
Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 5: 15-23, DOI: 10.25236/AJCIS.2024.070502 

Published by Francis Academic Press, UK 
-15- 

Transition Variable-Based Fault Estimation and 
Intermittent Control for Nonlinear Multiagent 
Systems with Multiple Disturbances 

Hao Zheng1,a,* 

1Nanjing University of Finance and Economics, Nanjing, China 
azhh_nufe@outlook.com 
*Corresponding author 

Abstract: In this paper, the fault estimation and intermittent control of nonlinear multiagent systems 
with multiple disturbances based on transition variable are studied. This paper realizes fault estimation 
by designing a transition variable-based estimator. Considering the working intensity of the actuator 
and the nonlinear and multiple state related disturbance in a non-ideal state, intermittent control is 
introduced to extend the service life of the controller, and the system state observer is designed. Then, 
an augmented system model is established, and a sufficient condition is derived. Next, system state 
observer gain, transition variable-based estimator gain, and controller gain are given. Finally, the 
simulation results show that the proposed method can make the multiagent system achieve consensus, 
and the designed intermittent observer and transition variable-based fault estimator are effective. 
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1. Introduction 

Multiagent systems (MASs) have attracted the interest of many researchers in various research fields 
such as multi-vehicle systems[1], smart grids[2,3], complex networks[4,5] , and so on. In recent years, more 
fault-tolerant control has been studied in the field of MASs. Deng[6] studied the fault-tolerant formation 
control problem for a class of nonlinear MASs with actuator/sensor faults under directed and switched 
network topologies. Dong[7] studied the output synchronization problem of event-triggered 
communication schemes for a class of heterogeneous MASs under DoS attacks and actuator failures. 

Considering the practical application in industry, the actuator working intensity and the non-linearity 
and multiple state disturbance of the MASs model under non-ideal conditions should also be considered. 

2. Problem Formulation  

2.1. System Model 

Consider a continuous multiagent system with N nodes, which communicate through the topology 
graph  , the adjacency matrix H , the degree diagonal matrix A , and the Laplacian matrix 
L A H= − , the model is as follows:  

1 1

2 2

( ) ( ) [ ( ) ( )] ( ) ( ) ( ( ), )
( ) ( ) ( ) ( )

i i i i i i

i i i

x t Ax t B u t a t D x t t Ff x t t
y t Cx t D x t t

ω
ω

= + + + +
 = +



                   (1) 

where ( ) n
ix t ∈ , ( ) q

iy t ∈ , ( )iu t , ( ) m
ia t ∈  are the state, measured output, control input, and 

fault respectively. 1( )tω , 2 ( )tω ∈ are state-dependent disturbances, which follow a probability 

distribution with the expectation of 0 and variance of 1. ( ( ), )if x t t is the nonlinear dynamic term. A , B ,
C , 1D , 2D , and F are  known matrices, 

Considering the intermittent control of the system, the time set is divided into the working period and 
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rest period as Figure 1 shows. Define [ )1,k KT T + as a work cycle, in which there is a minimum working 

period lower bound lim inf 0k kpν →∞= >  and a maximum rest period upper bound lim sup 0k kpν →∞= >

where k k kp S T= − , 1k k kq T S+= − . 
1( )k k k kq p qγ −= +  is defined as the ratio of the intermittent period to 

the working cycle, and lim supk kγ γ→∞=  is the maximum intermittent proportion. 

 
Figure 1: Schematic diagram of control and rest periods 

Assumption 1 The communication topology graph is connected. 

Assumption 2 For all vectors ( ) n
jx t ∈ , ( )k

nx t ∈ , the nonlinear function ( ( ), )if x t t  satisfies  

|| ( ( ), ) ( ( ), ) || || ( ( ) ( )) ||j k j kf x t t f x t t x t x t− ≤ Λ −                           (2) 

where Λ  is a known matrix. 

Lemma 1 Given a matrix pn nX ×∈ , ( ) prank X n= ,which has the following SVD description 

1 0X U X V =  


, where 
p pn nU ×∈ ,

n nV ×∈ is the unitary matrix, and 1
p pn nX ×∈  is the singular 

value diagonal matrix. Suppose that there exists a positive definite matrix n nP ×∈ , such that PX XP=  

is satisfied if and only if the following holds: 1 2{ , }P Udiag P P U=


,where 1
p pn nP ×∈ ,

( ) ( )
2

p pn n n nP − × −∈ . 

2.2. Fault Model and Fault Estimator 

In (1), based on Chen[8] and Guo[9], variables ( )i tξ  are introduced here to complete the 
establishment of the actuator fault model. 

1

2

( ) ( )
( ) ( )

i i

i i

t E t
a t E t
ξ ξ

ξ
 =


=



                                         (3) 

where ( ) r
i tξ ∈ , 1

r rE ×∈ , 2
m rE ×∈ . 

The system state observer in this section is designed as follows. 

[ ]
[ ]

1 1 1 ( ) 1 1

1 1 1 ( ) 2

2 2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( , ) [ ( ) ( )] ,
ˆ ( )

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( , ) ,

ˆ ˆ ˆ( ) ( ) ( ) ( )

i i i i t i i
i

i i i i t

i i i

Ax t B u t a t D x t t Ff x t G y t y t t
x t

Ax t B u t a t D x t t Ff x t t

y t Cx t D x t t

ω
ω

ω

  + + + + + − ∈ℜ=  + + + + ∈ℜ 
 = +   (4) 

where, ˆ ( ) n
ix t ∈ , ˆ ( ) q

iy t ∈  are the estimated values of ( )ix t , ( )iy t , respectively, and 1G  is the 

observation gain. Inspired by Shi[10], the transition variable ( )i tτ  is constructed. 

2 1

2

ˆ( ) ( ) ,
( )

( ) ,
i i

i
i

t G x t t
t

t t
ξ

τ
ξ
− ∈ℜ

=  ∈ℜ                               (5) 

where 2G  is the transition variable gain. If the actuator fault model with initial value 0(0)i iξ ξ=  is 

the unique solution of (3) , ( )i i tτ τ= is the unique solution of the following system (6): 

𝑝0

𝑞0

𝑝1

𝑞1

𝑝2
… …

𝑝𝑘
… …

𝑇0 𝑆0 𝑇1 𝑆1 𝑇2 𝑆2 𝑇𝑘 𝑆𝑘
𝑡𝑖𝑚𝑒

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑟𝑒𝑠𝑡 𝑟𝑒𝑠𝑡
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( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
( )

,0 ,0 2

1 2 2 1 2 2 2 2 2
1

2 1 2 2 1 2

1 2

ˆ0
ˆ

(0)

,
ˆ ˆ ˆ,

,

i i i

i i i

i i i

i

iG x
E G BE t E G G A G BE G x t LBu t

t
t G G y t y t G Ff x t t G D x t t

E t t

τ τ ξ

τ

τ ω

τ

 = −


− + − − −
∈ℜ

= − − − −   
 ∈ℜ





         (6) 

Correspondingly, if ( )i i tτ τ= is the unique solution of the above system (6), ( )i i tξ ξ=  is also the 

unique solution of the actuator fault model, and ( )i tξ  can be expressed as follows: 

2 1

2

ˆ( ) ( ) ,
( )

( ) ,
i i

i
i

t G x t t
t

t t
τ

ξ
τ
− ∈ℜ

=  ∈ℜ                              (7) 

And we have the initial value of ( )i tξ : 0(0)i iξ ξ= . The model of intermittent control observer with 
intermediate and transition variables is as follows: 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )
( )

1 2 2 1 2 2 2 2 2
1

2 2 1 2 2 1 2

1 2

2 1

2

ˆ ˆ
,

ˆ ˆ ˆ ˆ,
ˆ ,

ˆ ˆ ,
ˆ ,

ˆ

i i

i i i i

i

i i
i

i

E G BE t E G G A G BE G x t
t

t G Bu t G G y t y t G Ff x t t G D x t t

E t t

t G x t t
t

t t
ξ

τ

τ ω

τ

τ
τ

 − + − −
 ∈ℜ

= − − − − −    
  ∈ℜ 


 + ∈ℜ =  ∈ℜ



    (8) 

Define system state estimation error: ˆ( ) ( ) ( )xi i ie t x t x t= − , transition variable estimation error:
ˆ( ) ( ) ( )

i i ie t t tξ ξ ξ= −
. The augmented system can be obtained as follows.: 

( ) ( )
1 ( )

1
1 1 2 2

1 1 2

[ ( )] ( ) ( ( ), )
,

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ( ), ) ( ) ( ) ( ) ,

N x t N x

x N x N x

N x N x N x

I A G C e I F f e t t
t

e t I D e t t I GD e t t
I A e t I F f e t t I D e t t t

ω ω
ω

⊗ + + ⊗
∈ℜ

= + ⊗ + ⊗
 ⊗ + ⊗ + ⊗ ∈ℜ            (9) 

1 2 2 1

1 2

( ) ( ) ( G ) ( ) ,
( )

( ) ( ) ,
N n

n

I E e t I BE e t t
e t

I E e t t
ξ ξ

ξ
ξ

⊗ − ⊗ ∈ℜ
=  ⊗ ∈ℜ



                    (10) 

where ( ) { ( )}x xie t col e t= , ( ( )) { ( ( ))}x xif e t col f e t= , ˆ( ( )) ( ( )) ( ( ))xi i if e t f x t f x t= − , 
( ) { ( )}ie t col e tξ ξ= . 

2.3. Closed-loop System and Controller Design 

Taking intermittent control into account, the controller in complete time can be designed as: 

1

2

ˆ ˆ ˆ( ( ) ( )) ( ) ,
( )

( ) ,
i

ij j i ij
i

i

cK x t x t a t t
u

t

l
t

a t
∈

 − − ∈ℜ= 
− ∈ℜ

∑ 

                    (11) 

where ˆ ( )ia t  is the estimation of ( )ia t  and has the formula 2
ˆˆ ( ) ( )i ia t E tξ= . 

Define 1
1/ ( )N

ii
x N x t

=
= ∑ , ( ) ( )i it x t xδ = − ,which represents the difference between the agent i and 

the average state of the agent and is called the consensus state error of the agent i . Let
( ) { ( )}it col tδ δ= ,combining (11), (4) and (1), the following consistent state error augmented system is 

obtained: 
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1 1
1

2

1 1 2

( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ( ))( )
( ) ( ) ( ) ( ) ( ) ( ( )) ,

N N

x

N N

I A cL BK t I D t t
t

cL BKe t BE e t Ff tt
I A t I D t t Ff t t

ξ

δ δ ω
δδ

δ δ ω δ

⊗ − ⊗ + ⊗
∈ℜ + ⊗ + ⊗ + ⊗= 

 ⊗ + ⊗ + ⊗ ∈ℜ



 

              (12) 

where ( ( )) { ( ( ))}if t col f tδ δ= , ( ( )) ( ( )) ( ( ))i if t f x t f x tδ = − , [ ]ij N Nn ×= , and
1 1/

1/ij

N i j
n

N i j
− =

=  − ≠ . 

3. Main Results 

Next, according to the designed observer and controller, the sufficient conditions to ensure MASs 
consensus are first derived, and then a set of solutions of the observer and controller are designed to 
achieve the expected consensus performance. 

3.1. Consensus Analysis 

Theorem 1 Given communication topology graph  , given control gain K ,state observation gain 
1G , transition variable gain 2G , given positive scalars α , β . If there exists positive definite matrices P , 

Q , S ,  satisfying:  

11 2

22

33

0

0 0
00 0

0

N

N

cL PBK PBE I PF

I QF

I

I

Ξ ⊗ ⊗ ⊗

∗ Ξ ⊗

<∗ ∗ Ξ

∗ ∗ ∗ −

∗ ∗ ∗ ∗ −

 
 
 
 
 
 
  



                  (13) 

11

22

33

0 0 0
0 0

00 0
0

N

N

I PF
I QF

I
I

Σ ⊗ 
 ∗ ∑ ⊗ 
  <∗ ∗ ∑
 
∗ ∗ ∗ − 

 ∗ ∗ ∗ ∗ −                          (14) 

αγ
α β

<
+                                              (15) 

where 11 ( ) ( )N NI He PA PBK I PαΞ ⊗ + + ⊗ Λ Λ += 

, 11 ( )N NI He PA I Pβ⊗ −= ⊗∑  ,
122 ( ) ( )N NI He PA QG C I QαΞ ⊗ + + ⊗ Λ Λ += 

, 22 ( )N NI He PA I Qβ⊗ −= ⊗∑   ,   
233 1 2( )N NI He SE SG BE I Sα⊗ + + ⊗Ξ = , 133 ( )N NI He SE I Sβ⊗ −= ⊗∑ . 

Then the MASs (1) studied in this paper can achieve consensus. 

Proof Construct the following Lyapunov functional: 

1 2 3( ) ( ) ( ) ( )V t V t V t V t= + +                                 (16) 

where 1( ) ( ) ( ) ( )NV t t I P tδ δ= ⊗

, 2 ( ) ( ) ( ) ( )x N xV t e t I Q e t= ⊗

, and 3 ( ) ( ) ( ) ( )NV t e t I S e tξ ξ= ⊗

 

Define ( ) [ ( ) ( ) ( )]e xx t t e t e tξδ=    

, ( ) [ ( ) ( ( )) ( ( ))]e xt t fx t f e tη δ=    

. 

Within the control period 1ℜ ,that is [ ),k Kt T S∈ . Taking the infinitesimal operator on 1( )V t  and 
computing its expectation, we obtain the following: 
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1

2

{ ( )} ( )[ ( ) 2 ] ( ) 2 ( )( ) ( )

2 ( )( ) ( ) 2 ( )( ) ( ( ))
N x

N

V t t I He PA cL PBK t t cL PBK e t

t PBE e t t I PF f tξ

δ δ δ

δ δ δ

ℑ = ⊗ − ⊗ + ⊗

+ ⊗ + ⊗

  

 

            (17) 

Define ( ) ( ) ( )Nt U I tδ δ= ⊗ , where 2{0, , , }NU LU diag λ λ= Λ = 



 and U  is the unitary matrix, 

then 1 1
)( () N

ii
t tδ δ

=
= ∑ ,thus  

22

2

2 ( )( ) ( ) 2 ( )( ) ( )

2 ( ) ( )

2 ( ) ( ) 2 ( )( ) ( )

2 ( )( ) ( )

N
i ii

N
i i i N ii

i N i

c t L PBK t c t PBK t

t c PBK t

t PBK t t I PBK t

t I PBK t

δ δ δ δ

δ λ δ

δ δ δ δ

δ δ

=

=

− ⊗ = − Λ⊗

≤ −

≤ − = − ⊗

= − ⊗

∑
∑

 



 



              (18) 

By the Lipschitz assumption (2) for nonlinear functions, further we have 

11

2

1{ ( )} ( ) { } ( ) 2 ( )( ) ( )

2 ( )( ) ( ) 2 ( )( ) ( ( ))

,0,0, ,0 x

N

V t t diag t t cL PBK e t

t PBE e t t I PF f

P I

tξ

η η δ

δ δ δ

αℑ ≤ + ⊗−

+ ⊗ + ⊗

Ξ −



  

 

         (19) 

2 22 ),0,0{ ( )} ( ) {0, } ( ), 2 ( )( ) ( ( )x N xV t t diag t e t I QF fI e tQη α ηℑ ≤ + ⊗Ξ − −  

        (20) 

33 3{ ( )} ( ) {0,0, } ( ),0,0V t t diag tSαη η−= Ξℑ 

                      (21) 

Synthesizing the above three formulas and combining them with (16), { ( )} ( )V t V tαℑ ≤ − is 

obtained. Integrate over kT  to [ ),k kt T S∈ , we have  
( ){ ( )} ( )kt T

kV t e V Tα− −≤ ⋅                                 (22) 

Within the rest period 2ℜ , that is [ )1, kkt S T +∈ ,similar to [ ),k Kt T S∈ ,by simple calculation, we have 
{ ( )} ( )V t V tβℑ ≤ ,for ( )V tℑ ,integrate over kS  to [ )1, kkSt T +∈ , one has  

( ){ ( )} ( )kt S
kV t e V Sβ −≤ ⋅                                 (23) 

According to (22) and (23), one has 

00 ( ) (0) (0) { , , } (0)e eV T V x diag P Q S x≤ = = 

 
0 0( )

0 00 ( ) ( )S TV S e V Tα− −≤ ≤  
1 0 0 0( )

1 0 00 ( ) ( ) ( )T S p qV T e V S e V Tβ α β− − +≤ ≤ ≤  
0 1) 01 1 (( )

1 1 00 ( ) ( ) ( )p p qS TV S e V T e V Tα βα − + +− −≤ ≤ ≤ . 

By induction, when 1k >  
1

0 0( )0 ( ) ( ) (0)
k

k

k

k i ii iS T
k

p
k

qV S e V T e Vα α β
−

= =− − − +
≤ ≤ ∑= ∑

                      (24) 

2 1 0 0( )
10 ( ) ( ) (0)

k k
i ii i

p qT S
k kV T e V S e Vαβ β

= =− +

+

− ∑ ∑≤ ≤ =                       (25) 

According to the definition of γ and 
1( )γ α α β −< + , for any

1(0, ( ) )ϑ α α β γ−∈ + − , ∃  εκ ,such 

that for any k εκ> , kγ γ ϑ< +  holds. Further, for any k εκ> , ( )( )k k kq p qγ ϑ< + +  ,  
(1 )( )k k kp p qγ ϑ> − − + always holds. This facilitates the following derivation: 
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1 1 1

0 0 0 0

0 0
1 1

1 1

10 0

1 2 1

( )(1 ) ( )( )

[( )( ) ]( )

( )

k k k k
i i i ii i i i

i ii i
k k

i i i ii i

i i ki i

k

p q p q

p q

p q p q

p q T T

T T

ε ε

ε ε

ε ε

ε

ε

κ κ

κ κ

κ κ
κ

κ

α β α β αν

α β αν

α γ ϑ β γ ϑ

α β αν γ ϑ α β α

− − −

= = = =

= =

− −

= + = +

+= =

+

− + ≤ − + −

≤ − + −

− + − − + + +

= − + − + + + − −

Μ −Μ −

∑ ∑ ∑ ∑
∑ ∑
∑ ∑
∑ ∑



       (26) 

where 1 0 0i ii i
p qε εκ κα β αν

= =
Μ = − + −∑ ∑ , 2 ( )( ) 0α γ ϑ α βΜ = − + + > . 

When k εκ> ,
1

2 10 0 1 ( )0 (0) (0)
k k

i i ki i
p q T Te V e e Vκε

α β
−

+= =
− + −Μ −Μ≤ ≤∑ ∑

,
1

0 0
0l exp{ } (0)im k k

i ii ik
Vp qα β −

= =→∞
=− +∑ ∑ , and further 

0l (im )kk
V S

→∞
= 1( ) 0lim kk

V T +→∞
=

 are available 

according to (24) and (25). Using (22) and (23) again, lim ( ) 0k V t→∞ = , the proof is completed. 

3.2. Controller Design 

Theorem 2 Given communication topology graph  , given positive scalars α , β . If there exists 
positive definite matrices P , Q , S , exists matrix K  , satisfying: 

11 2

22

33

0
* 0 0

0* * 0 0
* * * 0
* * * *

N

N

cL BK PBE I PF
I QF

I
I

 Ξ ⊗ ⊗ ⊗
 Ξ ⊗ 
  <Ξ
 

− 
 − 



                    (27) 

11

22

33

0 0 0
0 0

00 0
0

N

N

I PF
I QF

I
I

Σ ⊗ 
 ∗ ∑ ⊗ 
  <∗ ∗ ∑
 
∗ ∗ ∗ − 

 ∗ ∗ ∗ ∗ −                           (28) 

αγ
α β

<
+                                              (29) 

where 11 ( ) ( )N NI He PA BK I PαΞ ⊗ += + ⊗ Λ Λ +

,
22 ( ( 2) )N NI He QA I Q C CαΞ = Λ Λ⊗ + −⊗ +  

, 33 1 2 2( 2) )(N NI H E S E B BEe S I αΞ = −⊗ + ⊗  

. The 
rest of the notations have the same meaning as in Theorem 1. 

Given 
1

1G Q C−= − 

,
1

2 2G S E B−=  

, and control gain can be solved as 1K P K−= . 

Proof: Substitute the observer gain 
1

1G Q C−= − 

,
1

2 2G S E B−=  

 into 22Ξ  and 33Ξ  in theorem 1, 
22Ξ and 33Ξ  can be obtained. According to lemma 1, for 1 2{ , }P Udiag P P U= 

, exists 
1

1 1 1P VB PBV−= 

, 
satisfying PB BP= . Replacing PBK  in (13) with BPK  and denoting PK  as K , (27) is obtained. 
Then P , Q , S , K  can be solved separately, and the control gain can be obtained according to the 
solution 1K P K−= . The proof is completed.  

4. Simulation 

The parameters of the nonlinear continuous MASs are set as: 
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1 0
B=  

0 1
 
 
  , [ ]2 1C = , 

1

0 0.02
0 0

D  
=  
  , [ ]2 0.01 0.01D =  

1
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0.1 0.1

E  
= −  

  , 
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E
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  , 

0.1 0
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F  
=  
  , 

0.01 0
0 0.01

 
Λ =  

   

The agent communication topology is shown as fig.2. The eigenvalues of the corresponding 
Laplacian matrix are 0, 0.5, 0.5, 1.5, 1.5, 2, respectively, and 2c = is taken. And given that 0.1α = ,

0.4β = . A series of feasible solutions are obtained:  

0.9215 -0.3375
-0.3375 0.7865

P  
=  
  ,

7.2414 -3.0800
-3.0800 6.4640

Q  
=  
  ,

15.8082 -2.5581
-2.5581 18.1904

S  
=  
  , 

1

-0.4289
-0.3591

G  
=  
  ,

2

0.0442 0.0128
-0.0004 0.0403

G  
=  
  , 

0.9262 0.4171
0.6968 0.4592

K  
=  
  . 

The other simulation parameters are set as 400ν = , 100ν = , 1 / 5γ < . The specific steps of the 
control period and interval period are randomly generated according to the above constraints.  The 
simulation results are shown in the figure.3 – figure.6 (Only the first dimension values are displayed).  

 
Figure 2: System topology 

 
(open loop) 

Figure 3: State trajectories 

 
(close loop) 

Figure 4: State trajectories 

The running trajectories of MASs in open and closed loop states are depicted in Figures 3 and 4, 
respectively. It is evident that agents can not achieve consensus in the open-loop situation. However, 
MASs shows good consensus performance under closed loop control. Figure 5 provides a detailed view 
of MASs consensus error under closed-loop control conditions. It can be observed from Figure 5 that the 
consensus error presents a decreasing trend, which indicates that the states of each agent in the system are 
gradually converging to a common value, that is, the average state of the MASs. Figure 6 and 7 
respectively show the state estimation error and fault estimation error of MASs under closed-loop control, 
both of which converge rapidly and are kept within a small range, indicating that the designed observer 
and estimator are effective and can effectively track the real state of the system and estimate the possible 
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faults of the system during operation 

 
Figure 5: Consensus error 

 
Figure 6: State observation error 

 
Figure 7: Fault estimation error 

The above simulation results show that the system state observer and the transition variable-based 
fault estimator designed in this paper can effectively estimate the state and possible faults of the system 
during operation, and verify the effectiveness of the proposed compensation control strategy and the 
reliability of intermittent control, and finally achieve internal consistency of the system. 

5. Conclusion 

In this paper, a continuous multiagent system model under complex constraints is established by 
considering the internal structure of the multiagent system, fully considering the system's actuator fault, 
disturbance, and nonlinear dynamic term. At the same time, intermittent control is considered, and a 
sufficient condition is derived to make the multiagent system meet the consensus. This research mainly 
provides two contributions: first, it uses the fault estimation method to compensate the controller so as to 
make the control more secure and effective; second, it guarantees system stability and enhances actuator 
service life under intermittent control. 
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