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Abstract: Vehicular LiDAR technology provides powerful technical support for the accurate acquisition 

of rod-shaped ground objects' spatial information in road scenes. However, how to solve the accurate 

extraction and classification of rod-shaped ground objects is always a technical problem to be solved. 

Aiming at the above problems, this paper proposes a MFA-Net based on improved PointNet Network. 

Firstly, PointNet is used to extract point features and global features from the input data. Then, the local 

information of the point cloud is extracted by the joint module of high and low layer features constructed 

by the upsampling method, and the point features, global features and local features are fused into joint 

features. Finally, the accurate classification of point clouds is achieved by the fully connected layer. 

Experimental analysis shows that the proposed algorithm model has achieved good results on the public 

datasets ModelNet40 and ModelNet10, and the classification accuracy on the self-made rod-like ground 

object dataset Rod5 is 99.0%, which verifies the excellent classification performance and robustness of 

the proposed algorithm model. 

Keywords: PointNet; Local feature; Graph convolution; Feature combination; Rod-shaped ground 

objects; Vehicle-borne LiDAR 

1. Introduction 

Pole features (street lamp, street tree, pole, sign, etc.) are important components of road scenes, and 

how to efficiently and automatically extract and classify pole features is a current research hotspot, which 

is of great significance for the construction of smart roads and smart cities[1]. As a cutting-edge mapping 

technology[2], vehicle-borne LiDAR can quickly obtain comprehensive 3D spatial information of various 

features in the road scene, and the dense point cloud can accurately express the 3D structure information 

of rod-shaped features in the road scene, which provides powerful data support for deep learning to solve 

the rod-shaped feature classification problem. The current research on point cloud classification based 

on deep learning mainly includes.  

(1) Based on the multi-view method, representative algorithm models such as MVCNN, GVCNN, 

Auto-MVCNN, etc[3-8]. This kind of algorithm firstly converts the point cloud into multi-angle projection 

maps, then uses the two-dimensional image processing method to analyze these projection maps 

containing the point cloud information, and finally realizes the classification by combining the multi-

view features. This kind of algorithm has high efficiency, but the method of reducing 3D to 2D results in 

the loss of part of the geometric information of the point cloud, and can only obtain the features from a 

specific perspective, which is difficult to satisfy the automatic classification of large-scale complex scene 

features. 

(2) Voxel-based method, representative algorithm models such as VoxNet, 3D ShapeNes, OctNet, 

etc[9-14]. This kind of algorithm transforms unstructured point clouds into regular structures with voxels 

as units, and then uses convolutional neural networks such as 3DCNN for feature learning to complete 

classification. This kind of algorithm can effectively solve the problem of unstructured point cloud, but 

the low resolution voxel will lose useful information, and the high resolution will lead to greater 

computing pressure. 

(3) Based on the graph convolution method, representative algorithm models such as GCN, DGCNN, 

RGCNN, etc[15-20]. This kind of algorithm combines graph structure with convolution operation and 

obtains feature information through the relation between graph nodes. This kind of algorithm can 

effectively obtain the geometric structure information of point cloud, but due to the limitation of the 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 6, Issue 5: 75-84, DOI: 10.25236/AJCIS.2023.060510 

Published by Francis Academic Press, UK 

-76- 

number of fully connected network layers, too many parameters are prone to overfitting problems. 

(4) Point based method, representative algorithm models such as PointNet, Pointnet ++, So-Net, 

etc[21-28]. This kind of algorithm directly processes the original data to extract features, and can make full 

use of the information of the original point cloud. However, its focus is the extraction of global features, 

and the study of local features is still not deep enough. PointNet, as a pioneering algorithm, deals directly 

with point clouds to greatly facilitate the point cloud processing process, but further research on the 

deeper level of point cloud information is still needed. 

Although deep learning has become one of the effective methods to solve the classification problem, 

the current research on point cloud classification based on deep learning still has the following problems: 

(1) the network models are mostly used in existing publicly synthesized datasets, with less application in 

actual field point cloud data and insufficient generalization capability; (2) the ability to capture point 

cloud information still has room for in-depth research. Therefore, this paper makes use of the home-made 

pole feature dataset of road scene point clouds acquired by vehicle-borne LiDAR, and applies the actual 

collected data in the deep learning network. And considering that PointNet can only extract global 

features, we propose to build a Multiple Feature Associated Network (MFA-Net) to further enhance the 

point cloud feature extraction capability, and finally achieve the classification of vehicle-borne LiDAR 

rod-shaped feature point clouds. 

2. Principle of the algorithm 

To further improve the accuracy of deep learning in solving rod feature classification, this paper 

proposes a multi-feature joint network model, as shown in Figure 1. The model firstly uses PointNet to 

extract point features and global features from the input data, while the local features of the point cloud 

are extracted through the joint module of high and low level features constructed by up-sampling method, 

and then the point features, global features and local features are fused into joint features, and finally the 

point cloud is accurately classified through the fully connected layer.  

 

Figure 1: MFA-Net network model 

2.1 PointNet 

PointNet is a deep neural network model that directly processes unordered point cloud data, and the 

formal representation is shown in formula (1). 

             (1) 

where: 𝑥1, 𝑥2, … , 𝑥𝑛 denotes the input unordered point cloud data; 𝑥𝑖 ∈ 𝑅𝐷, 𝑅 denotes real number 

and 𝐷 denotes dimension; the number of points is 𝑛; the ith point cloud is denoted as 𝑥𝑖; 𝑔 represents 

the Maxpooling symmetry function; function ℎ represents the multilayer perceptron (MLP); 𝑓 denotes 

the continuous set function that maps a set of points to a vector. 

Figure 2 shows the PointNet network structure, where the input is the 3D coordinates of N points (N 

× 3), and the alignment of the input data is achieved by a 3D spatial transformation matrix prediction 

network T-Net (3). The aligned data are processed through a shared parameter MLP (64, 64) model to 

extract the 64-dimensional features of each point. The features are then aligned by acting on the features 

of each point via T-Net (64) to predict a 64 × 64 transformation matrix. Then a three-layer perceptron 

MLP (64, 128, 1024) is used to project the feature-based points into the high-dimensional space for 

feature learning, directly changing the dimensionality of the features to 1024. finally, the global features 

of the point cloud (1×1024) are extracted through the maximum pooling layer (Maxpooling), and the 

global features are processed using the fully connected layer FC(512,128,k). The scores of the K 
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categories are output to achieve the classification of the point cloud.  

 

Figure 2: PointNet network structure 

2.2 Point feature and global feature extraction 

In PointNet networks, after the original data is processed by T-Net, a low-dimensional convolution 

operation is first performed, and then convolution is performed by the multilayer perceptron MLP to 

directly obtain the 1024-dimensional global features. This approach, although it can describe the global 

information of the points, will lose the detailed information of the points. In order to extract richer point 

cloud information, in this paper, N×64 is extracted as features of the points in the process of extracting 

global features. To further prevent information loss, the features of (1×64) points are saved by 

aggregation through a maximum pooling operation. Finally, the point features, global features and local 

features extracted by the joint module of high and low level features are spliced and fused, and the joint 

features are processed using the fully connected layer to output the classification results, and the 

extraction process is shown in Figure 3. 

 

Figure 3: Flow chart of point featureand global feature extraction 

2.3 Construction of joint modules for high and low level features 

Only the features of each individual point are considered in the PointNet classification network, 

which does not take into account the local information of the point cloud. In view of this, this paper 

extracts local feature information by constructing a high and low level feature joint module, the structure 

of which is shown in Figure 4. The module consists of the SA module, the GraphConv module and the 

Unite module, the function of the SA module is to obtain the local features of the point cloud, and 

subsequently the enhanced intermediate level features are obtained step by step through the GraphConv 

module, in order to enrich the semantic information of the local features with the Unite module. The 

specific implementation steps are as follows: the input N×3 matrix is aligned by T-Net to obtain the N×3 

matrix (where N represents the number of points and the subsequent different N values represent different 

number of point clouds). There are two subsequent paths for N×3: First, the N×128 low-level features 

were obtained by GraphConv module. Second, the N1×256 middle-layer features were obtained through 

the SA module and GraphConv module, and then the results of the second SA module were obtained 

through the GraphConv module to get N2×512 high-level features. High-level features, middle-level 

features, and low-level features obtain features with richer semantic information through Unite module. 

Finally, combine the high-level features with the features obtained by the two Unite module modules to 

obtain the local features. By concatenating point features, global features and local features, this paper 

uses the full connection layer to process the combined features and output the classification results. 
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Figure 4: Structure diagram of high and low layer feature joint module 

2.3.1 SA module 

In this paper, the local features of points are obtained through the SA module, which is divided into 

three parts: sampling, grouping and feature extraction (PointNet), as shown in Figure 5. A certain number 

of points are first selected using Sampling; then a specified number of point sets are clustered by grouping 

with each sampled point as the centre; finally the point sets are iteratively processed using PointNet to 

aggregate the features to each sampled point. The results of the first SA module are fed into the next SA 

module to repeat the operation, extracting fewer and fewer centroids, but containing more and more 

feature information, thus obtaining the local features of the points. Using the first SA in Figure 4 as an 

example. The input number of points N is downsampled to N1, with each sampling point as the center, 

and the nearest K points with a specified number are clustered. Then, the input N×3 matrix was 

aggregated to obtain N1×K×3 matrix. Finally, local features in the sampling area were extracted by 

PointNet to obtain N1×128 results. 

 

Figure 5: Flow chart of SA module 

In this paper, farthest point sampling (FPS) and K nearest neighbor (KNN) algorithm are used 

respectively. FPS algorithm process: Firstly, a random point in the original data is taken as the initial 

point, and then the point nearest euclidean distance from the initial point is selected from the remaining 

point set to become the second point in the sampling group, and the iterative operation meets the sampling 

quantity requirement[29].The FPS algorithm can reduce the number of points and the overall geometry of 

the point cloud without changing the overall geometry of the point cloud, which can reduce the 

computational complexity of the network model. KNN algorithm process: Every point after sampling is 

taken as the central point, euclidean distance between the remaining points and the central point is 

calculated, and K points nearest to each central point are selected to form the region group of each central 

point. For each central point, the closer the point is to the central point, the stronger the connection. 

Therefore, this algorithm can effectively aggregate the required points in the region and strengthen the 

ability of local information aggregation. PointNet's task is to aggregate the features of regional point 

groups, add them to each central point feature, and ultimately achieve local feature extraction of points. 
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2.3.2 GraphConv module 

The original point cloud is fed into the two-layer SA module for processing by means of layer 

advancement, and finally the next higher level features of the point cloud are obtained. The number of 

points contained in the next higher level features is relatively small, but the semantic information 

contained is richer. In contrast, the lower-level features in the input layer contain more points that are 

closer to the original point cloud, with a larger number of points, but contain less semantic information. 

Therefore, this paper proposes a layer-by-layer approach to obtain the enhanced features of the 

intermediate layers through the GraphConv module for subsequent operation of the Unite module. The 

basic steps are as follows: before the original data is spatially transformed and input to the first SA module, 

the N×128 low-level features are obtained by GraphConv module. Similarly, the output of the first SA is 

passed through GraphConv module to obtain N1×256 middle-level features, and the output of the second 

SA is passed through GraphConv module to obtain N2×512 high-level features. In this paper, the Unite 

module is used to combine the high level-middle level-low level features in order to enrich the semantic 

information, and finally the combined features are fed to the classification network. 

 

Figure 6: Feature extraction of GraphConv (k=6) 

The GraphConv module realizes feature aggregation through graph convolution operation, so as to 

enhance the ability of feature capture. The graph convolution constructs a directed graph G=(V, E) by 

the KNN algorithm, where V={1,...,N} represents the vertices of the graph structure, N is the number of 

point clouds, and the edges formed by KNN are denoted by E. Taking K=6 as an example, Figure 6 shows 

the graph convolution feature extraction process. For a selected node 𝑥𝑖 , the KNN algorithm is used to 

select the nearest K nearest neighbours as {𝑥𝑖𝑗1, 𝑥𝑖𝑗2,…, 𝑥𝑖𝑗𝑘}, the distance between node 𝑥𝑖 and its 

nearest neighbours as the edges of the graph structure, 𝑒𝑖𝑗 denotes the edge features generated by node 

𝑥𝑖 and its nearest neighbours, and the feature aggregation of all nodes' directed edges is the output result 

of graph convolution, which is formally expressed as: 

                            (2) 

where ℎΘ(𝑥𝑗 − 𝑥𝑖) denotes the edge function 𝑒𝑖𝑗 considering only edge features, where ℎΘ is a 

series of non-linear functions parameterised by the set of learnable parameters Θ, capable of achieving 

𝑅𝐷 × 𝑅𝐷 → 𝑅𝐷′
 feature learning. 

2.3.3 Unite module 

The purpose of Unite module is to attach the features of the previous layer with fewer points and rich 

semantic information to the features of the current layer through the method of feature up-sampling, so 

as to enrich the semantic information of the current layer. Figure 7 shows the structure of the Unite 

module. As can be seen from Figure 7, the upper layer features are first transformed by upsampling, the 

results are spliced onto the current layer features, and finally the fused features are output by MLP. The 

new features have two paths: one is directly to the last step; the other is as input to the next layer of the 

Unite module.  

 

Figure 7: Unite module structure diagram 
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Through up-sampling, the lower layer features are transferred to the upper layer, which can make the 

lower layer features get richer semantic information. Upsampling in this module is implemented by the 

reverse interpolation method. Euclidean distance matrix and weighting coefficient are calculated by the 

points of two adjacent layers. Three nearest points are selected near each point to be interpolated, and 

weighted average values are calculated according to the characteristics of the three points as the features 

of the interpolation points. The features of the interpolation points are stacked with those of the upper 

layer by means of jump connection to realize the upsampling of features. Where, the weighting 

coefficient is obtained by dividing the reciprocal distance of each point by the sum of the reciprocal 

distance of the three points. The number of point clouds in the feature of the lower layer is restored to 

the number of point clouds contained in the feature of the upper layer by interpolation method, and the 

features are connected into fusion features. The feature difference is calculated as shown in Formula (3). 

                        (3) 

where: 𝑓
^

𝑖  represents the eigendifference of the points to be interpolated, where 𝑝𝑖  refers to the 

known points, 𝑝𝑗 refers to the unknown points, and 𝑓𝑗 represents the eigenvalue information of the 

known points; 𝜔𝑗(𝑝𝑖)  represents the weight value, which is the inverse of the euclidean distance 

between the unknown and known points, where 𝑁(𝑝𝑖) represents the set of known point cloud regions. 

3. Experimental analysis 

3.1 Experimental Environment 

The experimental hardware environment is Inter Core i7-9700F + RTX2060(6G) + 16GB RAM, and 

the software environment is Ubuntu16.04 ×64 + Windows10 ×64 + CUDA10.1 + cuDNN7.5 + 

TensorFlow1.13 + Python3.7. 

3.2 Experimental data 

Table 1: Sample effect of Rod5 dataset 

Name/Label Street lamp /0 Traffic light /1 Street tree /2 Pole /3 Traffic sign /4 

Point cloud 

     

(1) Open dataset. Two subsets of ModelNet[10], ModelNet40 and ModelNet10, was chosen for the 

experiments. The public dataset called ModelnNet10 contains 12311 rigid 3D models of 40 different 

classes, of which 9843 are training models and 2468 are testing models, including cars, chairs, doors and 

so on. The public dataset called ModelnNet10 contains 4900 3D CAD models from 10 different 

categories, of which 3991 are training models and 909 are testing models, including bathtubs, beds, sofas 

and so on. 

(2) Rod5 dataset. The SSW-3 vehicle-borne LiDAR system was used to collect the point cloud data 

of the ring road around Henan Polytechnic University. The non-ground point cloud was obtained through 

pre-processing such as denoising, cropping, chunking and cloth filtering, and then the extraction of rod 

features was realised based on the binary image segmentation algorithm, followed by sampling, quantity 

augmentation, normalisation and label annotation, etc. Finally, h5 file was written in 7:3 ratio to complete 

the production of rod-shaped ground object dataset (This dataset is named Rod5 in this article). Sample 

visualization is shown in Table 1. The Rod5 dataset contains 3277 pole feature models in 5 categories, 

including 2355 training models and 922 test models, including street lamp, traffic light, street tree, pole 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 6, Issue 5: 75-84, DOI: 10.25236/AJCIS.2023.060510 

Published by Francis Academic Press, UK 

-81- 

and traffic sign. 

3.3 Precision analysis of open data set 

In order to verify the effect of MFA-Net classification network in this paper, ModelNet40 and 

ModelNet10 public datasets were used for testing, and the accuracy was compared with PointNet and 

PointNet++ networks. In the classification network of this paper, the values of FPS and KNN algorithm 

of the first SA module are selected as 512 and 32 respectively, and the values of FPS and KNN algorithm 

of the second SA module are selected as 128 and 64 respectively. The GraphConv module selects 40, 30 

and 20 values of the graph convolution of low-level, middle-level and high-level features respectively 

according to the feature level. According to the experimental environment of this paper, linear rectifier 

ReLU is used for the activation function, and cross entropy is used for the loss function. ADAM optimizer 

is used to guide the deep learning network to update the parameters, and momentum gradient descent 

method is used for training. After each fully connected layer, dropout with the parameter of 0.5 is added. 

Other parameters are set as follows: batch_size=8, decay_rate=0.7, momentum=0.9, learning_rate=0.001, 

max_epoch=251, num_point=2048. The algorithm was evaluated from the aspect of classification 

accuracy through the test set, and the specific values were shown in Table 2. 

As can be seen from the analysis of Table 2 below, the accuracy of the improved MFA-Net 

classification network on ModelNet40 and ModelNet10 is 91.0% and 94.2%, respectively, achieving 

good results, which are 2.4% and 2.6% higher than the PointNet network, and 1.2% and 1.9% higher 

than the PointNet++ network. The reason is that PointNet can only obtain the global features of point 

cloud, and Pointnet ++ can only extract the local features of point cloud. However, the MFA-Net network 

in this paper extracts the local features through the high-low layer feature association module, and 

combines the point features and global features, so the point cloud information extraction ability is 

stronger. 

Table 2: Comparison of classification accuracy of each algorithm 

Network ModelNet40 ModelNet10 

PointNet 88.6% 91.6% 

PointNet++ 89.8% 92.3% 

MFA-Net 91.0% 94.2% 

3.4 Experimental analysis of the Rod5 dataset 

The aim of this paper is to study deep learning to solve the classification problem of typical features 

in road scenes, so the following experiments are trained and tested using the rod feature dataset, and the 

four evaluation metrics of overall accuracy, average accuracy, iterative performance and robustness are 

selected to compare the MFA-Net network with other methods. 

3.4.1 Precision analysis 

The network parameters were set as in Section 2.3. As can be seen from Table 3, the overall 

classification accuracy of the improved MFA-Net classification network for pole features was 99.0%, 

including 100% for street lamp, 96.2% for traffic light, 100% for street tree, 100% for pole and 98.8% 

for traffic sign. The analysis shows that street tree and poles are more homogeneous and different in 

shape compared to the other three features, so the classification accuracy is higher. Traffic light had the 

lowest classification accuracy due to their greater variety, containing cameras, pedestrian crossing signals, 

intersection signals and road centre signals with varying shapes. 

In order to verify the classification effect of pole-shaped features, PointNet, PointNet++ and MFA-

Net in this paper were used to compare the accuracy. From Table 3, it can be seen that the MFA-Net 

classification network in this paper has the highest overall classification accuracy of 99.0% for rod-

shaped features, which is 2.8% higher than the PointNet network and 0.8% higher than the PointNet++ 

network. From the perspective of single sample classification accuracy, the accuracy of MFA-Net 

network classification in this paper is all higher than or equal to PointNet and Pointnet ++. The average 

classification accuracy is the average of all sample independent accuracies, and as can be seen from the 

table, the MFA-Net network has the highest average classification accuracy of 99.0%. 

Through analysis, PointNet classification network can only learn the global features of points, and 

PointNet++ can only learn local features, and the ability to capture point cloud feature information is 

insufficient. On the basis of extracting global features from PointNet, the MFA-Net classification network 
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in this paper adds a high and low level feature association module for extracting local features, so as to 

acquire features between points at a deeper level. At the same time, combined with point features, further 

enhance the feature extraction ability of the network, with a high classification accuracy. Experiments 

show that the improved MFA-Net classification network has better performance. 

Table 3: Precision analysis of Rod5 dataset 

Category PointNet PointNet++ MFA-Net 

Street lamp 98.1% 99.1% 100% 

Traffic light 94.3% 93.7% 96.2% 

Street tree 100% 100% 100% 

Pole 99.4% 98.7% 100% 

Traffic sign 87.4% 98.8% 98.8% 

Overall accuracy 96.2% 98.2% 99.0% 

Average accuracy 95.8% 98.1% 99.0% 

3.4.2 Iteration performance analysis 

In order to more fully analyze the classification performance of the MFA-Net network in this paper, 

the Rod5 dataset is taken as the test object, and the accuracy change curve and loss change curve of the 

dataset along with the number of iterations are constructed, as shown in Figure 8. As can be seen from 

Figure 8 (a), MFA-Net network convergence speed is faster than PointNet, and classification accuracy is 

always higher than PointNet. With the increase of the number of iterations, the accuracy of the PointNet 

network will fluctuate greatly, while the MFA-Net network is relatively stable. As can be seen from 

Figure 8 (b), compared with PointNet network, MFA-Net network has a faster and relatively stable loss 

decline, and the loss function value is smaller when the network converges, which indicates that MFA-

Net network has a greater fitting ability to the test data set. This is mainly due to the design of high and 

low level feature association module in MFA-Net network, which captures the local features of the point 

cloud in a deeper level, combines the point features with the global features, and further strengthens the 

feature extraction ability. By synthesizing Figure 8 (a) and (b), it can be seen that the classification 

capability of MFA-Net network is stronger than that of PointNet network, which fully reveals the 

superiority of MFA-Net network in this paper. 

 
(a) Precision training curve   (b) Loss training curve 

Figure 8: Training curves of PointNet and MFA-Net networks 

3.4.3 Robustness analysis 

For the deep learning of point cloud, the number of point clouds has a significant impact on the 

characteristics. Generally speaking, the denser the point cloud, the more accurate the extracted features 

will be, while the sparser the point cloud, the more sketchy the extracted features will be. Therefore, this 

paper compares the robustness of MFA-Net and PointNet network through sparsity experiment. Under 

the condition that other experimental parameters were consistent, the number of point clouds was reduced 

from 2048 points to 1024, 512 and 256 points for training and testing. The robustness of MFA-Net and 

PointNet in this paper was compared through input sparse point learning, and the precision comparison 

was shown in Figure 9. As can be seen from Figure 9, the accuracy of the PointNet network attenuates 

from the highest 96.2% to 95.1%, while the accuracy of MFA-Net network in this paper is basically 

above 98.0% by combining point features, global features and local features, and the accuracy of the 

improved MFA-Net network is always higher than that of the PointNet network. In the case of sparse 
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point clouds, it can still have higher accuracy and show better robustness. 

 

Figure 9: Precision comparison of different sampling points 

4. Conclusion 

In this paper, an improved deep learning network model MFA-Net is proposed to effectively solve 

the classification problem of rod-shaped ground objects in road scenes. Rod-shaped ground objects were 

extracted from the point cloud processed by vehicle LiDAR and made into the dataset needed for research. 

Considering that PointNet failed to take into account the local features of point, a high-low feature 

association module was designed to extract the local features of point cloud. By combining point feature, 

global feature and local feature, the feature extraction capability of point cloud is further strengthened. 

The experiment shows that MFA-Net network has better performance on open dataset. The classification 

accuracy of rod-shaped ground objects is 99.0% when the rod-shaped ground objects data set is put into 

MFA-Net network, which is 2.8% higher than that of PointNet network, proving that the improved deep 

learning network model is effective in solving rod-shaped ground objects in road scenes. 
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