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Abstract: Quantum communication is an implementation based on quantum mechanics. This includes 

quantum entanglement theory, quantum cryptography, quantum teleportation, quantum repeater, and 

quantum storage. All components of quantum communication except entanglement are reviewed in this 

paper. Besides, this paper discusses three different media, land, underwater and space, in which quantum 

communication can be operated. Quantum communication on land and underwater uses optical fibers, 

and quantum communication in space uses satellites. In this paper, two experiments for each of these 

three media are carried out to illustrate how quantum communication is established on these three media. 

Thus, quantum communication and its three media are reviewed in this paper. 
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1. Introduction 

Quantum communication is an implementation based on quantum mechanics, includes theory of 

quantum entanglement, quantum cryptography, quantum teleportation, quantum repeater, and quantum 

memory. In this paper, except quantum entanglement, all the components involved in quantum 

communication are reviewed. In addition, this paper is discussing three different mediums where 

quantum communication can be set up, which are, land, underwater, and space. Land-based and 

underwater-based quantum communication are using optical fibers, and quantum communication in 

space is using satellites. The paper uses two research experiments for each medium to explain how 

quantum communication is set up within these three mediums. Consequently, this paper achieved to 

review the quantum communication and its three mediums of it. 

2. Cryptography 

The first protocol for quantum communication was proposed in 1984 by Charles H. Bennett, named 

BB84.[3] The protocol consists of four quantum states containing two different bases: the state |up>, 

|down>, |right>, |left>. Conventionally, people define the state |up> and |right> with a value 1, and |down> 

and |left> with the value 0 as shown in Figure 1. 

 

Figure 1: Implementation of the Bennet and Brassard (BB84) protocol. The four states lie on the 

equator of the Poincaré sphere. 

At first, sends a photon with polarization in random of the four states in Figure1. to Bob, the receiver. 

(In Fig 1, the state |up>, means polarization with +45°, thus the four states are “Horizontal”, “Vertical”, 

“+45°”, “-45°”). Then, when Bob receives the photon, he measures the photon with one of the two bases. 

Whenever Alice the sender and Bob the receiver used the same base for measuring the photon, they get 

perfectly correlated results, and when using a different basis for measuring, they obtain an uncorrelated 

result. Alice and Bob know which bits are correlated in this protocol, as they used the same basis for 

measuring. Hence, a strategy is established following this: Bob announced the basis he used to measure 
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the photon in public. Alice then reveals whether or not the basis that the qubit she used for encoding is 

compatible with Bob’s announcement. They keep the bit if it is compatible and abandoned it if not. By 

doing this in this method, about 50% of bit strings are discarded. The channel that Alice and Bob are 

using for communication is public, which is not secured. Then there is an opportunity for the 

eavesdroppers Eva to know the basis they are using, but if Bob didn’t receive an expected qubit, he will 

communicate with Alice to disregard it. Thus, Eva didn’t get useful information, but only lowered the bit 

rate. The term bit rate is basically the number of bits which can be transmitted in a second. [9]. Ideally, 

Eva would send a copy of the photon with its original state to Bob while keeping a copy of the photon 

for herself. 

3. Quantum teleportation 

To understand quantum communication, we have known how information are encrypted now, how 

to transmit the information is a problem. As communication requires the ability to send information from 

one place to another, quantum teleportation was introduced for quantum communication. The whole 

process constitutes three steps. First, there is a pair of entangled photons with the |EPR> state (or called 

Bell’s state) sent through optical fibers as shown in Figure 2. A “quantum teleportation channel” is 

established. Second, the sender operates an action called Bell state measurement (BSM). BSM is a 

complete set of orthogonal entangled state projected by a state of two two-level systems [13] between his 

photon from the entangled resource with the qubit that contains information needed to be teleported, 

which have been testified [4]. However, the Bell state measurement only tells the relationship between 

the two photons, but communication requires the exchange in information. [1] Thus, third, Alice informs 

Bob of her Bell state measurement result, and Bob operateins his photon by changing the phase or 

changing the amplitude, which bob will know Alice’s photon. After this operation, the teleportation is 

finished. 

 

Figure 2: Illustration of quantum teleportation 

4. Quantum repeater 

The process that teleporting the entangled state is known as quantum swapping [20] The general idea 

is that by creating entanglement at two close nodes, then teleporting the entanglement from one to the 

other, which is known as a quantum relay [12], the detailed process is shown in Figure 3. However, the 

distances can be achieved by quantum relays are limited, owing to we need to create 2 pairs of entangled 

photon to connect a pair of photon as explained above, and quantum relays are not helping with increasing 

bit rate. [8]. At this time, because people are unable to overcome the distance limitation, the idea of a 

quantum repeater is introduced by H.-J, Briegel, W.D ür, J.I Cirac and P. Zoller in 1998.[5] The general 

idea is that, as shown in Figure 4, by using a suitable apparatus to store entanglement state and send to 

the other station point, thus the distance will not be limited because we can used infinite numbers of 

apparatus to store the entanglement state and send to the other[6]. 

 

Figure 3: The process of quantum relay  
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Figure 4: Quantum repeater’s process 

5. Quantum memory 

Quantum memory’s main use is for the quantum repeater, while there are other uses, that are outside 

the scope of this paper[7]. The basic idea is that by using electromagnetic-induced transparency (EIT) 

medium, shown in Figure 5. Electromagnetically induced transparency is a quantum interference effect 

that permits the propagation of light through an otherwise opaque atomic medium [15] turning off the 

control field can make the group velocity zero, as shown in Figure 6. This means that the velocity of the 

photon in the EIT medium are reducing to zero, and accomplished to store the photon inside the EIT 

medium. Then the quantum information stored in the photon is stored in the EIT medium. Turning the 

control field back will retrieve the pulse in the original state [16]. The total process is demonstrated 

virtually in Figure 7. 

 

Figure 5: The model of quantum memory 

 

Figure 6: Absorption of the signal field 
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Figure 7: EIT for quantum memory 

6. Medium:  Optical fibers on land 

Sebastian Phillip Neumann and his team published research about quantum communication over a 

248km fiber link.[18] Namely, a distance of 248km quantum communication by using telecom fiber to 

connect Bratislava(B) in Slovakia and St. Pölten(SP) via Vienna in Austria. Despite a total loss of 79 dB, 

they achieved entangled pair rates of 9 s −1 and secure key rates of 1.4 bits/s on average, with stabilized 

state of 110 hours. In a word, they achieved a stable, high-fidelity, and high efficiency quantum 

communication over a long distance. 

The entangled photon pairs are formed by first, deploying a Sagnac-type source based on spontaneous 

parametric down-conversion, which is a photon spontaneously splitting into two photons of lower energy 

a nonlinear optical process inside a ppLN crystal. A Sagnac-type source is a photon with the phenomenon 

caused by rotation encountered in interferometry found by Georges Sagnac. Next, use two 100 GHz 

wavelength division multiplexing channels. The source was operated at 422 mW pump power, with less 

than 0.4% erroneous polarization measurements in a laboratory environment.  

The apparatus at SP and B are identical in construction and each contains a bulk polarization 

measurement module (PMM), a 4-channel superconducting nanowire single-photon detector (SNSPD), 

and time-lagging electronics (TTM). Although the environment in the laboratory does not constitute a 

long-distance link, the losses in source PMM and SNSPD are set up. In this way, the accuracy of the 

experiment is ensured, by using those high-accuracy apparatus and simulate the losses in practical. 

In the PPM, coupled photons collide with a 50:50 beamsplitter randomly directing them to two 

impartial linear polarization basis measurements. By setting the 50:50 beamsplitter, they are able to 

provide a situation where the probability of a split photon is 50%. The first basis is realized by a PBS 

transmitting (reflecting) the horizontal (vertical) polarization mode. The second basis is the diagonal 

basis. All events that are detected are measured by TTM with 1 ps resolution. There are two TTM at both 

SP and B, and each TTM is disciplined to a GPS clock, as a result, the relative delay of this clock is on 

average, 13 ps/s. Providing the experiment setting would show how they set the apparatus in order to 

guarantee accuracy. However, the polarization measurement error along the link (2.6 %) is higher than 

in laboratory measurements (0.2 %) mainly due to keeping the PPC alignment time low. Measurements 

with an optical time-domain reflectometer (OTDR) of the fiber to St. Pölten (Bratislava) yielded a fiber 

length L of 129.0 km (119.2 km) and losses of −31.9 dB (−32.6 dB).  In addition to the loss, the long-

distance optical fiber of QKD also includes the influence of dispersion (CD) and polarization mode 

dispersion (PMD). In conclusion, they cannot observe the polarization fidelity loss caused by polarization 

mode dispersion in the fiber link. 

On the other hand, H Takesue and his team published an experiment that, examined the different 

phase shifts of QKD over 105 km fiber.[11] They used a pulse train with a 1GHz frequency with a phase 

difference of π, and the receiver obtained the signal after attenuation. The entire process is shown in 

Figure 8. The insertion loss in the interferometer was 2.5dB, and each click at the photon counters was 

recorded by using a time interval analyzer.  

To maximize the secure key generation rate, they set the average photon number to the optimum 

value for each transmittance with their expected value. The pump power was set up for bit errors caused 

by dark count. To reduce the impact of false clicks due to the amplification of the received signal, they 

applied a time gating to the recorded data, which also reduces the effective dark count per time gate. 

Figure 9 shows the secure key generation rate as a function of fiber length, where the square represents 
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the secure key generation of fiber transmission. X means the experimental result simulating a fiber loss 

with an optical attenuator with the time window at 8.8% and 0.6ns, which reduced the detection 

efficiency by 33%. The total dark count rate was 26kHz.  

 

Figure 8: The process of H Takesue's experiment 

At 30km or less fiber lengths, they achieved a sifted key generation rate of more than 1Mbit/s, which 

is twice more than the research published by Yoshizawa A, Kaji R, and Tsuchida H in 2004. [19] Then 

they redo the experiment with 3mW pump powers, 2% quantum efficiency, 2.7kHz dark count, and a 

time window of 0.2 ns. While using the time window of 0.2 ns, the detection efficiency was reduced by 

55%. By using the setup value mentioned above, their result is, a 209 bit/s secure key rate, and the bit 

error rate was 7.95% at 105km. In conclusion, the experiment is high-efficiency, with a relatively low 

error rate. 

  

Figure 9: Experiment result  

7. Water 

Shanchuan Dong and his team established an underwater condition for quantum key distribution 

based on the decoy-state BB84 protocol. [3] 

The team used a 450nm laser to identify energy loss. The channel is a 2.4m toughened glass tank 

filled with water with controlled water quality, which avoided error in result caused by different water 

quality or impurities. The average temperatures were maintained at 15°C. However, they haven’t 

considered attenuation caused by water turbulence.  

The decoy-state QKD needs three different intensities of lights. Dong and his team set the average 

photon number per pulse of the signal state to 0.8 and the decoy-state to 0.1, with zero photon number in 

the vacuum state. The relationship between 4-bits random number and photon state are shown in Table 

1. 
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Table 1: Relationship of 4 bits and its photon state 

 
After calibrating the quantum laser module, they send all the polarized states that have been prepared 

to testify the fidelity of these states. The average value of polarization state fidelity is 98.574%, which 

demonstrates that their method is capable of proceeding with subsequent QKD procedures. Then they 

redo the experiment with 3 different attenuations with 10.22dB, 12.36dB, and 14.4dB. The parameters 

and the average final key rate are shown in Table 2. The system is experimented with attenuation of 16.35 

and changes the number of photons per pulse to 0.7 for verifying the design that Dong and his team can 

calibrate the trigger intensity of the signal state and decoy-state independently. Thus, their experiment 

can be tested for various parameters. 

Table 2: Experiments parameters and result (Dong et al, 2022) 

 
Next, by calculation of the equation from “Practical decoy state for quantum key distribution” [17], 

Dong and his team made a graph about the relationship between secure key rate and water channel 

distance as shown in Figure 10. From the graph, for different parameters, the secure key rate decreases 

at different rate. The maximum distances can be achieved by their experiment is around 330 to 340 meters. 

  

Figure 10: The relationship between secure key rate and underwater channel distanc 

Felix Hufnagel and his team published research that involve quantum communication with the 

underwater medium as well.[10] In their research, still, the sender and receiver, but in the channel that is 

underwater with a flume tank which has a depth of 50 meters. There was a trolley on the top of the flume, 

which can travel in the channel with Alice’s setup. The sender consists of transmitting polarization state 

and transmitting spatial structure mode. 

A polarizing beamsplitter was sent with a 532nm diode. A mean photon number of 0.1 photon/ns was 

achieved by the neutral density filters attenuating the beam. A 3-inch lens was used for collecting the 

beam initially. The whole beam is focused, even with a slight beam drift, because of underwater 

turbulence. The beam then passes through a wave plate with λ/2 and λ/4, then through the polarization 

beamsplitter to project the entangled state to a specific state. Next, the beams are then coupled to a single-

mode fiber connected to a single-photon avalanche diode detector. The setup was initially optimized to 

place the trolley 1 meter away from the receiver. 

From the experiment, the relation between distance, quantum bit error rate (QBER), and the key rate 
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is shown in Table3, which shows that there is a slight increase in QEBR with an increase in distance, 

though the QBER at 20.5 meters is not precise with other data. The main reason for the increase in error 

is the loss caused by long-distance turbulence. Then the experiment was repeated with a vector vortex 

beam, the relationship is shown in Table 4. 

Table 3: Quantum bit error rate and key rates for polarization BB84 

Distance 0.5m 10.5m 20.5m 30.5m 

QBER(%) 0.27 0.74 3.7 0.96 

Key rate 0.94 0.87 0.54 0.84 

Table 4: Quantum bit error rate and key rates for a two-dimensional BB84 using vector vortex beam 

Distance 1.5m 5.5m 10.5m 

QBER(%) 1.44 3.4 1.0 

Key rate 0.79 0.57 0.84 

They also studied the effect of underwater turbulence on the space distribution of vector vorticity 

modes spreading through different channel lengths. A CCD camera was used for measuring the intensity 

of the beam, performing polarization tomography. The phase distortion associated with turbulence 

includes not only an oblique aberration but also astigmatism and other high-order effects on the spatial 

profile of the beam. Underwater aberrations are slower than observed. Astigmatism is thus easier to see 

in a free air space than the scintillation that is often observed under strong turbulence in the air. 

In the data analysis section, the research plotted a graph as shown in Figure11, the relationship 

between secret key rate and channel length. The black curve shows the optimal key rate for measuring 

the attenuation of the underwater channel. The red points are the experiment result. Although the 

experimental point is lower than the zero QBER theory, it is approximate with the theoretical line and 

supports the prediction of 80 meters. The dashed line shows the expected optimal key rate when the 

channel length exceeds 30 meters. The maximum calculation is accomplished by using the parameters in 

Table5.  

  

Figure 11: Secret key rate for the underwater polarization channel 

Table 5: Experimental parameters of the underwater polarization channel 

Parameter Dark 

Counts 

Source Rep 

Rate 

Detector 

Efficiency 

Bob’s Detection 

Efficiency 

Channel 

Loss(α) 

Flume Result 300 Hz 109Hz 0.6 0.188 0.57dB/m 

The optimal key rate is shown as black, taking into account only errors caused by the dark count. 

When the channel length is 0.5, 10.5, 20.5, and 30.5 m, the measured QBER is added to the experimental 

data points of background error and shown in red. The key rate analysis of the vector vorticity mode is 

as follows. The exact method of the polarization state is proved. The only change is the experimentally 

observed QBER, which is similar to the value of a polarization channel of the same length -- around 1% 

for a 10 m channel -- thus yielding similar key rates. For example, the vector vortex mode has a critical 

rate of 72kbps for a 10.5 m channel. In conclusion, they have performed an underwater channel which 

maintained its fidelity in both the polarization and vector vortex state. In addition, they have proven that 
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their channel is able to use in an underwater free-space setting. 

8. Satellite 

Quantum communications in space are usually set up with using the satellite. Mainly, by teleporting 

the entangled photon from ground to satellite, or from satellite to satellite. 

 

Figure 12: A near-diffraction-limited far-field divergence of ~10 mrad by two Cassegrain telescopes 

with apertures of 300 and 180 mm 

Liao and his team published a paper about satellite-based entanglement that has propagated over 1200 

km. [14] An efficient method is required because the entangled photon cannot be amplified, and due to the 

channel loss caused by factors like air turbulence or beam diffraction. By combing a beam divergence 

with high-bandwidth and high-precision acquisition pointing tracking (APT) technique, they built up a 

closed-loop APT system in both the transmitter and receivers, as shown in Fig 9 and Fig 10. The entire 

optical efficiency between the two telescopes is 45% to 55%, the experiment has achieved quantum 

entanglement distribution both between Delingha and Lijiang and between Delingha and Nanshan. When 

starting the APT system, the satellite reached an elevation of 5 degrees and, at the beginning of the 

measurement, it reached an elevation of 10°. 

 

Figure 13: The receiver (Liao et al, 2017) 

Owing to the motion of the satellite, a drift in the time difference and polarization rotatation was caused. 

However, by using a combination of motorized wave plates for dynamic polarization compensation, a 

polarization contrast of 80:1 was obtained. In addition, a 100-kHz pulsed laser was used for the 

synchronization of the two ground stations. Beyond that, they placed 20-nm bandwidth filters to control 

the background noise, and in the experiment, the background noise is 500 to 2000 counts/s due to the 

position of the Moon. 

The satellite flies along a sun-synchronous orbit and meets Delingha and Lijiang’s view once every 

night. The distance between the satellite and Delingha and Lijiang is shown in Figure11, which 

demonstrates the overall channel length of the two stations. They measured the downlink attenuation 

ranging from 64 to 82dB and observed an average two-photon count rate of 1.1Hz. 

Except Liao’s experiment, there was an experiment that considered different satellite channel in 2003. 

The experiment tested the QKD through satellite by satellite to ground and satellite to satellite links. [2] 
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Figure 14: A contour plot of link attenuation as a function of transmitter and receiver 

First of all, the satellite to ground links. In the low earth orbit case, they claimed that link-attenuation 

is not a problem. Figure 14 plotted a rough diagram between the link attenuation and the receiver aperture 

diameter for λ=800 nm. A link distance L for 30 cm receiver telescope aperture and receiver telescope 

aperture for link distance L=500km were given for the additional vertical scale. In the case of the link 

connecting the LEO and the ground station, the possible communication duration is relatively short, and 

the angular velocity at which the telescope at the ground station must move to track the satellite along its 

orbit is high. However, the long-distance link between geostationary orbits has high attenuation. As a 

result, the diameter is 100cm at the ground station aperture and the diameter is 30cm at the geostationary 

orbit terminal aperture, only one will meet the attenuation requirement of 60dB. 

9. Discussion 

In Neumann’s experiment, he used a ppLN crystal to create a pair of the entangled photons and used 

time-lagging electronics to record the observation, for reducing the error in observation. While in 

laboratory condition, they have maintained the secure key rates of 1.4 bits/s on average, with stabilized 

state of 110 hours with an entangled pair rate of 9/s. Those are the advantages of their research.  

However, the polarization measurement error along the link is higher than in laboratory 

measurements mainly due to keeping the PPC alignment time low, and they were unable to observe the 

loss of polarization fidelity due to polarization mode dispersion in the fiber link. 

In H Takesue’s experiment, they set the average number of photons to the optimal value of each 

transmittance and its expected value to maximize the secure key generation rate, which differs from 

Neumann’s experiment. In addition, they applied time gating to record the data to reduce the dark count, 

which used the same method as Neuman’s except for the equipment. 

For quantum communication underwater, Shanchuan Dong and his team used a 450nm laser to 

identify energy loss. The channel is a 2.4m tempered glass tank filled with water of controlled quality. 

The average temperature remains at 15°C.  

On the other hand, the turbulence was not observed yet, as they have mentioned in their paper. 

Moreover, they are facing some practical issues. The most important of these is the alignment between 

sender and receiver, which they said they are working on but not implementing in their research. 

In Felix Hufnagel’s experiment, an advantage is that they have considered water turbulence. They 

have investigated the effect of underwater turbulence on the spatial distribution of vector vorticity modes 

propagating through different channel lengths, which can make them demonstrate how water turbulence 

affects the distribution. However, having a gathered-up diagram to represent the relationship between 

distance, water turbulence, and QBER.  

Juan Yin’s experiment about satellite-based quantum communication builds closed-loop APT 

systems in both the transmitter and receivers to maximize the link efficiency, which is affected by channel 

loss due to air turbulence or beam diffraction. To control the background noise, they placed a 20 nm 

bandwidth filter. Compared to previous entanglement distribution methods using the best performing 

(0.16 dB/km loss) and most common (0.2 dB/km loss) commercial telecom fiber direct transmissions, 
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respectively, from the same two-photon source - our satellite-based method using 12 at 275 seconds 17 

orders of magnitude improvement in effective link efficiency within the coverage time. 

The experiment established by Markus Aspelmeyer, Thomas Jennewein, and Martin Pfennigbauer, 

has considered a different condition of satellite-based quantum communication. The low earth orbit 

method doesn’t require attenuation as they have explained, and the geostationary orbits have high 

attenuation, so they have used a smaller diameter for the fiber to meet the 60 dB attenuation requirement. 

Beyond the experiments, this paper has reviewed the prerequisite theory of quantum communication. 

Explaining quantum cryptography, and demonstrated the BB84 protocol established by by Charles H. 

Bennett in 194, which is a frequent used protocol in quantum communication.  

In addition, common idea of setting up the quantum teleportation, which used Bell state measurement 

to make a source bit entangled with the prepared entangled photon, and sent to the receiver the Bell state 

measurement result. The receiver then change the phase difference and amplitude of the photon. In this 

way, they achieved a way that the sender don’t need to observe his photon’s state but able to transform 

his information toward the receiver. 

Last, this paper illustrated a method for extending distance limitation of quantum teleportation, which 

is quantum repeater, and the technique of quantum repeater, which is quantum memory. Quantum 

memory is basically, controlling the speed of photon travelling in the EIT medium to zero, which made 

the photon stored in the medium. With the help of quantum memory, quantum teleportation used this to 

store the entangled state, and send to other station point to extend the distance of quantum teleportation. 

10. Conclusion 

In conclusion, this paper has shown the basis theory for quantum communication and explained the 

principles of quantum cryptography, and quantum teleportation. Moreover, we discussed three different 

mediums of the quantum communication channel, which is orthogonal fiber channel on land, fiber 

channel underwater, and satellite-based quantum communication, and evaluated their experimental data 

with their advantages and shortages, and a few suggestions for the shortages.  

For each of the mediums we have mentioned two research articles, for quantum communication on 

land, I used the experiment established by Sebastian Phillip Neumann, a experiment published in March 

2022, which means that this experiment is a sort of most up to date distance that scholars are able to 

achieve. While H Takesue’s experiment used massive skills to avoid errors in their experiment, for 

example the dark counts.  

Next, for underwater conditions, Shanchuan Dong’s experiment represent the newest finding of the 

underwater quantum communication, and used a set of technique to make the underwater communication 

precise like the time gating. Felix Hufnagel and his team is advantaged at, a depth of 50m tank, which is 

much greater that Dong’s condition, and researched on how the water turbulence affect the loss of key 

rate. Moreover, their experiment was experimented in both the polarization and vector vortex state. 

Finally, for satellite-based quantum communication, Juan Yin and his team and the research done by 

Markus Aspelmeyer, Thomas Jennewein, and Martin Pfennigbauer were used to show their different 

method.  
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