage of 
privacy information.To address the above issues, this paper considers the overall connectivity between 
location points, combines the user’s travel mode, and according to the results of the region division and 
the initial location set of sensitive points, the whole map can be divided into three parts, 𝑆𝑆𝑆𝑆 for the initial 
sensitive location set, 𝑁𝑁𝑁𝑁 for the logically unavailable regions or regions that have a great deviation 
from the user’s frequent stops, and 𝑁𝑁𝑆𝑆𝑆𝑆 for the initial location set of non-sensitive locations transforms 
the map according to the semantics into a The map is transformed into an undirected graph according to 
the semantics, and the distances between the location points are represented by Euclidean distances. 
Considering the overall connectivity of the locations, a certain sensitivity is assigned to the semantic 
locations that have high correlation with the sensitive locations. The set of highly correlated location 
points near the sensitive location points is defined as , and the spatio-temporal dimensional features of 
the trajectory data can be extracted using a graph attention network, using the correlation coefficients 
and Euclidean distances of the historical data between individual nodes to define the magnitude of the 
weights, specifically, given the datasets of any two nodes A and B on a continuous time series in the past 
as { }1 2, ,A nH a a a=   and { }1 2, ,B nH b b b=   The correlation coefficient of A and B is set as : 
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Considering the spatial correlation between nodes, the equivalent distance between nodes A and B is 
characterized using eDis . The inverse of eDis  is used to describe the magnitude of the correlation. 
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where c is the shortest hop between nodes of the road network, { . }neighborSet g g eDis b= < , where 
b is a threshold set by the user, and finally the privacy sensitivity assigned to any location in the 
connection set of α, as shown in Eq(10). 
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In order to facilitate the calculation, this paper generates a sensitive map by calculating the sensitivity 
of each region from the gridded map using the above process. First, the sensitivity of the location is 
obtained based on the user’s real location, and if the sensitivity of the location is less than the threshold 
set by the user, the user’s real location is directly utilized for querying services without executing the 
privacy protection algorithm, which can improve the efficiency of trajectory privacy protection. 

2.2. Predictive Mechanisms. 

The development of recurrent neural networks has given rise to GRU (Gate recurrent unit), which 
can effectively deal with the above problems and capture long range dependencies[8]. In order to improve 
the accuracy of the prediction mechanism, BiGRU improves the GRU, BiGRU network realizes the full 
understanding of the historical data through the forward and reverse dimensions, which has a great 
performance improvement compared to the unidirectional GRU network, and the prediction results are 
more stable its structure[9]. Using BiGRU network as a prediction framework, its model is: 
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Where: th


 denotes the forward hidden state of the forward GRU network output at moment t ; th


denotes the reverse hidden state of the reverse GRU network output at moment t . The output of BiGRU 
is further processed as follows. In addition, the output results of BiGRU are further processed: 

1 2t̂ t t t t th h h bω ω= + +
 

                              (5) 

Where: t̂h is the input for the output of t
is  network; 1tω , 2tω  are the forward and back propagation 

weight matrices, respectively; tb  is the bias matrix; BiGRU is utilized to train the real dataset according 
to the temporal correlation between the user’s real position to complete the prediction of trajectory 
position, in the process of the model training, BiGRU refers to both sides of the prediction point at the 
same time, to get the corresponding trajectory characteristics of the moment of the attention weights. The 
location points with higher sensitivity will be given higher weights; finally the output vector is weighted 
and summed to derive the predicted location point set, due to the lower probability of some elements in 
the location point set derived through the computation, combined with the ξ-location set to filter out the 
elements with lower probability to get the candidate set Xt∆ .For privacy preserving effect this paper 
selects the exponential mechanism for its selection, ( )eE Xt lε ∆ →  , where Dε is the privacy budget of 
the exponential selection mechanism; the scoring function is ( )( ) ( )

1{ , , }tt t
mf f f f= =  , and m is the 

number of elements in the ξ-location set. This mechanism adds noise to the output result, but the elements 
with high probability are still output with larger probability, thus making the output result more private 
and more reasonable. Through the privacy budget allocation mechanism, this paper obtains the privacy 
budget Dε  of the exponential mechanism respectively . ( , )DE Xtε ∆ is the privacy budget for Dε , 
through the exponential perturbation mechanism in outputting the predicted position TO . Algorithm1 
gives the process of predicted location generation. 

Algorithm 1 Predictive Mechanisms 

Input: raw trajectory dataset D, ξ-position collection 
Output: predicted location:OT; 
for T∈D do; 
  for p∈T do;  
    xBiGRU=BiGRU(D,x); 

 yBiGRU=BiGRU(D,y); 
  end for; 

end for; 
Calculate the ξ-position collection Set ∆𝑋𝑋𝑋𝑋,based in ξ; 
OT ← S( Dε ,∆𝑋𝑋𝑋𝑋); 
return OT. 

In order to evaluate the service quality of the predicted location, this paper proposes a service 
similarity based detection function. Where the detection function based on service similarity 
𝑆𝑆(𝜀𝜀𝜃𝜃,𝛼𝛼,𝑂𝑂𝑇𝑇): 
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Where𝑂𝑂𝑇𝑇 is the predicted location; 𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝,𝑂𝑂𝑇𝑇) is the service similarity between location 𝑝𝑝 and 𝑂𝑂𝑇𝑇 , 
and the output “0” indicates successful prediction and ”1” indicates failed prediction; 𝑆𝑆𝐿𝐿𝑝𝑝(𝜀𝜀𝜃𝜃) denotes 
the perturbation value of 𝑆𝑆𝐿𝐿𝑝𝑝(𝜀𝜀𝜃𝜃)  when the privacy budget is 𝜀𝜀𝜃𝜃. The detection function in this paper 
also introduces a perturbation mechanism in order to ensure the security. Since the detection function 
will inevitably leak part of the user’s location privacy, in order to ensure security, this paper also 
introduces the perturbation mechanism of 𝑆𝑆𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 in the detection function. Although the detection 
function uses up part of the privacy budget, the value of the perturbation privacy budget that satisfies the 
ε-geographic indistinguishability is smaller, thus saving the privacy budget and improving the service 
quality at the same time. 

2.3. Privacy budget allocation mechanism for w-sequences satisfying ε-differential privacy 

From the query mechanism, it can be seen that each location needs to be allocated a privacy budget 
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of Dε , θε and Nε in the exponential perturbation phase, the detection function detection phase and the 
perturbation phase of geographic indistinguishability, respectively. If a timestamped fake location is 
predicted successfully, the predicted location is utilized as the query location. The process of generating 
the query location goes through two phases, the exponential perturbation mechanism, and the detection 
function, and thus costs a privacy budget of Dε + θε . If the detection fails, the query point is generated 
using the perturbation of geographic indistinguishability, which undergoes three stages and thus costs the 
sum of Dε , θε , and Nε privacy budget. If the prediction fails, instead, more privacy budget is spent. To 
ensure that a trajectory satisfies w-trajectory sequence differential privacy, we use the w-sliding window 
mechanism to assign a corresponding privacy budget to each position in the trajectory. A w-sliding 
window is a sequence of locations under w consecutive timestamps, i.e., consecutive trajectory segments 
of length w, of the form shown in Figure 2. 

 
Figure 2: w sliding window indication 

In order to make the trajectory satisfy ε-differential privacy, the parameters S, D and N are introduced 
to regulate the privacy budget, and 1S D N+ + = . For the exponential perturbation mechanism, each 

position is assigned a privacy budget Dε  of 
D
w
ε

. In the exponential scoring mechanism, because of 

the sequential combinatorial property of the scoring function, each position in the ξ-position set is 

assigned a privacy budget D

m
ε

. In the detection phase, each location is assigned a privacy budget θε  

of 
S
w
ε

.The privacy budget allocation method is shown in Algorithm2. 

Algorithm 2 Privacy budget allocation 

Input: p-current location, OT-predicted mechanism, α, SenMap, θ, w-window size, z, SimMap, ε-total 
privacy budget, S, D, N; 

Output: allocated privacy budget 𝜀𝜀𝑖𝑖; 
p.pl← lookup(SenMap,p); 
  if p.pl≤θ then;  
    z←p; 

else; 

  𝜀𝜀𝐷𝐷 ← D
w
ε

; 

𝜀𝜀𝜃𝜃 ← 𝑆𝑆 𝜀𝜀
𝑤𝑤 , 𝜀𝜀𝑁𝑁 ← 𝑁𝑁 𝜀𝜀

𝑤𝑤; 
End if 
If test(p,α, SimMap , 𝜀𝜀𝜃𝜃)=0 then; 
z← 𝑂𝑂𝑇𝑇  𝜀𝜀𝑖𝑖 = 𝜀𝜀𝐷𝐷 + 𝜀𝜀𝜃𝜃; 
else; 
𝜀𝜀𝑁𝑁 = 𝑁𝑁𝜀𝜀𝜃𝜃

𝑤𝑤(𝑔𝑔.𝑝𝑝𝑝𝑝); 
𝜀𝜀𝑖𝑖 =  𝜀𝜀𝐷𝐷 + 𝜀𝜀𝜃𝜃; 
End if;   

Due to the variability of privacy, equal perturbation at each point does not fulfill the requirement. 
Therefore, this paper introduces a personalized privacy protection strategy to improve the utilization of 
privacy budget. For locations with higher sensitivity, a smaller privacy budget is allocated, i.e., the larger 
perturbation noise is added, thus obtaining a higher degree of privacy protection. First, the sensitivity 
radius R , and the initial sensitivity θ  corresponding to each sensitive location point are calculated 
based on the user’s pre-set sensitive location points, non-reachable points, and user-acceptable error 
distance value ∆ etc. Assume that 0 0( , )x yµ = is the user’s current true location, and
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0 0( cos , sin )q x rr y rrθ θ= + +  is the generated false location. The distortion distance between the 
user’s true position and the false position can be expressed as follows: 

( ) ( ) ( )2 2
0 0 0,rr p q x x y y= = − + −                        (7) 

The distortion distance between the user’s true location and the false location needs to satisfy the 
following relationship based on geographic indistinguishability: 

1
1 1 1 , (0,1)
i

rr W rand
e

τ τ
ε −
−  −  = + =  

                        (8) 

If you want to generate a false position that satisfies the user’s needs, the distortion distance between 
the user’s true position and the false position must be less than the user’s acceptable error distance value, 
based on the above formula, there is the following formula: 

1 ,
1( ) 1 i j

SumR W d
e

τ
ε −

− − = + ≤ ∆                           (9) 

Considering the location sensitivity, the higher the sensitivity, the lower the privacy budget allocated 
for the noise perturbation phase and the smaller the protection radius. Thus, for any sensitivity 𝑔𝑔.𝑝𝑝𝐿𝐿, the 
choice of its radius is 𝑅𝑅 = 𝑅𝑅𝜃𝜃

𝑔𝑔.𝑝𝑝𝑝𝑝
,such that for perturbations that satisfy geographic indistinguishability, 

each location is assigned a privacy budget 𝜀𝜀𝑁𝑁 of : 

( ).N
N

w g pl
εθε =

                                (10) 

where S + D ≤ N and 𝑔𝑔.𝑝𝑝𝐿𝐿 ∈ [𝜃𝜃, 1],. In order to save the privacy budget, the budget value in the 
prediction phase is smaller than the budget value in the perturbation phase, so S + D ≤ N. 

3. Experimental analysis and evaluation 

This paper analyzes the impact of model parameters on availability in two real datasets. Meanwhile, 
this paper’s scheme is compared and analyzed with the DPLRM [10] mechanism and the Hidden-Tra [11] 
mechanism, so as to verify the effectiveness of this paper’s scheme. In this paper, we use two real datasets, 
Geolife and TaxiService, attributes such as user number, timestamp, dimension, and longitude are 
selected for experiments. The RMSE is defined in the following equation:  

( )
1

1 ,
n

i i
i

RMSE d p z
n =

= ∑
                             (11) 

First, this paper analyzes the effect of sensitivity threshold θ on RMSE and location correctness in 
Geolife and TaxiService datasets, respectively, and the results are shown in Figure3. From Figure4, it can 
be seen that the usability of this paper’s scheme increases with θ. The reason for this trend is twofold: 
first, as θ rises, the privacy budget allocated to each location in the perturbation phase improves, thus 
increasing availability; second, more locations are less sensitive than θ and thus do not need to be 
perturbed, further improving availability. When θ is set to 0.16, the RMSE drops to 0, as our sensitivity 
segmentation method deems all map locations non-sensitive, allowing direct publication and resulting in 
zero average RMSE for trajectories. Moreover, the Geolife dataset shows better availability compared to 
the TaxiService dataset, which uses larger grid divisions and has greater distances between locations, 
reducing availability. Our paper's approach also surpasses the Hidden-Tra and DPLRM schemes in 
usability. It achieves a higher prediction success rate than Hidden-Tra and considers personalized privacy 
settings, enabling more effective privacy budget use, reduced perturbation uncertainty, and enhanced 
usability. While the DPLRM scheme balances privacy and usability, considering the impact of published 
locations on current and past locations, it faces constraints. Our scheme introduces usability detection, 
further improving usability. 
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(a) Geolife Data Set             (b) TaxiService Data Set 

Figure 3: The impact of sensitivity threshold θ on RMSE 

 
(a) Geolife Data Set        (b) TaxiService Data Set 

Figure 4: The impact of sensitivity threshold θ on position accuracy 

 
(a) Geolife Data Set              (b) TaxiService Data Set 

Figure 5: The impact of w sliding window on RMSE 

 
(a) Geolife Data Set          (b) TaxiService Data Set 

Figure 6: The impact of w sliding window on position accuracy 

This paper examines the impact of sliding window length on usability, as depicted in Figure 5. The 
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results show that the RMSE increases with the sliding window size. A larger w results in a smaller privacy 
budget for each location, reducing prediction success and necessitating more perturbations to achieve 
geographic indistinguishability, thereby lowering privacy availability. In the Geolife dataset, availability 
is higher compared to the TaxiService dataset. Our method outperforms both the DPLRM and Hidden-
Tra schemes in terms of availability. The DPLRM scheme, with its stringent location publishing 
constraints, struggles with distant locations. Our approach enhances availability by incorporating 
availability detection. From Figure 6, it's evident that the location correctness rate declines with 
increasing w, yet our method maintains higher correctness rates than both the DPLRM and Hidden-Tra 
schemes, particularly in the Geolife dataset. 

4. Conclusion  

This paper introduces a personalized differential privacy mechanism for trajectory data, combining 
sliding window and predictive perturbation techniques. It emphasizes spatio-temporal correlation in its 
design and implementation, categorizing sensitive road sections to tailor semantic location sensitivity. 
This approach enhances privacy protection and data availability for personalized trajectory privacy 
schemes. The method employs recurrent neural networks and exponential perturbation to predict 
locations meeting differential privacy and temporal correlation criteria, with service similarity checks 
ensuring location availability and maintaining original trajectory spatio-temporal consistency. 
Additionally, a sliding window-based mechanism allocates trajectory budgets to boost data availability. 
Future work will focus on optimizing algorithm runtime and addressing privacy leaks in semantic 
trajectory protection. 
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